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Abstract

In the several samples location problem, it is usually of interest to present estimates

of treatment effects along with the test. The spatial Hodges-Lehmann estimators

∆̂ij of the differences between treatments i and j are apparent companions to a

multivariate Kruskal-Wallis test. However, these estimators generally fail to satisfy

the property ∆̂ij = ∆̂ik + ∆̂kj , making them incompatible with each other. In this

paper we consider adjusted estimators possessing this property. A simulation study

is carried out in order to study their finite sample efficiencies. Limiting distributions

and efficiencies are presented as well.
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1 Introduction

Let X = (X1, . . . ,Xc) be a p×N data matrix consisting of c independent random samples

X1 = (x11, . . . ,x1n1),

X2 = (x21, . . . ,x2n2),

...

Xc = (xc1, . . . ,xcnc),

from p-variate continuous distributions F (x−µ1), F (x−µ2), . . ., F (x−µc), respectively,

where N = n1 + . . . + nc. Knowing little of the underlying distribution, we are interested

in finding out whether there are differences in location between the samples, and if so,

estimating those differences.

First recall the notions of spatial sign and rank. A multivariate extension of univariate

sign, the spatial sign of vector xij , is defined as

S(xij) =





‖xij‖−1xij , if xij 6= 0;

0, if xij = 0,

where ‖ · ‖ denotes the Euclidian length. Thus, the spatial sign is a p-variate unit vector.

The empirical spatial centered rank of xij among the data set X is defined as

RN (xij) =
1
N

c∑

k=1

nk∑

l=1

S(xij − xkl).

This gives a vector inside the unit sphere pointing from the center of the data cloud X

approximately to the direction of xij . Spatial ranks are data dependent, but they converge

uniformly in probability to their theoretical values R(xij) = E [S (xij − x)], x ∼ F .
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2 A Multivariate Kruskal-Wallis Test

The hypotheses of interest are

H0 : µ1 = · · · = µc versus H1 : µ1, . . . ,µc not all equal.

A classical univariate nonparametric test for the problem is the Kruskal-Wallis test.

Hettmansperger et al. (1998) gave a multivariate extension of the Kruskal-Wallis test,

identical to the classical test in the univariate case, based on affine invariant ranks. Simi-

lar approach can be taken with spatial ranks as outlined next.

Write Ri = 1
ni

∑ni
j=1 RN (xij) for the group average of empirical spatial ranks with

respect to the entire sample. Under the null hypothesis,

Q2 =
c∑

i=1

niR
T
i B̂−1Ri

D−→ χ2
p(c−1)

(Möttönen and Oja, 1995; Choi and Marden, 1997), where

B̂ = ave
{
RN (xij)RN (xij)T

}

is a consistent estimator (under H0) of the spatial rank covariance matrix

B = E0

[
R(xij)R(xij)T

]
.

3 Estimation of Treatment Effects

Denote the difference between treatments i and j by ∆ij = µj−µi. Natural companion es-

timator ∆̂ij to the test is the multivariate two-sample spatial Hodges-Lehmann estimator,

that is, the sample spatial median of the ninj pairwise differences xjk−xil (k = 1, . . . , nj ;

l = 1, . . . , ni). Note that ∆̂ij = −∆̂ji and ∆̂ii = 0. Möttönen and Oja (1995) state but

do not prove the following asymptotic result concerning this estimator:
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Theorem 1 Assume that min {ni, nj} → ∞ and that ni
N → λi and nj

N → λj, 0 < λi, λj <

1. Under general assumptions,

√
N(∆̂ij −∆ij)

D−→ Np

(
0,

λi + λj

λiλj
A−1BA−1

)
.

Here

A = E

[
1

‖xjk − xil −∆ij‖
(
Ip − S(xjk − xil −∆ij)S(xjk − xil −∆ij)T

)]
.

To find a covariance matrix estimate for ∆̂ij , the A matrix can be estimated by

Â = ave

{
1

‖xjk − xil − ∆̂ij‖
(
Ip − S(xjk − xil − ∆̂ij)S(xjk − xil − ∆̂ij)T

)}
,

where the average is taken over all possible pairs (xij ,xkl) from all the samples. An

estimate of the B matrix can be obtained via

B̂ = ave
{
RN (xij − ∆̂1i)RN (xij − ∆̂1i)T

}
.

For completeness of this paper, a heuristic proof of the limiting normality is presented

in the Appendix. Chaudhuri (1992) considers the spatial one-sample Hodges-Lehmann

estimator and Hodges and Lehmann (1963) the univariate two-sample estimation problem.

