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A continuous non-Brownian motion martingale with Brownian motion marginal distributions

Keywords: AMS subject classification: Primary: 60G44, 60J65. Secondary: 33-99, 35K57, 60E99, 60G18, 60J60 Brownian motion, diffusion process, martingale, martingale problem

We construct a continuous martingale that has the same univariate marginal distributions as Brownian motion, but that is not Brownian motion.

A c c e p t e d m a n u s c r i p t 1 Introduction

Recently Fima Klebaner brought to our attention that it is an open problem whether there exists a continuous martingale that has the same univariate marginal distributions as standard Brownian motion, but which is not Brownian motion. In this note we make an explicit construction of such a martingale.

Let {X 1 (t)} t≥0 and {X 2 (t)} t≥0 be independent stochastic processes that are weak solutions to the time homogeneous diffusion type stochastic differential equation

dX(t) = dB(t) 2 X(t) , X(0) = 0, ( 1 
)
where B is standard Brownian motion. Let Y be a random variable that is independent of X 1 and X 2 , and that has probability density function

f Y (y) = 4 (Γ( 3 4 )) 2 2 π 3/2 1 -(y/ √ 2) 4
for y ∈ (0, √ 2).

(

) 2 
Our main result is the following affirmative answer to the above mentioned problem. 

Theorem 1. The process M (t) = X 1 (t)X 2 (t)Y , t ≥ 0, is a continuous martingale such that M (t) = d B(t)

Proof of Theorem 1

As the diffusion coefficient σ(y) = 1/(2 y) of ( 1) is non-zero with

ε -ε dy σ(x + y) 2 = 4 ((x+ε) 3 -(x-ε) 3 ) 3 < ∞ for x ∈ R and ε > 0,
the Engelbert-Schmidt theory shows that (1) has a unique weak solution X (see e.g, Karatzas and Shreve, 1991, Theorem 5.5.7). To find the transition density

p t (x, y) = P X(t+s) ∈ (y, y+dy) X(s) = x dy
of X, we consider the transformed process Y = X 4 , which by Itô's formula satisfies

dY (t) = 2 Y (t) dB(t) + 3 2 dt, Y (0) = 0. ( 3 
)
The process Y is usually called the CIR process, after [START_REF] Cox | A theory of the term structure of interest rates[END_REF], but was considered already by [START_REF] Feller | Two singular diffusion problems[END_REF]. According to these authors, Y has transition density

P Y (t+s) ∈ (y, y+dy) Y (s) = x dy =          x 1/8 2 t y 1/8 exp - x + y 2 t I -1/4 √ xy t for x > 0, 1 (2 t) 3/4 y 1/4 Γ( 3 4 ) exp - y 2 t for x = 0,
where I is the modified Bessel function of the first kind [recall that I -1/4 (x) ∼ (2/x) . By the lower of these formulas, together with symmetry of the solution to (1), we get

p t (0, y) = 2 1/4 y 2 Γ( 3 4 ) t 3/4 exp - y 4 2 t for y ∈ R and t > 0. (4) 
The solution X to (1) is a continuous local martingale (see e.g, Karatzas and Shreve, 1991, Proposition 3.2.24). Therefore X is a continuous martingale if

E sup t∈[0,T ] |X(t)| n = E sup t∈[0,T ] Y (t) n/4 < ∞ for T > 0, (5) 
for n = 1 (see e.g, Karatzas and Shreve, 1991, Theorem 3.3.28). Since 

I -1/4 (x) ∼ e x / √ 2πx
Y (t) n/4 > u ∼ 2 P Y (T ) > u 4/n = 2 ∞ u 4/n 1 (2T ) 3/4 y 1/4 Γ( 3 4 ) exp - y 2T dy
as u → ∞. From this it is obvious that (5) holds for n ≥ 0, so that X is a martingale.

