
HAL Id: hal-00611853
https://hal.science/hal-00611853v2

Submitted on 3 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata for the verification of monadic second-order
graph properties

Bruno Courcelle, Irène A. Durand

To cite this version:
Bruno Courcelle, Irène A. Durand. Automata for the verification of monadic second-order graph
properties. Journal of Applied Logic, 2012, 10, pp.368-409. �hal-00611853v2�

https://hal.science/hal-00611853v2
https://hal.archives-ouvertes.fr

Automata for the verification of monadic second-order graph properties

Bruno Courcelle1,∗, Irène Durand

Labri (CNRS), University of Bordeaux, 351 Cours de la Libération, F-33405 Talence cedex, France

Abstract

The model-checking problem formonadic second-order logic on graphs is fixed-parameter tractable
with respect to tree-width and clique-width. The proof constructs finite automata from monadic
second-order sentences. These automata recognize the terms over fixed finite signatures that
define graphs satisfying the given sentences. However, this construction produces automata of
hyper-exponential sizes, and is thus impossible to use in practice in many cases. To overcome
this difficulty, we propose to specify the transitions of automata by programs instead of ta-
bles. Such automata are called fly-automata. By using them, we can check certain monadic
second-order graph properties with limited quantifier alternation depth, that are nevertheless
interesting for Graph Theory. We give explicit constructions of automata relative to graphs of
bounded clique-width, and we report on experiments.

Keywords: Graph algorithm, automaton, monadic-second order logic, clique-width,
fixed-parameter tractability, fly-automaton.

1. Introduction

It is well-known from [5, 6, 10, 12, 16] that the model-checking problem for monadic second-
order (MS) logic on graphs is fixed-parameter tractable (FPT) with respect to tree-width and
clique-width. The proof uses certain graph decompositions: tree-decompositions for tree-width
as parameter and decompositions in complete bipartite graphs for clique-width as parameter.
Both types of decompositions are formalized by terms over finite sets of graph operations. The
proof uses also finite automata, constructed from the MS sentences that express the properties
to check. These automata recognize the terms that define graphs satisfying the given sentences.

There are two difficulties for turning this result into a usable algorithm. The first one is the
parsing problem consisting in constructing an appropriate decomposition of the given graph. The
second difficulty is due to the enormous sizes of the automata constructed from MS sentences.
To address the latter, we propose to use fly-automata, i.e., automata whose transitions are
specified by programs and not compiled in (huge) tables. We also present some tools that limit
the number of states of the constructed automata: we construct ”small” automata associated

∗Corresponding author
Email addresses: courcell@labri.fr (Bruno Courcelle), idurand@labri.fr (Irène Durand)

1Honorary member of Institut Universitaire de France

Preprint submitted to Elsevier July 23, 2012

with some basic graph properties (and not with the atomic formulas) and we write formulas
with set terms defined with the Boolean operations and the set variables.

In this article, we only consider the model-checking problem for monadic second-order sen-
tences not using edge set quantifications. The relevant parameter is clique-width. Since for a
class of graphs, bounded tree-width implies bounded clique-width, this approach also applies
if tree-width is taken as parameter. Using tree-width as parameter allows to handle sentences
written with edge set quantifications, but presents other difficulties (see [7]). Our objective is to
implement the following theorem of [10] (we denote by Fk the finite set of graph operations that
generates the graphs of clique-width at most k).

Theorem 1.

(1) For every monadic second-order sentence ϕ and every integer k, one can construct a finite
automaton recognizing the terms over Fk that denote graphs satisfying ϕ.

(2) Every monadic second-order graph property P can be checked in time fP (k)·n
3 for a simple

directed or undirected graph with n vertices and of clique-width at most k.

Assertion (1) gives an automaton that accepts or rejects a term in linear time in the size
of the given term (a term over Fk for fixed k). For Assertion (2) we need to solve the parsing
problem. Checking if a given graph has clique-width at most a given integer k is NP-complete if
k is part of the input ([14]) but there exists a cubic approximation algorithm (see below Section
2.2). This algorithm takes time g(k) ·n3 to construct a term of size O(n) over Fh(k) that denotes
a given graph with n vertices and of clique-width at most k, where g and h are fixed functions.
In other words the model-checking problem for monadic second-order logic on graphs is fixed-
parameter cubic for a parameter consisting of a bound on the clique-width of the input graph
and the MS sentence expressing the considered property.

Our only concern in this article is the construction of the automata of Assertion (1). They
are constructed by induction on the structure of the input sentences (where universal quantifi-
cations are replaced by negations and existential quantifications). Those associated with the
atomic formulas are easy to build and relatively ”small”. Products of automata are used for
conjunction and disjunction. Complementation applied to deterministic automata is used for
negation. A construction usually called ”projection” is used for existential quantifications and
introduces nondeterminism. It follows that determinization must be performed before each appli-
cation of complementation. Since existential quantifications produce nondeterminism, quantifier
alternation is the source of the hyper-exponential size of the constructed automata in the gen-
eral case. This is actually unavoidable if one wants a construction taking as input arbitrary
MS sentences (see, e.g., [17, 29, 31]). In order to overcome this difficulty, some authors focus
their attention on particular problems instead of trying to implement the general theorem (see,
e.g., [1, 22, 23, 18, 19]). We do not follow this route: we present some techniques that make
the situation manageable for a large fragment of MS logic able to express interesting graph
properties.

The article is organized as follows: Sections 2-4 review definitions about graphs, clique-
width, automata and monadic second-order logic. Sections 4 and 5 constitute a tool box for the
implementation of Theorem 1. Sections 5 and 6 detail the constructions of automata for the

2

atomic formulas and for some basic graph properties. By using new atomic formulas expressing
these properties and Boolean set terms (that do not cost much in terms of sizes of automata),
we can express significant graph properties without quantifier alternation. Some constructions
of Section 6 are somewhat complicated, and we prove their correctness. Section 7 defines fly-
automata and some constructions concerning them. Section 8 reports on experiments with
fly-automata. Section 9 is a conclusion.

Detailed content

2 Terms, graphs and clique-width p.4
2.1 Terms and graphs p.4
2.2 Graph operations and clique-width p.5
2.3 Annotated terms p.7
2.3.1 Useless operations and redundancy elimination p.8
2.3.2 Edge-complement p.10

2.4 Terms and graph properties p.11
3 Automata on terms p.13
4 Monadic second-order logic p.16

4.1 Basic graph properties p.17
4.2 From monadic second-order sentences to finite automata p.20
4.2.1 P-atomic formulas p.20
4.2.2 Boolean combinations p.21
4.2.3 Existential quantifications p.21
4.2.4 Irredundant vs. annotated terms p.22

5 Automata for basic graph properties p.23
5.1 First constructions p.23
5.1.1 Easy cases p.23
5.1.2 Adjacency p.24
5.1.3 Labels p.26

5.2 Other basic properties p.27
5.2.1 Stability p.27
5.2.2 Clique p.28
5.2.3 Set adjacency p.29
5.2.4 Domination p.29
5.2.5 Paths p.29
5.2.6 Bounded degree and indegree p.33
5.2.7 Undirected cycles p.35
5.2.8 Directed cycles p.36

6 Connectedness p.37
6.1 ”Large” deterministic automata p.37
6.2 Using annotated terms p.40
6.3 Graphs of degree at most d p.40
6.4 ”Small” nondeterministic automata p.45

7 Fly-automata p.52
7.1 Definitions and general properties p.53

3

7.2 Bounding space and time p.56
7.3 Fly-automata constructed from MS formulas p.58
7.3.1 One automaton for all clique-widths p.58
7.3.2 Existential quantifications p.59
7.3.3 Improvements p.59

8 Experiments p.60
8.1 Scratch and composed fly-automata p.60
8.1 Fly- versus table-automata p.61
8.3 Running time comparisons p.62

8.3.1 Connectedness p.63
8.3.2 Coloring problems p.63

9 Conclusion p.65
References p.66

2. Terms, graphs and clique-width

2.1. Terms and graphs

Definition 2. Terms and their syntactic trees
A functional signature F is a set of function symbols, each being given together with a natural

number called its arity : ρ(f) denotes the arity of the symbol f . The set of terms over F is
denoted by T (F). A language over F is a subset of T (F).

