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In the several samples location problem, it is usually of interest to present estimates of treatment effects along with the test. The spatial Hodges-Lehmann estimators ∆ ij of the differences between treatments i and j are apparent companions to a multivariate Kruskal-Wallis test. However, these estimators generally fail to satisfy the property ∆ ij = ∆ ik + ∆ kj , making them incompatible with each other. In this paper we consider adjusted estimators possessing this property. A simulation study is carried out in order to study their finite sample efficiencies. Limiting distributions and efficiencies are presented as well.

A c c e p t e d m a n u s c r i p t 1 Introduction

Let X = (X 1 , . . . , X c ) be a p × N data matrix consisting of c independent random samples X 1 = (x 11 , . . . , x 1n 1 ), X 2 = (x 21 , . . . , x 2n 2 ), . . .

X c = (x c1 , . . . , x cnc ),
from p-variate continuous distributions F (x -µ 1 ), F (x -µ 2 ), . . ., F (x -µ c ), respectively,

where N = n 1 + . . . + n c . Knowing little of the underlying distribution, we are interested in finding out whether there are differences in location between the samples, and if so, estimating those differences.

First recall the notions of spatial sign and rank. A multivariate extension of univariate sign, the spatial sign of vector x ij , is defined as

S(x ij ) =        x ij -1 x ij , if x ij = 0; 0, if x ij = 0,
where • denotes the Euclidian length. Thus, the spatial sign is a p-variate unit vector.

The empirical spatial centered rank of x ij among the data set X is defined as

R N (x ij ) = 1 N c k=1 n k l=1 S(x ij -x kl ).
This gives a vector inside the unit sphere pointing from the center of the data cloud X approximately to the direction of x ij . Spatial ranks are data dependent, but they converge uniformly in probability to their theoretical values R( The hypotheses of interest are

x ij ) = E [S (x ij -x)], x ∼ F .
H 0 : µ 1 = • • • = µ c versus H 1 : µ 1 , . . . , µ c not all equal.
A classical univariate nonparametric test for the problem is the Kruskal-Wallis test. Write

R i = 1 n i n i j=1 R N (x ij )
for the group average of empirical spatial ranks with respect to the entire sample. Under the null hypothesis, [START_REF] Möttönen | Multivariate spatial sign and rank methods[END_REF][START_REF] Choi | An approach to multivariate rank tests in multivariate analysis of variance[END_REF], where

Q 2 = c i=1 n i R T i B -1 R i D -→ χ 2 p(c-1)
B = ave R N (x ij )R N (x ij ) T
is a consistent estimator (under H 0 ) of the spatial rank covariance matrix

B = E 0 R(x ij )R(x ij ) T .

Estimation of Treatment Effects

Denote the difference between treatments i and j by ∆ ij = µ j -µ i . Natural companion estimator ∆ ij to the test is the multivariate two-sample spatial Hodges-Lehmann estimator, that is, the sample spatial median of the n i n j pairwise differences x jk -x il (k = 1, . . . , n j ; l = 1, . . . , n i ). Note that ∆ ij = -∆ ji and ∆ ii = 0. Möttönen and Oja (1995) state but do not prove the following asymptotic result concerning this estimator:

A c c e p t e d m a n u s c r i p t

1. Under general assumptions,

√ N ( ∆ ij -∆ ij ) D -→ N p 0, λ i + λ j λ i λ j A -1 BA -1 .
Here

A = E 1 x jk -x il -∆ ij I p -S(x jk -x il -∆ ij )S(x jk -x il -∆ ij ) T .
To find a covariance matrix estimate for ∆ ij , the A matrix can be estimated by

A = ave 1 x jk -x il -∆ ij I p -S(x jk -x il -∆ ij )S(x jk -x il -∆ ij ) T ,
where the average is taken over all possible pairs (x ij , x kl ) from all the samples. An estimate of the B matrix can be obtained via

B = ave R N (x ij -∆ 1i )R N (x ij -∆ 1i ) T .
For completeness of this paper, a heuristic proof of the limiting normality is presented in the Appendix. [START_REF] Chaudhuri | Multivariate location estimation using extension of R-estimates through U -statistics type approach[END_REF] considers the spatial one-sample Hodges-Lehmann estimator and [START_REF] Hodges | Estimates of location based on rank tests[END_REF] the univariate two-sample estimation problem.