As X 1 and X 2 are martingales it is an elementary fact that they are martingales with resepect to the filtrations generated by themselves F 1 t = σ(X 1 (s) : 0 ≤ s ≤ t) and F 2 t = σ(X 2 (s) : 0 ≤ s ≤ t), respectively. Using the independence of X 1 , X 2 and Y , it is an elementary exercise to see that X 1 X 2 and M (t) = X 1 (t)X 2 (t)Y are martingales with resepect to the filtrations

{F 1 t ∨ F 2 t } t≥0 and {F 1 t ∨ F 2 t ∨ σ(Y )} t≥0
, respectively [where (5) together with elementary arguments ensure sufficient integrability properties]. Now, if M is Brownian motion, then M has quadratic variation process M t = t, so that [START_REF] Bibby | Diffusion-type models with given marginal distribution and autocorrelation function[END_REF]. This is impossible as

X 1 X 2 t = t/Y 2 , giving E{ X 1 X 2 t } = t E{1/Y 2 } = ∞, by
E X 1 X 2 t ≤ K E sup s∈[0,t] |X 1 (s)| 2 |X 2 (s)| 2 ≤ K E sup s∈[0,t] |X 1 (s)| 4 < ∞
for some constant K > 0, by the Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities (see e.g, Karatzas and Shreve, 1991, Proposition 3.3.28), together with [START_REF] Carr | A note on sufficient conditions for no arbitrage[END_REF].

It remains to show that M (t) = d B(t) for t ≥ 0: As p t (0, y) = p 1 (0, y/t 1/4 )/t 1/4 by (4), we have 1), it follows that it is enough to prove that X 1 (1)X 2 (1)Y = d B [START_REF] Albin | Extremes of diffusions over fixed intervals[END_REF]. By symmetry, this follows if the Mellin transform for s ≥ 1.

X 1 (t) = d t 1/4 X 1 (1). As B(t) = d t 1/2 B(
E (|X 1 (1)||X 2 (1)| Y ) s-1 = (E{|X 1 (1)| s-1 }) 2 E{Y s-1 } of |X 1 (1)||X 2 (1)| Y agrees with E |B(1)| s-1 = ∞ 0 y s-1 2 √ 2π exp - y 2 2 dy = 2 s/2 Γ(s/2) √ 2π for s ≥ 1. (6) 
By [START_REF] Cox | A theory of the term structure of interest rates[END_REF] it is therefore enough to prove that Y has Mellin transform

2 s/2 Γ(s/2) √ 2π 2 s/4 Γ((s+2)/4) 2 1/4 Γ( 3 4 ) 2 = (Γ( 3 4 )) 2 Γ(s/2) √ π (Γ((s+2)/4)) 2 = Γ( 3 4 )) 2 2 s/2 Γ(s/4) 2π Γ((s+2)/4) , ( 7 
)
where the second equality follows from the Gauss-Legendre multiplication formula , so that M is a Gaussian process with stationary and independent increments, thereby contradicting the assumption that M is not Brownian motion.

Γ(s/4)Γ((s+2)/4) = 2 √ π 2 -s/2
A non-Brownian motion martingale M with Brownian motion marginal distributions is not a Gaussian process, because M has uncorrelated increments (being a martingale), that are independent if M is Gaussian, which is impossible by the previous paragraph.

Our construction of a martingale M (t) = X 1 (t)X 2 (t)Y with Brownian motion marginal distributions crucially relied on the self-similarity p t (0, y) = p 1 (0, y/t H )/t H for some H ∈ (0, 1 2 ], which made it enough to prove that X 1 (1)X 2 (1)Y = d B [START_REF] Albin | Extremes of diffusions over fixed intervals[END_REF]. Using this selfsimilarity together with the Kolmogorov forward equation

∂ 2 ∂y 2 σ(y) 2 2 p t (x, y) - ∂ ∂t p t (x, y) = ∂ 2 ∂y 2 1 8 y 2 p t (x, y) - ∂ ∂t p t (x, y) = 0,
elementary calculations and the change of variable z = y/t H give

∂ 2 ∂z 2 σ(t H z) 2 2 t 2H-1 p 1 (0, z) + ∂ ∂z H z p 1 (0, z) = 0. (8) 
This makes necessary that σ(z) 2 /z 2-1/H is a constant (where in our case H = 1 4 ). With such a choice σ(z) 2 = 1 4 z 2-1/H of σ, [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] is the equation for the stationary density of a diffusion with this diffusion coefficient and drift coefficient µ(z) = -H z, so that

p 1 (0, z) = 2 C σ(z) 2 exp z 0 2µ(y) σ(y) 2 dy = 8C z 1/H-2 exp -8H 2 z 1/H for z ∈ R,
for a suitable normalizing constant C > 0 (see e.g, Karatzas and Shreve, 1991, Section 5.5), which gives (4) using that p t (0, y) = p 1 (0, y/t 1/4 )/t 1/4 .