We now introduce some definitions relative to the internal structure of terms. A position of t
is an occurrence of some symbol. We denote by Pos(t) the set of positions of t and by Pos(t, f)
the set of occurrences in t of a symbol f . Hence Pos(t) =

⋃

{Pos(t, f)|f ∈ F}. The size |t| of t
is the cardinality of Pos(t).

Terms will be written with commas and parentheses (that do not count in |t|). For example
the term t = f(g(h(a), b), c, g(g(b, c), c)) has size 11. Positions will be designated by numbers
corresponding to their ranks seen from left to right and starting at 1. In this example, Pos(t, c) =
{6, 10, 11}. (They can be denoted in other ways, for instance by Dewey words, as in [4], our
main reference for automata on terms).

The syntactic tree of a term t is a rooted, labelled and ordered tree. Its set of nodes is
Pos(t). Each node u is labelled by the symbol f such that u ∈ Pos(t, f) and it has an ordered
sequence of ρ(f) sons. The root (roott) is the first position, and the occurrences of the nullary
symbols are the leaves. (The terminology of rooted trees will thus be applied to terms, via their
syntactic trees.) The partial order 4t on Pos(t) is defined such that u 4t v if and only if u = v
or v is a proper ancestor of u. (Positions are integers but this order is not the usual order on
integers.) We denote by t/u the subterm of t issued from a node u. In the above example,
t/2 = g(h(a), b). The context of u in t consists of the function symbols that occur at positions
not below u: formally, it is the unique term over F with a unique occurrence of a variable x and
such that t is equal to the substitution in c of t/u for x. In the above example, the context of
u = 2 in t is f(x, c, g(g(b, c), c)).

LetH be a finite signature (possiblyH = F), and h : H → F be an arity preserving mapping,
i.e., such that ρ(h(f)) = ρ(f) for every f ∈ H. For every t ∈ T (H), we let h(t) ∈ T (F) be

4

the term obtained from t by replacing f by h(f) at each of its occurrences. The mapping h on
terms is called a relabelling.

Definition 3. Graphs
All graphs are finite and simple. They can have loops. A graph G is identified with the

relational structure 〈VG, edgG〉 where edgG is a binary relation representing adjacency: (x, y) ∈
edgG if and only if there is a directed edge from x to y; we write this x →G y and we say that y
is the head of this edge and x is its tail. This edge is a loop if x = y. An undirected graph is a
directed graph G such that every edge has an opposite edge (i.e., edgG is symmetric)2, and then,
we write x−G y if x →G y and y →G x. We denote by und(G) the undirected graph associated
with G: Vund(G) := VG and edgG := edgG ∪ edg−1

G .
A path is a sequence of vertices such that two consecutive vertices are adjacent and no vertex

occurs twice, except for the two ends. If its two ends are equal, this path is a cycle. A loop
is a cycle. These notions do not depend on edge directions. In a directed graph, we have the
restricted notions of directed paths and cycles. An undirected path (or cycle) in a directed graph
is a path (or a cycle) in und(G), i.e. its edges are traversed in any direction.

If X ⊆ VG, we denote by G[X] the induced subgraph of G with vertex set X, i.e., G[X] :=
〈X, edgG ∩ (X ×X)〉.

In order to build graphs by means of graph operations, we use vertex labels. Let C be a set
of labels called port labels. A p-graph (or graph with ports) is a triple G = 〈VG, edgG, πG〉 where
πG is a mapping: VG → C. So, πG(x) is the label of x and if πG(x) = a, we say that x is an
a-port. We let G◦ be 〈VG, edgG〉, i.e., the corresponding graph without ports. If X is a set of
vertices, then πG(X) is the set of its port labels. The set π(G) := πG(VG) is the type of G. By
using the integer 1 as default label, we make every nonempty graph into a p-graph of type {1}.

A p-graph G whose type π(G) is included in a fixed finite set C is identified with the relational
structure 〈VG, edgG, (labaG)a∈C〉 where laba is a unary relation and labaG is the set of a-ports
of G. Since we only consider simple graphs, two graphs or p-graphs G and H are isomorphic if
and only if the corresponding structures are isomorphic. In this article, we will always take C
equal to [k] := {1, ..., k} for k ≥ 2.

The edge complement G of an undirected and loop-free p-graph G is defined as 〈VG, edgG, πG〉
where edgG is the set of pairs (x, y) in VG × VG such that x 6= y and (x, y) /∈ edgG.

2.2. Graph operations and clique-width

Definition 4. Operations on p-graphs
We let Fk be the following finite set of function symbols that define operations on the p-

graphs of type included in C := [k] :

the binary symbol ⊕ denotes the union of two disjoint3 p-graphs,

2This convention is inadequate if one uses edge set quantifications as in [7].
3If G and H are not disjoint, one can define G⊕H as G⊕H ′ where H ′ is isomorphic to H and disjoint from G.

The resulting p-graph is defined up to isomorphism, hence as an abstract graph; see Chapter 2 of [9] for a study
of the Fk-algebra of abstract labelled graphs. We say that a graph is concrete to stress that it is not defined up
to isomorphism.

5

the unary symbol relabh denotes the relabelling that changes in the argument p-graph
every port label a into h(a) (where h is a mapping from C to C),

the unary symbol
−−→
adda,b, for a 6= b, denotes the edge-addition that adds an edge

from every a-port x to every b-port y (unless there is already an edge x → y, this
operation is idempotent),

for each a ∈ C, the nullary symbols a and aℓ denote respectively an isolated a-port
and an a-port with an incident loop,

and finally, the nullary symbol ∅ denotes the empty graph.

The operation ⊕ being associative, we will use infix notation without parentheses for it. The
set {a,aℓ | a ∈ C} will be denoted by C. The unary operation relabId (where Id is the identity:
C → C) is the identity operation.

For constructing undirected graphs, we will use the operation adda,b where a < b (the set C

is linearly ordered as it is of the form [k]) as an abbreviation of
−−→
adda,b ◦

−−→
addb,a. For constructing

undirected graphs only, we will use the operations adda,b instead of
−−→
adda,b, which yields the

signature F u
k .

Definition 5. k-expressions and clique-width
(a) Every term t in T (Fk) (or in T (F u

k)) is called a k-expression. It denotes a concrete
p-graph, cval(t), read, the concrete value of t, that we now define. We define Pos0(t) as the set
occurrences in t of the symbols from C (the set of nullary symbols different from ∅). For each
node u of t, we define a concrete p-graph cval(t)/u, whose vertex set is {x ∈ Pos0(t) | x 4t u},
i.e., the set of leaves of t below u that are not occurrences of ∅. The definition of cval(t)/u is
by bottom-up induction on u.