The inconvenience with the above estimators-just like in the univariate case, or when using multivariate marginal ranks-is that the obtained estimates are not generally compatible in the sense that

∆ ij = ∆ ik + ∆ kj .
To overcome this problem, consider competing estimators of treatment effects. An estimator of the difference between the ith and the jth treatment using the kth treatment as a reference is

∆ ij•k = ∆ ik + ∆ kj . ( 1 
)
This type of estimator can be useful in a situation where the treatment effect of interest cannot be estimated directly, but only via a third treatment. Note that

∆ ij•i = ∆ ij•j =
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∆ ij = 1 c c k=1 ∆ ij•k (2)
yields a generalization of the univariate estimator proposed by [START_REF] Lehmann | Robust estimation in analysis of variance[END_REF]. The adjusted estimators (1) and ( 2) are consistent only if

n i N → λ i , 0 < λ i < 1, for all i = 1, . . . , c.
Estimators that are consistent under a weaker condition that n i N → λ i and

n j
N → λ j are obtained by weighting the estimators by the relative group size of the reference sample [START_REF] Spjøtvoll | A note on robust estimation in analysis of variance[END_REF]:

∆ij = 1 N c k=1 n k ∆ ij•k (3)
When n 1 = . . . = n c the spatial Spjøtvoll's estimators (3) reduce to the spatial Lehmann's estimators (2).

Theorem 2 Assume that min {n i , n j , n k } → ∞ and that n i N → λ i , n j N → λ j and n k N → λ k , 0 < λ i , λ j , λ k < 1.
Then, under general assumptions,

√ N ∆ ij•k -∆ ij P -→ 0
for all i, j, k.

Corollary 1 Under the assumptions of Theorem 2,

√ N ∆ ij -∆ ij P -→ 0 and √ N ∆ij -∆ ij P -→ 0 for all i, j, k.
Theorem 2 and Corollary 1 imply that the alignment of the estimates (with respect to the other c -2 treatments) does not alter their limiting distributions. However, it is unclear what happens to the efficiency of the adjusted estimators in finite samples, particularly if the sample sizes are widely disparate. This question will be addressed in the next section. Recall that the spatial Hodges-Lehmann estimator is much more efficient than the mean difference vector for heavy-tailed distributions, and nearly as efficient at the normal model (Table 1). As the adjusted estimators share the limiting distribution of the spatial Hodges-Lehmann estimator, their asymptotic relative efficiencies are identical as well.

The finite sample efficiencies of the adjusted estimators 

∆
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Finally, the spatial Spjøtvoll's estimator ∆12 seems to have the same efficiency as the spatial Hodges-Lehmann estimator ∆ 12 when n 3 is small (Figure 3). As n 3 increases and n 1 , n 2 remain fixed, the estimator tends to ∆ 12•3 . Thus, for large n 3 it can be slightly better than ∆ 12 . The weighting procedure enables the spatial Spjøtvoll's estimator ∆12 to protect itself against efficiency losses due to extreme group allocations in both directions, thus making it a superior estimator. If the sample sizes are approximately the same, it does not make a difference which estimator is used.

Affine Invariant/Equivariant Versions

The test and the estimators based on spatial ranks are orthogonally invariant and equivariant but not affine invariant and equivariant. However, if V is an affine equivariant estimator of shape in the sense that V(HX + g1 T N ) ∝ H VH T , then

• any orthogonally invariant test computed on the transformed data set Y = V -1/2 X is affine invariant [START_REF] Randles | A simpler, affine-invariant, multivariate, distribution-free sign test[END_REF][START_REF] Möttönen | Multivariate nonparametric tests in a randomized complete block design[END_REF], and

• any orthogonally equivariant estimator computed on the transformed data set, and retranformed, V 1/2 ∆ (Y), is affine equivariant. This procedure is widely known as the transformation retransformation technique [START_REF] Chakraborty | On a transformation and re-transformation technique for constructing affine equivariant multivariate median[END_REF]Chakraborty et al., 1998;Chakraborty and Chaudhuri, 1998).