The inconvenience with the above estimators—just like in the univariate case, or when

using multivariate marginal ranks—is that the obtained estimates are not generally com-

patible in the sense that ∆̂ij = ∆̂ik + ∆̂kj .

To overcome this problem, consider competing estimators of treatment effects. An

estimator of the difference between the ith and the jth treatment using the kth treatment

as a reference is

∆̃ij·k = ∆̂ik + ∆̂kj . (1)

This type of estimator can be useful in a situation where the treatment effect of interest

cannot be estimated directly, but only via a third treatment. Note that ∆̃ij·i = ∆̃ij·j =
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∆̂ij . Taking the average over the treatments groups

∆̃ij =
1
c

c∑

k=1

∆̃ij·k (2)

yields a generalization of the univariate estimator proposed by Lehmann (1963). The

adjusted estimators (1) and (2) are consistent only if ni
N → λi, 0 < λi < 1, for all

i = 1, . . . , c. Estimators that are consistent under a weaker condition that ni
N → λi and

nj

N → λj are obtained by weighting the estimators by the relative group size of the reference

sample (Spjøtvoll, 1968):

∆̄ij =
1
N

c∑

k=1

nk∆̃ij·k (3)

When n1 = . . . = nc the spatial Spjøtvoll’s estimators (3) reduce to the spatial Lehmann’s

estimators (2).

Theorem 2 Assume that min {ni, nj , nk} → ∞ and that ni
N → λi,

nj

N → λj and nk
N → λk,

0 < λi, λj , λk < 1. Then, under general assumptions,

√
N

(
∆̃ij·k − ∆̂ij

)
P−→ 0

for all i, j, k.

Corollary 1 Under the assumptions of Theorem 2,

√
N

(
∆̃ij − ∆̂ij

)
P−→ 0 and

√
N

(
∆̄ij − ∆̂ij

)
P−→ 0

for all i, j, k.

Theorem 2 and Corollary 1 imply that the alignment of the estimates (with respect to the

other c− 2 treatments) does not alter their limiting distributions. However, it is unclear

what happens to the efficiency of the adjusted estimators in finite samples, particularly if

the sample sizes are widely disparate. This question will be addressed in the next section.
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4 Efficiencies

Recall that the spatial Hodges-Lehmann estimator is much more efficient than the mean

difference vector for heavy-tailed distributions, and nearly as efficient at the normal model

(Table 1). As the adjusted estimators share the limiting distribution of the spatial Hodges-

Lehmann estimator, their asymptotic relative efficiencies are identical as well.

The finite sample efficiencies of the adjusted estimators ∆̃12·3, ∆̃12 and ∆̄12 relative

to the unadjusted estimator ∆̂12 shown in Figures 1, 2 and 3, respectively, are based

on simulations from a univariate normal distribution (10000 repetitions) and a bivariate

spherical normal distribution (1000 repetitions) for three groups. Efficiencies for spherical

distributions in general are likely to be approximately the same. The simulations were

conducted in R (R Development Core Team, 2004).

The efficiency of the estimator ∆̃12·3, based on a reference sample of size 1 (n3 = 1),

is approximately 0.7 (p = 1) and 0.8 (p = 2). At this point, the value is merely the

observed relative efficiency of the the difference of the (spatial) medians related to the

(spatial) Hodges-Lehmann estimator. Adding a few observations to the third group quickly

improves the performance of the estimator ∆̃12·3. At n1 = n2 = n3, the observed relative

efficiency is close to unity (Figure 1). Our further simulation studies suggest that, as

n1 = n2 remain fixed and n3 increases, the finite sample efficiency increases even beyond

1, but only very slightly.

The behavior of the spatial Lehmann’s estimator ∆̃12, being the average of the ∆̃12·k

estimators, is very similar (Figure 2). It is superior to the estimator ∆̃12·3, because it is

never worse than 90% efficient, and because it reaches the efficiency of the spatial Hodges-

Lehmann estimator much faster. The reasons are easy to see: as ∆̃12 = 1
3(2∆̂12 + ∆̃12·3),

the (spatial) Hodges-Lehmann estimator ∆̂12 receives the most weight in the computation.
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Finally, the spatial Spjøtvoll’s estimator ∆̄12 seems to have the same efficiency as the

spatial Hodges-Lehmann estimator ∆̂12 when n3 is small (Figure 3). As n3 increases and

n1, n2 remain fixed, the estimator tends to ∆̃12·3. Thus, for large n3 it can be slightly

better than ∆̂12. The weighting procedure enables the spatial Spjøtvoll’s estimator ∆̄12 to

protect itself against efficiency losses due to extreme group allocations in both directions,

thus making it a superior estimator. If the sample sizes are approximately the same, it

does not make a difference which estimator is used.