If u is an occurrence of ∅, then cval(t)/u := ∅.

if u is an occurrence of a , then cval(t)/u is the a-port u (its unique vertex is specified
as u),

if u is an occurrence of aℓ, then cval(t)/u is the a-port u with an incident loop,

if u is an occurrence of ⊕ with sons u1 and u2, then cval(t)/u := cval(t)/u1 ⊕
cval(t)/u2, (note that cval(t)/u1 and cval(t)/u2 are disjoint p-graphs),

if u is an occurrence of relabh with son u1, then cval(t)/u := relabh(cval(t)/u1),

if u is an occurrence of
−−→
adda,b with son u1, then cval(t)/u :=

−−→
adda,b(cval(t)/u1),

if u is an occurrence of adda,b with son u1, then cval(t)/u := adda,b(cval(t)/u1).

Finally, cval(t) := cval(t)/roott. Its vertex set is thus Pos0(t). For example, consider the term

t = add1
b,c(add

2
a,b(a

3 ⊕4 b5)⊕6 relab7h(add
8
a,b(a

9 ⊕10 b11)))

where h replaces b by c and the superscripts 1 to 11 number the occurrences of its function
symbols (including the nullary ones), so that Pos(t) = [11]. The concrete p-graph cval(t) is

3a − 5b − 11c − 9a

6

where the subscripts a, b, c indicate the port labels. If u = 2 and w = 8, then t/u = t/w =
adda,b(a ⊕ b). However, cval(t)/u is the concrete p-graph 3a − 5b and cval(t)/w is 9a − 11b,
isomorphic to cval(t)/u. Both are isomorphic to cval(t/u) whose vertex set is {2, 4}, since, with
numbered positions, t/u = add1

a,b(a
2 ⊕3 b4).

(b) Let t ∈ T (Fk) ∪T (F u
k) and X ⊆ Pos0(t). Let t′ be the term obtained by replacing, for

each u ∈ X, the symbol occurring there by ∅. It is clear from the above definition that cval(t′)
is the induced subgraph cval(t)[Pos0(t)−X] of cval(t).

(c) The clique-width of a graph G, denoted by cwd(G), is the least integer k such that G is
isomorphic to cval(t) for some t in T (Fk) (in T (F u

k) if it is undirected). A k-expression is slim
([CouEng], Chapter 2) if for each of its subterms of the form t1 ⊕ t2, at least one of t1 and t2 is
a nullary symbol. The linear clique-width of G, denoted by lcwd(G), is the least integer k such
that G is defined (up to isomorphism) by a slim k-expression.

The parsing problem

The problem of deciding if cwd(G) ≤ k for a given pair (G, k) is NP-complete ([14]). It
is not known if this problem is NP-complete for any fixed k ≥ 4. However, algorithms of
[26] (for undirected graphs) and [24] (for directed graphs) that use rank-decompositions as
intermediate steps together with a construction from [27]4 give cubic approximation algorithms:
these algorithms report in time g(k) · n3 that cwd(G) > k or output a term in T (Ff(k)) that
defines G (with n vertices) where g and f are fixed functions. Together with the constructions of
automata detailed below, these algorithms yield fixed-parameter cubic algorithms for checking
monadic second-order graph properties with respect to clique-width as parameter.

If the parameter is tree-width, we obtain a fixed-parameter linear algorithm for checking
monadic second-order graph properties because it is possible to construct in linear time a tree-
decomposition of width at most k of a given graph G if there exists one. The corresponding
algorithm, due to Bodlaender, is presented in [12]. Then, this tree-decomposition can be trans-
formed in linear time into an h(k)-expression definingG, where h is a fixed function (this function
depends on whether G is directed or not; see Chapters 2 and 6 of [9] for details).

2.3. Annotated terms

Definition 6. Annotations
(a) An annotation of a term t ∈ T (Fk)∪T (F u

k) is a mapping that associates with some nodes
u of t an information relative to t/u or to the context of u in t or to both.

(b) We now define a particular annotation intended to represent, for each u the edge additions
that occur on the path between u and the root of t; its definition takes also into account the
relabellings occurring on this path. It is thus relative to the context of each node. Another
notion of annotation will be defined in Section 6.4.

We first consider the case of a term t ∈ T (Fk) and we introduce some notation. If a, b ∈ [k]
and u,w ∈ Pos(t), we write (a, u) →t (b, w) if:

4See also Chapter 6 of [9].

7

w is the father of u and,

either w is an occurrence of ⊕ or
−−→
addc,d (for some c, d ∈ C) and then b = a, or w is

an occurrence of relabh and b = h(a).

We let→+
t be the transitive closure of→t. This relation describes the effect of the relabellings

at occurrences between a node and one of its proper ancestors.
We define ADDt(u) as the set of pairs (a, b) such that (a, u) →+

t (c, w) and (b, u) →+
t (d, w)

for some occurrence of
−−→
addc,d at w (which implies that a 6= b). These conditions imply that w

is a proper ancestor of u and that, if x is an a-port of cval(t)/u and y is a b-port of cval(t)/u,
then, there is in cval(t)/w (hence also in cval(t)) an edge from x to y (because x is a c-port of
cval(t)/w1 and y is a d-port of cval(t)/w1 where w1 is the son of w). If this edge does not exist

in cval(t)/v for any v with u 4t v ≺t w, then it is created by
−−→
addc,d at w. Otherwise,

−−→
addc,d at

w is superfluous regarding this particular edge.
For each term t ∈ T (Fk), the sets ADDt(u) can be computed top-down in linear time as

follows:

if u is the root, then ADDt(u) := ∅,

if u is a son of an occurrence w of ⊕, then ADDt(u) := ADDt(w),

if u is the son of an occurrence w of
−−→
adda,b, then ADDt(u) := ADDt(w) ∪ {(a, b)},

if u is the son of an occurrence w of relabh, then ADDt(u) := h−1(ADDt(w)) :=
{(a, b) | (h(a), h(b)) ∈ ADDt(w)}.

The validity of this algorithm follows from the definitions.
The definition is similar if t ∈ T (F u

k): ADDt(u) is the set of two element sets {a, b} such
that (a, u) →+

t (c, w) and (b, u) →+
t (d, w) for some occurrence w of addc,d or addd,c. These

relations can be computed in linear time in a similar way as in the first case.
We let (t, ADDt) be the annotation of t that attaches ADDt(u) to each node u of t ∈

T (Fk) ∪ T (F u
k). Note that ADDt does not depend on the nullary symbols: if t′ is obtained

from t by replacements of nullary symbols, in particular by replacing some nullary symbols by
∅, then ADDt′ = ADDt and (t′, ADDt) is the corresponding annotation of t′. Note also that
ADDt(u) depends on unary operations in t strictly above u.

We show in Figure 1 the annotation ADDt for the term:

t =
−−→
adda,c(

−−→
add b,a(a⊕ b)⊕ relabh(

−−→
adda,b(a⊕ b))),

where h(a) = a, h(b) = h(c) = c. The relation ADDt(u) is shown to the right of each node u.