Therefore, a solution is to perform the multivariate spatial rank test on a transformed data set Y, and to retransform the treatment difference estimates obtained from Y back to the original scale by V 1/2 . Here the most natural approach is to use spatial ranks in the estimation of the shape matrix V [START_REF] Oja | Multivariate nonparametric tests[END_REF]. One possibility is to apply 

p c i=1   1 n i n i j=1 R n i (y ij )R n i (y ij ) T   = c i=1   1 n i n i j=1 R n i (y ij ) T R n i (y ij )   I p , (4) 
where

y ij = V -1/2 x ij and R n i (y ij )
is the spatial rank of y ij among y i1 , . . . , y in i . After standardization by V -1/2 obtained from (4) the spatial ranks appear as if they were from a spherical distribution. For similar definitions of shape matrices based on spatial signs, see earlier work of [START_REF] Tyler | A distribution-free M -estimator of multivariate scatter[END_REF] and [START_REF] Dümbgen | On Tyler's M -functional of scatter in high dimension[END_REF]. [START_REF] Oja | Multivariate nonparametric tests[END_REF] also gave an algorithm for the computation of a shape matrix similar to (4). The algorithm always seems to converge, but the actual proof is missing. S(y j -

x i ) - 1 n n j=1 R(y j ) + 1 m m i=1 R(x i )   P -→ 0. Therefore √ N   ∆ + A -1   1 n n j=1 R(y j ) - 1 m m i=1 R(x i )     P -→ 0
and the result follows.

Proof of Theorem 2. Let x 1 , . . . , x m , y 1 , . . . , y n and z 1 , . . . , z l be three independent random samples from F (x). Let N = m + n + l. By Theorem 1

√ N ∆ xz + A -1 1 l l k=1 R(z k ) - 1 m m i=1 R(x i ) P -→ 0, and 
√ N   ∆ zy + A -1   1 n n j=1 R(y j ) - 1 l l k=1 R(z k )     P -→ 0.
But then simply 

√ N   ∆ xy•z + A -1   1 n n j=1 R(y j ) - 1 m m i=1 R(x i )     P -→ 0

  12•3 , ∆ 12 and ∆12 relative to the unadjusted estimator ∆ 12 shown in Figures 1, 2 and 3, respectively, are based on simulations from a univariate normal distribution (10000 repetitions) and a bivariate spherical normal distribution (1000 repetitions) for three groups. Efficiencies for spherical distributions in general are likely to be approximately the same. The simulations were conducted in R (R Development Core Team, 2004).The efficiency of the estimator ∆ 12•3 , based on a reference sample of size 1 (n 3 = 1), is approximately 0.7 (p = 1) and 0.8 (p = 2). At this point, the value is merely the observed relative efficiency of the the difference of the (spatial) medians related to the (spatial) Hodges-Lehmann estimator. Adding a few observations to the third group quickly improves the performance of the estimator ∆ 12•3 . At n 1 = n 2 = n 3 , the observed relative efficiency is close to unity (Figure1). Our further simulation studies suggest that, as n 1 = n 2 remain fixed and n 3 increases, the finite sample efficiency increases even beyond 1, but only very slightly.The behavior of the spatial Lehmann's estimator ∆ 12 , being the average of the ∆ 12•k estimators, is very similar (Figure2). It is superior to the estimator ∆ 12•3 , because it is never worse than 90% efficient, and because it reaches the efficiency of the spatial Hodges-Lehmann estimator much faster. The reasons are easy to see: as ∆ 12 = 1 3 (2 ∆ 12 + ∆ 12•3 ), the (spatial) Hodges-Lehmann estimator ∆ 12 receives the most weight in the computation.

  defined by the implicit equation

Figure 1 :

 1 Figure 1: The observed relative efficiency of ∆ 12•3 relative to ∆ 12 .

Figure 2 :Figure 3 :

 23 Figure 2: The observed relative efficiency of ∆ 12 relative to ∆ 12 .

  [START_REF] Hettmansperger | Affine invariant multivariate rank tests for several samples[END_REF] gave a multivariate extension of the Kruskal-Wallis test, identical to the classical test in the univariate case, based on affine invariant ranks. Similar approach can be taken with spatial ranks as outlined next.

Table 1 :

 1 Asymptotic relative efficiency of the spatial Hodges-Lehmann estimator relative to the mean difference vector under multivariate t-distributions[START_REF] Möttönen | On the efficiency of multivariate spatial sign and rank tests[END_REF].
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n j N → λ j , 0 < λ i , λ j <
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Appendix

Proof of Theorem 1. Let x 1 , . . . , x m and y 1 , . . . , y n be two independent random samples from F (x -µ x ) and F (y -µ y ). It is not a restriction to assume that

Suppose that ∆ is √ N -consistent for ∆, where N = m + n. This can be shown in the multivariate case as in [START_REF] Nevalainen | On the multivariate spatial median for clustered data[END_REF]. Write ∆ * = √ N ∆. Then the Taylor