5 Affine Invariant/Equivariant Versions

The test and the estimators based on spatial ranks are orthogonally invariant and equiv-

ariant but not affine invariant and equivariant. However, if V̂ is an affine equivariant

estimator of shape in the sense that V̂(HX + g1T
N ) ∝ HV̂HT , then

• any orthogonally invariant test computed on the transformed data set Y = V̂−1/2X

is affine invariant (Randles, 2000; Möttönen et al., 2003), and

• any orthogonally equivariant estimator computed on the transformed data set, and

retranformed, V̂1/2∆̂ (Y), is affine equivariant. This procedure is widely known as

the transformation retransformation technique (Chakraborty and Chaudhuri, 1996;

Chakraborty et al., 1998; Chakraborty and Chaudhuri, 1998).

Therefore, a solution is to perform the multivariate spatial rank test on a transformed

data set Y, and to retransform the treatment difference estimates obtained from Y back

to the original scale by V̂1/2. Here the most natural approach is to use spatial ranks in

the estimation of the shape matrix V (Oja and Randles, 2004). One possibility is to apply



Acc
ep

te
d m

an
usc

rip
t 

8

a shape matrix defined by the implicit equation

p
c∑

i=1


 1

ni

ni∑

j=1

Rni(yij)Rni(yij)T


 =

c∑

i=1


 1

ni

ni∑

j=1

Rni(yij)TRni(yij)


 Ip, (4)

where yij = V̂−1/2xij and Rni(yij) is the spatial rank of yij among yi1, . . . ,yini . After

standardization by V̂−1/2 obtained from (4) the spatial ranks appear as if they were from

a spherical distribution. For similar definitions of shape matrices based on spatial signs,

see earlier work of Tyler (1987) and Dümbgen (1998). Oja and Randles (2004) also gave

an algorithm for the computation of a shape matrix similar to (4). The algorithm always

seems to converge, but the actual proof is missing.
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Appendix

Proof of Theorem 1. Let x1, . . . ,xm and y1, . . . ,yn be two independent random

samples from F (x − µx) and F (y − µy). It is not a restriction to assume that ∆xy =

µy − µx = 0. The estimator ∆̂ = ∆̂xy satisfies

√
N

mn

m∑

i=1

n∑

j=1

S(yj − xi − ∆̂) = 0.

Suppose that ∆̂ is
√

N -consistent for ∆, where N = m + n. This can be shown in the

multivariate case as in Nevalainen et al. (2007). Write ∆̂
∗

=
√

N∆̂. Then the Taylor
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expansion around ∆̂
∗

= 0 gives

0 =
√

N

mn

m∑

i=1

n∑

j=1

S(yj − xi)− Â∆̂
∗
+ oP (1),

where Â P−→ A and

√
N


 1

mn

m∑

i=1

n∑

j=1

S(yj − xi)− 1
n

n∑

j=1

R(yj) +
1
m

m∑

i=1

R(xi)


 P−→ 0.

Therefore

√
N


∆̂ + A−1


 1

n

n∑

j=1

R(yj)− 1
m

m∑

i=1

R(xi)





 P−→ 0

and the result follows.

Proof of Theorem 2. Let x1, . . . ,xm, y1, . . . ,yn and z1, . . . , zl be three independent

random samples from F (x). Let N = m + n + l. By Theorem 1

√
N

[
∆̂xz + A−1

(
1
l

l∑

k=1

R(zk)− 1
m

m∑

i=1

R(xi)

)]
P−→ 0,

and

√
N


∆̂zy + A−1


 1

n

n∑

j=1

R(yj)− 1
l

l∑

k=1

R(zk)





 P−→ 0.

But then simply

√
N


∆̂xy·z + A−1


 1

n

n∑

j=1

R(yj)− 1
m

m∑

i=1

R(xi)





 P−→ 0

and therefore
√

N∆̂xy·z and
√

N∆̂xy have the same limiting distribution.
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Table 1: Asymptotic relative efficiency of the spatial Hodges-Lehmann estimator relative

to the mean difference vector under multivariate t-distributions (Möttönen et al., 1997).

Degrees of freedom

Dimension 3 6 10 ∞

1 1.900 1.164 1.054 0.955

2 1.953 1.187 1.071 0.967

3 1.994 1.200 1.081 0.973

6 2.050 1.219 1.095 0.984

10 2.093 1.229 1.103 0.989
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Figure 1: The observed relative efficiency of ∆̃12·3 relative to ∆̂12.
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Figure 2: The observed relative efficiency of ∆̃12 relative to ∆̂12.
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Figure 3: The observed relative efficiency of ∆̄12 relative to ∆̂12.