2.3.1. Useless operations and redundancy elimination

Some operations in a term may have no effect: for example a disjoint union, one argument

of which is the empty graph. This is also the case of an operation
−−→
adda,b or adda,b at u in term

t if a or b does not belong to π(cval(t)/u1) where u1 is the son of u. A bottom-up traversal of t
can identify these cases.

8

Figure 1: Annotated term.

We now consider other cases where a unary operation is useless. If a term t′ =
−−→
adda,b(t) is

such that cval(t) has already an edge e from an a-port to a b-port, then this term presents a
redundancy in the sense that the edge e is specified at least twice: once (or more) in cval(t) and
another time at the root of t′. So, its specification(s) in cval(t) is (or are) useless.

Definition 7. Redundancy.
(a) Let t ∈ T (Fk). We say that a 6-tuple (u,w, a, b, c, d) defines (or is to be short) a

redundancy in t if u is an occurrence of
−−→
adda,b, w is an occurrence of

−−→
addc,d which is a proper

ancestor of u and (a, b) ∈ ADDt(u). If t ∈ T (F u
k) then (u,w, a, b, c, d) is a redundancy in t

if u is an occurrence of adda,b, w is an occurrence of addc,d that is a proper ancestor of u and
{a, b} ∈ ADDt(u). In the term of Figure 1, the tuple (u,w, a, b, a, c) such that u is the occurrence

of
−−→
adda,b and w is the occurrence of

−−→
adda,c defines a redundancy.

(b) A term is irredundant if it has no redundancies. We denote by IT (Fk) (resp. by IT (F u
k))

the set of irredundant terms in T (Fk) (resp. in T (F u
k)).

Note that the definition of a redundancy does not depend on the nullary symbols: a term
written with no other nullary symbol than ∅ (it defines the empty graph) may be irredundant
although all its symbols (except for one occurrence of ∅) are useless.

Proposition 8. (1) For each integer k, there exists a linear time algorithm that transforms a
term t belonging to T (Fk) ∪ T (F u

k) into a term in IT (Fk) ∪ IT (F u
k) that defines the same

graph and is a relabelling of t.

(2) For each k, the set IT (Fk) is recognized by a deterministic Fk-automaton with at most
2k

2−k+2 states. The corresponding automaton for IT (F u
k) has at most 2k(k−1)/2+2 states.

Proof. (1) We will use the following observation:

9

Claim: If t has a redundancy (u,w, a, b, c, d) and if t′ is obtained from t by the

replacement of
−−→
adda,b (or adda,b) at u by relabId, then cval(t′) = cval(t).

Note that since we replace
−−→
adda,b at u by the identity, we have Pos(t′) = Pos(t) and

the concrete graphs cval(t′) and cval(t) have the same sets of vertices. They are thus
compared as concrete graphs and not up to isomorphism.

Proof. We have cval(t′)/w = cval(t)/w because the edges of cval(t)/w that are not

created in cval(t′)/w by
−−→
adda,b at u are anyway created by

−−→
addc,d at w. The same

holds for adda,b and addc,d.

The computation of the sets ADDt(u), hence of the annotation (t, ADDt) of t, can be done
in linear time by means of a depth-first traversal of t that starts at the root. The term t′ is then

obtained from (t, ADDt) by replacing
−−→
adda,b occurring at any u by relabId whenever (a, b) ∈

ADDt(u) (respectively, by replacing adda,b at any u by relabId whenever {a, b} ∈ ADDt(u) if
t ∈ T (F u

k)). This can be done also in linear time. (In the example of Figure 1, the operation
−−→
adda,b can be replaced by relabId.)

(2) It is clear that t is irredundant if no replacement is made. From Definitions 6 and 7, one
gets a bottom-up nondeterministic automaton with k(k− 1)+ 2 states, hence, by determinizing
it, one gets a complete and deterministic one with at most 2k

2−k+2 states. The proof for IT (F u
k)

is similar.

2.3.2. Edge-complement

This transformation concerns undirected graphs without loops. It is another application of
the annotation of Definition 6.

Proposition 9. For each k, there is a linear-time algorithm that transforms a term t in T (F u
k)

defining a loop-free graph into a term t in T (F u
2k) such that cval(t) is isomorphic to the edge

complement of the graph cval(t).

Proof. We prove the existence of t by using [k+1, 2k] as a disjoint copy of [k] and the mappings
r : [2k] → [k + 1, 2k] and r′ : [2k] → [k] such that:

• r(i) := if i ≤ k then i+ k else i,

• r′(i) := if i > k then i− k else i.

If A is a set of 2-element subsets of [2k], we abbreviate into addA the composition (in any order)
of the operations adda,b for all {a, b} in A. We now define t by induction on the number of
occurrences of ⊕.

If t has no occurrence of ⊕, then cval(t) is the empty graph or a vertex and we take t := t.
Otherwise, let u be the topmost occurrence of ⊕ in t, B := ADDt(u) and m be the compo-

sition of the mappings h in the operations relabh on the path in t from u to the root. It follows
that cval(t) = relabm(addB(cval(t)/u)). Letting u1 and u2 be the two sons of u, we define

10

B′ := {{a, b+ k} | a, b ∈ [k], {a, b} /∈ B} and

t := relabm◦r′(addB′

(

addB(t/u1)⊕ relabr(addB(t/u2))
)

).

In particular, B′ contains all pairs {a, a + k} for a ∈ [k] because ADDt(u) contains only
sets {a, b} with a 6= b. The terms addB(t/u1) and addB(t/u2) have less occurrences of ⊕, hence
addB(t/u1) and addB(t/u2) are well-defined by induction.

The mapping t 7→ t satisfies the required properties and is computable in linear time. It can
be described as a transformation of (t, ADDt) into t.

Note that the set of positions of t is not equal to that of t. Hence, the graphs cval(t)
and cval(t) do not have the same vertices, however, they are isomorphic. The proof of this
proposition given in [11] does not give a linear-time algorithm.

2.4. Terms and graph properties

Definition 10. Graph properties.
If P is a graph property, say planarity to take an example, we let LP,k be the set of terms t in

T (Fk) such that cval(t) satisfies P . We want to extend this notion to any property P (X1, ..., Xn)
of sets of vertices X1, ..., Xn of a graph cval(t). We also call P (X1, ..., Xn) a graph property to
simplify the terminology.

Here are three examples of basic graph properties that we will use to build more complicated
ones. The considered graph is G.

• Link(X,Y): there is an edge with tail in X and head in Y ,

• Dom(X,Y): every x in X is the head of an edge with tail in Y ; we say that Y dominates
X,

• Path(X,Y): X ⊆ Y , |X| = 2 and the two vertices of X are linked by a path in G[Y] if G
is undirected or in Und(G)[Y] if G is directed.

Definition 11. Graph properties encoded in terms.

(a) We define F
(n)
k from Fk by replacing there all symbols a and aℓ by the nullary symbols

(a, w) and (aℓ, w) for all w ∈ {0, 1}n. We define pr : F
(n)
k → Fk as the mapping that deletes

the sequences w of the nullary symbols. It extends into a relabelling pr : T (F
(n)
k) → T (Fk). A

term t in T (F
(n)
k) defines thus the graph cval(pr(t)) and the n-tuple (V1, ..., Vn) such that Vi is

the set of vertices which are occurrences of nullary symbols (a, w) or (aℓ, w) such that the i-th
component of w is 1.