As the self-similarity imposed in the previous paragraph severely limits the possible diffusion coefficients σ of diffusions X that can feature in our construction of M , one might look for non-diffusion type self-similar martingales. In order for such a martingale X to feature in our construction it has to have tail probabililities at least as light as Gaussian tails, as X(1)Z cannot have lighter tails than X(1), except for a scaling factor, when Z is a non-degenerate random variable independent of X. Examples of 
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 3 Further remarks A non-Brownian motion martingale M with Brownian motion marginal distributions does not have independent increments, because if M (t+s) -M (s) and M (s) = d B(s) are independent with sum M (t+s) = d B(t+s), then M (t+s)-M (s) must be Gaussian by Cramer's theorem (see e.g, Bondesson, 1995), which implies that M (t+s)-M (s) = d B(t+s)-B(s) = d B(t)
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 12 non-diffusion type light-tailed self-similar martingales includes, for example, X(t) = t 0 g B(s)/ √ s dB(t) for a bounded function g.However, for this X it seems near impossible to find the distribution of X(1), to check whether there exists a Z such that X(1)Z = d B(1). With the above notation, X(1)Z = d B(1) holds if and only if ln(|B(1)|) = d ln(|X (1)|) + ln(|Z|). This is the much researched factorization problem for probability distributions (see e.g, Bondesson, 1995), for which it is well-known that non-trivial factorizations do not always exist, especially not when one of the factors X(1) is given. The family of non-continuous martingales with Brownian motion marginal distributions constructed by Hamza and Klebaner (2006b) is rather non-explicit. However, Olle Häggström has communicated a simple explicit example of such a martingale to us: Let M (t) = √ t B(1)(-1) N (t) with the filtrationF t = σ(B(1)) ∨ σ(N (s) : s ≤ t),where {N (t)} t>0 is a non-homogeneous Poisson process independent of B with intensityλ(r) = 1/(4 r).As M is not continuous, but has the univariate marginal distributions of Brownian motion, we only have to show that M is a martingale. AsE{M (t)|F s } = √ t ξ (-1) N (s) E (-1) N (t)-N (s) = M (s) t s P{N (t)-N(s) odd} , this follows from the fact that (by basic properties of Poisson processes) P{N (t) -N (s) odd} = Bondesson, L. (1995), Factorization theory for probability distributions, Scand.

A c c e p t e d m a n u s c r i p t that

  it remains an open problem whether there exists a non-Brownian motion continuous martingale with Brownian motion marginals.

	Based on the fundamental work of Kellerer (1972), who gave necessary and suffi-
	cient conditions for the existence of Markovian martingales with prescribed marginal
	distributions, Madan and Yor (2002) gave three constructive solutions to that problem.
	Hamza and Klebaner (2006b) noted that, in the case of Brownian motion marginals, two
	of these solutions reduced to Brownian motion itself, while the third resulted in a non-
	continuous process. Hamza and Klebaner proceeded to construct a whole family of non-
	continuous martingales with Brownian motion marginal distributions. They also noted

for t ≥ 0, where = d denotes equality in distribution, but which is not Brownian motion. The problem to construct martingales with prescribed univariate marginal distributions has recived attention recently, see e.g, Bibby et al. (2005), Campi (2004), Carr and Madan (2005), Hamza and Klebaner (2006a, 2006b), and Madan and Yor (2002).

In part, this is due to the significance the problem has in modelling in mathematical finance. In particular, martingales with Brownian motion marginals are solutions to the Bachelier model (see e.g,

[START_REF] Schachermayer | How close are the option pricing formulas of Bachelier and Black-Merton-Scholes?[END_REF]

, on this model).
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