(b) If P (X1, ..., Xn) is a graph property (the notation P (X1, ..., Xn) shows that it depends
on n arguments; in some cases, its arguments are Y1, ..., Yn), we define LP (X1,...,Xn),k as the

set of terms t in T (F
(n)
k) such that P (V1, ..., Vn) is true in cval(pr(t)), where (V1, ..., Vn) is the

n-tuple of sets of vertices encoded by t. Such a term t will be denoted by s ∗ (V1, ..., Vn) where
s = pr(t) ∈ T (Fk).

11

Definition 12. Set terms and substitutions
(a) A set term over a set {X1, ..., Xn} of set variables is a term S written with these

variables, the constant symbol ∅ for denoting the empty set and the operations ∩, ∪ and – (for
complementation). An example is S = X1 ∪X3.

(b) Let P (Y1, ..., Ym) denote a graph property and S1, ..., Sm be set terms over {X1, ..., Xn}.
Then P (S1, ..., Sm) defines the property P (Y1, ..., Ym) where each argument Yi is replaced by Si.

The corresponding set of terms in T (F
(n)
k) is denoted by LP (S1,...,Sm),(X1,...,Xn),k. The subscript

(X1, ..., Xn) indicates that this set of terms is defined as if P (S1, ..., Sm) depended actually on
all variables X1, ..., Xn although this is not always the case (because some Xi may have no
occurrence in (S1, ..., Sm)).

Lemma 13. For every graph property P (Y1, ..., Ym) and m-tuple of set terms S1, ..., Sm over
{X1, ..., Xn}, we have:

LP (S1,...,Sm),(X1,...,Xn),k = h−1(LP (Y1,...,Ym),k)

where h is a relabelling: T (F
(n)
k) → T (F

(m)
k) that replaces each nullary symbol (c, w) for w ∈

{0, 1}n and c ∈ C by (c, w′) for some w′ ∈ {0, 1}m and does not modify the other symbols.

The proof is routine, we only give examples. Sequences of Booleans are denoted as words
over {0, 1}. Let n := 4, S1 := X1 ∪ X3 and P be unary (m = 1). Then LP (S1),(X1,...,X4),k =
h−1(LP (Y1),k) where, for every x, y ∈ {0, 1} and c ∈ C:

h((c, 1x0y)) = h((c, 1x1y)) = h((c, 0x0y)) = (c, 1) and
h((c, 0x1y)) = (c, 0),

i.e., h((c, x1x2x3x4)) = (c, x1 ∨ ¬x3). Hence h encodes the set term S1 in a natural way.
For another example, consider P (Y1, Y2, Y3) and Q(X1) defined as P (X1,∅, ∅). Then we

have: LQ(X1),k = h−1(LP (Y1,Y2,Y3),k) where h((c, 0)) = (c, 001) and h((c, 1)) = (c, 101).
Lemma 13 can also be used if the terms S1, ..., Sm are just variables, say Xi1 , ..., Xim , hence

for handling a substitution of variables. From an automaton recognizing, say LP (Y1,Y2,Y3),k to
take an example, we can easily obtain one recognizing LP (X2,X4,X4),(X1,...,X4),k.

Definition 14. Relativization
For a graph property P (X1, · · · , Xm), we let P (X1, · · · , Xm)[Xm+1] be the propertyQ(X1, · · · ,

Xm, Xm+1) such that,

for all sets of vertices X1, · · · , Xm+1 of a graph G, Q(X1, · · · , Xm, Xm+1) is true if
and only if P (X1∩Xm+1, · · · , Xm∩Xm+1) is true in the induced subgraph G[Xm+1].

We define h as the mapping: F
(m+1)
k → F

(m)
k such that, for every c ∈ C and w ∈ {0, 1}m,

we have h((c, w0)) := ∅ and h((c, w1)) := (c, w). With these hypotheses and notation:

Lemma 15. We have LP (X1,··· ,Xm)[Xm+1],k = h−1(LP (X1,··· ,Xm),k).

Proof. Let t ∗ (V1, · · · , Vm+1) belong to LP (X1,··· ,Xm)[Xm+1],k and G := cval(t). Then

12

h(t ∗ (V1, · · · , Vm+1)) = t′ ∗ (V1 ∩ Vm+1, · · · , Vm ∩ Vm+1),

where, by the definitions, t′ evaluates to G′ := G[Vm+1] (because replacing nullary symbols by
∅ corresponds to defining induced subgraphs, cf. Definition 5(b))). It follows that t′ ∗ (V1 ∩
Vm+1, · · · , Vm ∩ Vm+1) ∈ LP (X1,··· ,Xm),k. This proves the inclusion from left to right. The proof
of the opposite inclusion is similar.

This lemma is not a special case of Lemma 13 because, in general, P (X1, · · · , Xm)[Xm+1]
is not equivalent to P (X1 ∩ Xm+1, · · · , Xm ∩ Xm+1) in G. Take for a counter-example the
property P (X1) expressing that any two vertices of X1 are linked by a path (not necessarily
in G[X1]). Then P (X1)[X2] is not equivalent to P (X1 ∩X2).

5 However, if P is Link, Dom or
Path (these properties are defined above, after Definition 10), then P (X1, X2)[X3] is equivalent
to P (X1 ∩X3, X2 ∩X3).

In the following definition, we combine the constructions of Definitions 12 and 14. We let P
be a set of basic graph properties containing those defined by atomic formulas (e.g., X1 ⊆ X2)
and properties such as Link, Dom, Path and Conn. We will specify later the atomic formulas
(Definition 18) and the other basic properties (Section 4.1). We consider P as a parameter.

Definition 16. P-atomic formulas
A P-atomic formula is a formula of the form P (S1, ..., Sm) or P (S1, ..., Sm)[Sm+1] such that

P (Y1, ..., Ym) ∈ P and S1, ..., Sm, Sm+1 are set terms over {X1, ..., Xn}. Its free variables are in
{X1, ..., Xn}.

Lemmas 13 and 15 entail that LP (S1,...,Sm)[Sm+1],(X1,...,Xn),k = h−1(LP (Y1,··· ,Ym),k) for some
relabelling h that modifies only nullary symbols.

3. Automata on terms

Although finite automata on terms (frequently called ”tree-automata”; our reference is the
book on line [4]) are well-known, we review notation and basic facts relative to them and to
infinite automata that we will also use in Section 7.

Definition 17. Automata.
All automata will be bottom-up (or frontier-to-root) without ε-transition.
(a) Let F be a finite or countably infinite signature. An F -automaton (or just an automaton

if F need not be specified) is a 4-tuple A = 〈F,QA, δA,AccA〉 such that QA is a finite or
countably infinite set called the set of states, AccA is a subset of QA called the set of accepting
states and δA is a set of tuples called the transition rules (or the transitions). Each transition
rule is of the form (q1, . . . , qm, f, q) with q1, . . . , qm, q ∈ QA, f ∈ F , with ρ(f) = m ≥ 0.

For better readability, we will denote it by f [q1, . . . , qm] →A q (and by f →A q if f is
nullary). This transition is said to yield q. (See (f) below for an alternative notation.)

(b) We say that A is finite if F and QA are finite. In this case, the number of states is
denoted by ♯A. The size of A, defined as the space needed to store its transitions as a list of

5P [X1] expresses that the induced subgraph G[X1] is connected.

13

tuples can be evaluated in two ways. To simplify the discussion, we only consider the case of
function symbols that are at most binary (we will only use this case).

If we assume that each state and operation symbol occupies a unit space, then the size of
A is O(|F | · (♯A)3); it is only O(|F | · (♯A)2) if A is deterministic (the definition is recalled in
(f) below). If the number of states is very large (which is also our case), a state may need
⌈log(♯A)⌉ bits to be stored6, in this case, the sizes are respectively O(|F | · (♯A)3 · log(♯A)) and
O(|F | ·(♯A)2 · log(♯A)). Other similar parameters will be defined in Section 7 about fly automata.

(c) A run of an automaton A on a term t ∈ T (F) is a mapping r : Pos(t) → QA such that:

if u is an occurrence of a function symbol f ∈ F and u1, ..., uρ(f) is the sequence
of sons of u, then f [r(u1), . . . , r(uρ(f))] →A r(u); (if ρ(f) = 0, the condition reads
f →A r(u)).

(d) For a state q, we let L(A, q) be the set of terms t in T (F) on which there is a run r of
A such that r(root t) = q. A run r on t is accepting if r(root t) is an accepting state. We let
L(A) :=

⋃

q∈AccA
L(A, q) ⊆ T (F). We say that L(A) is the language accepted (or recognized)

by A. Two automata are equivalent if they accept the same language. We define a language (a
set of terms) as regular if it is accepted by a finite automaton.

(e) A state q of an automaton A is accessible if L(A, q) 6= ∅, i.e., if it occurs in a run of A on
some term, not necessarily in L(A). We say that A is trim if each state occurs in an accepting
run. (In particular, each state is accessible). It is well-known, see [4], that one can trim a finite
automaton A, that is, one can replace it by an equivalent trim one by deleting some states and
transitions. If L(A) is empty, one gets in this way an automaton with an empty set of states.
A sink is a state s such that, for every transition f [q1, . . . , qm] →A q, we have q = s if qi = s for
some i. If F has at least one symbol of arity at least 2, then an automaton can have at most
one sink. A state named Success (resp. Error) will be an accepting (resp. nonaccepting) sink.

(f) Complete and deterministic automata.
An F -automaton A is complete if for every f ∈ F of arity m and every q1, . . . , qm in QA,

there is at least one transition f [q1, . . . , qm] →A q. By adding at most one nonaccepting sink,
one can transform an automaton A that is not complete into a complete one B such that
L(B, q) = L(A, q) for every state q of A. We omit the details.

A transition f [q1, . . . , qm] →A q of an automaton A is deterministic if there is no transi-
tion f [q1, . . . , qm] →A q′ with q′ 6= q. An automaton is deterministic if all its transitions are
deterministic, and in this case, we denote q such that f [q1, . . . , qm] →A q by γA(f, q1, . . . , qm).

If A is deterministic and complete, then it has on each t ∈ T (F) a unique run, which we
denote by runA,t. This run can be computed during a bottom-up traversal of t in time a · |t|
where a is an upper-bound to the time taken to perform a transition, that is, to find or compute
γA(f, q1, . . . , qm). This value a is significant if the transition has to be computed (cf. Section 7),

6Space efficient representations of automata are used in the software MONA: see [25].

14

but also if the automaton is finite but is so large that some time (no longer considered as
constant) is required to find the appropriate transition in a table.7

By adding a nonaccepting sink to a deterministic automaton, one makes it complete while
preserving determinism. The presence of an accepting sink (resp. of a nonaccepting sink in a
deterministic automaton) accelerates acceptance (resp. rejection) of a term if this sink occurs
in a run on this term.

(g) Determinization
We recall the existence of a determinization algorithm for finite automata (cf. Section 5 of

[20] or Theorem 1.1.9 of [4]): For every finite automaton A that is not deterministic, one can
construct a trim, deterministic finite automaton B that is equivalent to A. The states of B are
sets of states of A, hence, ♯B ≤ 2♯A. To get a complete deterministic automaton, one can use
the empty subset of QA as nonaccepting sink.

For every automaton A and every term t ∈ T (F), we denote by run∗
A,t the mapping:

Pos(t) → P(QA), that associates with every u in Pos(t) the set of states of the form r(roott/u)
for some run8 r on the subterm t/u of t. In particular, run∗

A,t = runB,t where B is the deter-
minized automaton of a finite automaton A with set of states included in P(QA). We define
ndegA(t), the degree of nondeterminism of A on t as the maximal cardinality of run∗

A,t(u) for
u in Pos(t).

(h) Images and inverse images
Let h : T (H) → T (F) be a relabelling (cf. Definition 2). If L ⊆ T (H), then h(L) := {h(t) | t ∈

L}. If A is an H-automaton, we let h(A) be the F -automaton obtained from A by replacing
each transition f [q1, · · · , qρ(f)] →A q by h(f)[q1, · · · , qρ(f)] → q.

Clearly, h(L(A, q)) = L(h(A), q) for every state q and h(L(A)) = L(h(A)) (because h(A)
has the same accepting states as A). We say that h(A) is the image of A under h. If A is
deterministic, then h(A) is not necessarily deterministic, but it is if h is injective.

We now consider inverse images. If K ⊆ T (F), we define h−1(K) as {t ∈ T (H) |h(t) ∈ K}.
If A is an F -automaton, then we let h−1(A) be the H-automaton with transitions of the form
f [q1, · · · , qρ(f)] → q such that h(f)[q1, · · · , qρ(f)] →A q. We have L(h−1(A), q) = h−1(L(A, q))
for every state q, and L(h−1(A)) = h−1(L(A)). We call h−1(A) the inverse image of A under
h. Note that h−1(A) is deterministic (resp. complete) if A is so.

(i) Subsignatures and subautomata
We say that a signature H is a subsignature of F , written H ⊆ F , if every operation of

H is one of F with the same arity. We say that an H-automaton B is a subautomaton of an
F -automaton A (is included in A), which we denote by B ⊆ A, if:

H ⊆ F , QB ⊆ QA, AccB = AccA ∩QB, and

δB is the set of transitions f [q1, . . . , qr] → q of A such that f ∈ H and q1, . . . , qr ∈ QB.

7In most classical uses of automata, e.g., in compilation or text processing, the size of the input is much larger
than the number of states, hence, the value a may be considered as a constant. But in this article, we will
construct automata that are much larger than their intended input terms.

8If A is not complete, this run may not be the restriction of a run on t.

15

These definitions imply that L(B) = L(A) ∩ T (H). (For proving the inclusion from right to
left, we observe by bottom-up induction that all states of a run of A on a term in T (H) belong
to QB. Hence, this run is a run of B.)

If A is an F -automaton and H ⊆ F , there is a unique automaton B ⊆ A that is minimal for
inclusion. Every increasing sequences of F -automata B1 ⊆ B2 ⊆ · · · Bn ⊆ · · · has a union: it
is an F -automaton A such that Bn ⊆ A for each n and its set of states is the union of the sets
QBn . It recognizes the union of the languages L(Bn).

4. Monadic second-order logic

We now review the expression of graph properties by monadic second-order formulas and
sentences. (A sentence is a formula without free variables).

Definition 18. Monadic second-order formulas expressing graph properties.
(a) We have defined a simple graph G as the relational structure 〈VG, edgG〉 with domain

VG and a binary relation edgG such that (x, y) ∈ edgG if and only if there is an edge from x to
y (or between x and y if G is undirected). A p-graph G whose type π(G) is included in a fixed
finite set C (cf. Definition 3) is identified with the structure 〈VG, edgG, (labaG)a∈C〉 where labaG
is the set of a-ports of G.

(b) Monadic second-order formulas (MS formulas in short) will be written with the set
variables X1, ..., Xn, ..., i.e., without first-order variables, which is not a loss of generality (see,
e.g., Chapter 5 of [9]). The atomic formulas intended to describe the edges and port labels of a
graph G are:

edg(Xi, Xj) meaning that Xi and Xj denote singleton sets {x} and {y} such that
x →G y and

lab∀a(Xi) meaning that every element of Xi has port label a.

The other atomic formulas are Xi ⊆ Xj , Xi = ∅, Sgl(Xi) (meaning that Xi denotes a
singleton set) and Cardp,q(Xi) (meaning that the cardinality of Xi is equal to p modulo q, with
0 ≤ p < q and q ≥ 2).9

Furthermore, MS formulas are written without universal quantifications, and the free vari-
ables of every (sub)formula of the form ∃Xn.ϕ are among X1, ..., Xn−1. These syntactic con-
straints yield no loss of generality (see Chapter 6 of [9] for details) but they make easier the
construction of automata.

(c) A graph property P (X1, ..., Xn) is an MS property if there exists an MS formula ϕ(X1, ...,
Xn) such that, for every graph G and for all sets of vertices V1, ..., Vn of this graph, we have:

〈VG, edgG, (labaG)a∈C〉 |= ϕ(V1, ..., Vn) if and only if P (V1, ..., Vn) is true in G.

9We will not distinguish monadic second-order formulas from counting monadic second-order formulas, defined
as those using Cardp,q(Xi), because all our results will hold in the same way for both types. See Chapter 5 of [9]
for situations where the distinction matters.

16

The formulas that do not use the atomic formulas lab∀a(Xi) express properties of graphs,
equivalently, properties of p-graphs that do not depend on port labels.

For each MS graph property P (X1, ..., Xn), the set of terms LP (X1,...,Xn),k ⊆ T (F
(n)
k) is

regular. This result yields, for every monadic second-order property, a fixed-parameter cubic
model-checking algorithm with respect to clique-width as parameter. Detailed constructions of
automata will be given in Section 5 (see also Section 6.3.4 of [9]). However, the corresponding
automata are frequently much too large to be constructed in practice. This is partly due to
the level of nesting of negations in the formulas, but also to the number k: for example, the
number of states of the unique minimal (complete and deterministic) automaton (cf. [4]) rec-
ognizing LConn,k is a two-level exponential in k (by Example 4.54.4 of [9]). Instead of trying
to construct automata for the most general sentences, we will restrict our attention to partic-
ular but expressive ones (and we will address later the difficulty concerning k by introducing
fly-automata).

By Definition 10, the language LP (X1,...,Xn),k depends only on property P (X1, ..., Xn) and
not on the logical language in which it is expressed. However, if P (X1, ..., Xn) is monadic
second-order expressible, say by ϕ(X1, ..., Xn), then LP (X1,...,Xn),k is defined by a unique mini-
mal automaton. The construction of an automaton recognizing LP (X1,...,Xn),k uses an induction
on the structure of ϕ. It may happen that, even if the minimal automaton of LP (X1,...,Xn),k is
”small”, the intermediate steps of its construction involve so large automata that this construc-
tion fails. This happens if ϕ is θ ∨¬θ and Aθ,k is huge. Of course one can see immediately that
θ ∨ ¬θ is equivalent to True, but the same happens for θ ∨ ¬θ′where θ′ is equivalent to θ, and
this fact is not decidable.

4.1. Basic graph properties

We define a set of basic MS expressible graph properties and we will show later how they can
be used to describe more complex properties without introducing quantifier alternations. The
properties in Table 1 concern a directed or undirected graph G. (We allow some components of
a partition X1, ..., Xp to be empty. We allow loops in the definition of stability. Hence, a graph
with loops can be p-colorable. Property Degd concerns undirected graphs.)

This set can of course be extended according to needs. In particular, we could add a directed
version of Path, the properties that a directed graph is strongly connected or is a directed forest
(a disjoint union of directed and rooted trees).

Definition 19. Monadic second-order sentences over P
(a) We let P consists of the graph properties of Table 1, of those defined by atomic formulas

(cf. Definition 18(b)) and possibly other MS expressible properties. We denote by MS(P) the
set of MS formulas written with P-atomic formulas (Definition 16) and not only with the atomic
formulas. Hence, this definition extends the syntax of monadic second-order logic but not its
expressive power : every formula of MS(P) can be translated into an equivalent MS formula
(routine construction).

(b) We denote by ∃MS(P) the subset of MS(P) consisting of formulas of the form ∃Xn+1, ...,
Xn+p.ϕ where ϕ is a Boolean combination of P-atomic formulas with free variables in {X1, ...,
Xn+p}. Every such formula is equivalent to a finite disjunction of formulas in ∃MS(P) of the

17

Property Description

Disjoint(X1, ..., Xp) X1, ..., Xp are pairwise disjoint

Partition(X1, ..., Xp) X1, ..., Xp form a partition

St all edges are loops (G is stable)

St2(X1) St[X1] ∧ Card2[X1]

Clique any two vertices are adjacent

Link(X1, X2) there is a edge with tail in X1 and head in X2

Dom(X1, X2) every vertex of X1 is the head of an edge with tail in X2

Path(X1, X2) X1 ⊆ X2, |X1| = 2 and the two vertices
of X1 are linked by an undirected path in G[X2]

Cardp |VG| = p (where p ≥ 2)

Card≤p |VG| ≤ p (where p ≥ 2)

Degd(X1, X2) every vertex of X1 is adjacent to exactly
d vertices in X2

InDeg≤d(X1, X2) every vertex of X1 is the head of at most
d directed edges with tail in X2

InDegd(X1, X2) same with ”exactly” instead of ”at most”

Conn G is connected

ConnIfDegd see Section 6.3

Cycle G has undirected cycles

DirCycle G has directed cycles

Table 1: Some basic graph properties

18

form ∃Xn+1, ..., Xn+p.γ where γ is a conjunction of P-atomic and negated P-atomic formu-
las with free variables in {X1, ..., Xn+p}. (One rewrites ϕ as a disjunction of conjunctions of
P-atomic and negated P-atomic formulas and one distributes existential quantifications over
disjunctions). Hence, we can focus our attention on the model-checking of these particular
formulas.

The following examples show that the sentences in ∃MS(P) can express interesting graph
properties.

Example 20. Vertex colorability. The property of p-vertex colorability, which we abbreviate
into p-Col, is expressed by the sentence:

∃X1, ..., Xp (Partition(X1, ..., Xp) ∧ St[X1] ∧ ... ∧ St[Xp]) .

The formula St[Xi] expresses that G[Xi] has no other edges than loops. We denote by
Col(X1, ..., Xp) the property Partition(X1, ..., Xp) ∧ St[X1] ∧ ... ∧ St[Xp].

A p-vertex coloring defined by X1, ..., Xp is acyclic if each graph und(G)[Xi ∪Xj] is acyclic
(i.e., is a forest). The existence of an acyclic p-coloring for G (we will say that G is p-AC-
colorable) is expressed by:

∃X1, ..., Xp (Col(X1, ..., Xp) ∧ . . . ∧ ¬Cycle[Xi ∪Xj] ∧ . . .)

with one formula ¬Cycle[Xi ∪Xj] for each pair i, j such that 1 ≤ i < j ≤ p.

Example 21. Minor inclusion. Let H be a simple, loop-free and undirected graph with vertex
set {v1, ..., vp}. An undirected graph G contains H as a minor if and only if it satisfies the
sentence:

∃X1, ..., Xp (Disjoint(X1, ..., Xp) ∧ Conn[X1] ∧ ... ∧ Conn[Xp] ∧ ... ∧ Link(Xi, Xj) ∧ ...)

where there is one formula Link(Xi, Xj) for each edge of H that links vi and vj .

Example 22. Perfect graphs. A (simple), loop-free and undirected graph G is perfect if the
chromatic number of each induced subgraph H is equal to the maximum size of a clique in H.
This definition is not monadic second-order expressible (because the fact that two sets have
equal cardinalities is not) but the characterization established by Chudnovsky et al. [3] in terms
of excluded holes and antiholes is. A hole is an induced cycle of odd length at least 5 and an
antihole is the edge-complement of a hole. A loop-free undirected graph has a hole if and only
if it satisfies the following sentence:

∃X1, ..., X5 [Disjoint(X1, ..., X5) ∧ St[X1] ∧ St[X2]∧
edg(X3, X5) ∧ edg(X4, X5) ∧ ¬edg(X3, X4)∧
¬Link(X1, X4 ∪X5) ∧ ¬Link(X2, X3 ∪X5)∧
Deg2(X1, X2 ∪X3) ∧Deg2(X2, X1 ∪X4)∧
Deg2(X3, X1 ∪X5) ∧Deg2(X4, X2 ∪X5)].

19

By Proposition 9, for every term t ∈ T (F u
k), one can construct a term t ∈ T (F u

2k) that defines
the edge complement of the graph cval(t) (assumed to be loop-free). Hence, cval(t) is perfect
if and only if the F u

2k-automaton for holes rejects both t and t. The algorithm of [2] can test
if a graph is perfect in time O(n9) (n is the number of vertices). The above logical expression
of holes, Theorem 1 stated in the Introduction and the remarks on the parsing problem after
Definition 5 provide fixed-parameter linear and cubic algorithms for testing perfectness with
respective parameters tree-width and clique-width.

Example 23. Existence of induced chordless cycles.
Chordal graphs are perfect graphs that have several equivalent characterizations. One of

them states that they are undirected, simple, loop-free, connected and without any induced
cycle Cn for n ≥ 4. The existence of such a cycle is expressed by the sentence:

∃X,Y (St[X ∩ Y] ∧ Path(X ∩ Y,X) ∧ Path(X ∩ Y, Y)).

We can ”optimize” it by noting that the validity of Path(X ∩ Y,X) implies that X ∩ Y has
cardinality 2. Hence the condition St[X∩Y] can be replaced by St2(X∩Y) where St2(Z) means
that Z is stable and has two elements. This is interesting because a F u

k - automaton for this
property with only (k2 + 3k + 4)/2 states (instead of 2k + 1 for St[Z]; see Section 5.2.1 below)
can be easily constructed. Hence, by this observation, we get (before minimization), a smaller
automaton for the nonchordality of connected, simple, undirected and loop-free graphs.

Example 24. Constrained domination and other problems.
Let P (X1) be a graph property. The sentence ∃X (P (X)∧Dom(X,X)) expresses that there

exists a set X satisfying property P that dominates all other vertices. (A vertex dominates
itself). Many vertex partitioning problems considered in [28] can be expressed by sentences of
∃MS(P) in similar ways.

Examples 20-24 motivate the inclusion of Partition(X1, · · · , Xp), Disjoint(X1, · · · , Xp), St,
St2(X1), Dom(X1, X2), Link(X1, X2), Deg2(X1, X2), Cycle and Conn in our set of basic graph
properties.

4.2. From monadic second-order sentences to finite automata

We review the main steps of the inductive construction of a finite automaton associated with
a formula of MS(P).

4.2.1. P-atomic formulas

We assume that for each property P (X1, ..., Xm) of P and each k, we have defined a fi-

nite F
(m)
k -automaton AP (X1,...,Xm),k that accepts the set of terms LP (X1,...,Xm),k. Actually, in

all constructions given below in Section 5, these automata depend on k in a uniform way (see
Section 7 for the use of this observation). By Lemmas 13, 15 and the inverse image construction
(see Definition 17(h)), for set terms S1, ..., Sm, Sm+1 over {X1, ..., Xn} and from a finite automa-
ton AP (X1,...,Xm),k that accepts LP (X1,...,Xm),k, one gets easily automata AP (S1,...,Sm),(X1,...,Xn),k

20

and AP (S1,...,Sm)[Sm+1],(X1,...,Xn),k with same number of states (but more transitions in most
cases) that accept LP (S1,...,Sm),(X1,...,Xn),k and LP (S1,...,Sm)[Sm+1],(X1,...,Xn),k respectively. These
automata are also deterministic if AP (X1,...,Xm),k is deterministic. Hence, we obtain finite au-
tomata for all P-atomic formulas.

We will construct finite automata AP (X1,...,Xm),k for the properties P of Table 1. In most
cases, these automata will be deterministic and complete, not minimal and even, they will
have inaccessible states. We wish to have easy descriptions of the transitions rather than small
numbers of states. Section 7 will justify this choice. Note that if ϕ(X1, ..., Xm) is written with
the atomic formulas lab∀a for some a in [p], then the automaton Aϕ(X1,...,Xm),k is well-defined
only if k ≥ a for all such a’s. We will always assume this. However, in most cases, the properties
to check will not depend on port labels.

4.2.2. Boolean combinations

Lemma 25. (1) If ϕ is a conjunction of formulas α1, ..., αd for which we have constructed

finite F
(m)
k -automata A1, ...,Ad with respectively N1, ..., Nd states, we can construct a prod-

uct F
(m)
k -automaton for ϕ with N1 × ... × Nd states. It is deterministic if A1, ...,Ad are

so.

(2) If ϕ is a disjunction of formulas α1, ..., αd for which we have constructed finite pairwise

disjoint F
(m)
k -automata A1, ...,Ad with respectively N1, ..., Nd states, we can construct a

(nondeterministic) F
(m)
k -automaton for ϕ with N1 + ...+Nd states.

(3) From a complete and deterministic finite F
(m)
k -automaton A for a formula α, we get a

complete and deterministic F
(m)
k -automaton B for ¬α having the same states and transi-

tions.

Proof. These are classical constructions (cf. [4]). In Case (3), we take AccB := QA − AccA. If
A has a state Error, we rename it into Success in B and vice-versa (cf. Definition 17(e)).

By trimming these automata, we may reduce their sizes. Hence, N1 × ... × Nd is an upper
bound in the construction of Lemma 25(1). If, for example, d = 2, α1 implies α2 and A1 and A2

are trim and deterministic with respectively N1 and N2 states, then the product construction
for α1 ∧ α2 yields an automaton with N1 × N2 states. The corresponding trim automaton is
isomorphic to A1, hence has only N1 states.

4.2.3. Existential quantifications

We denote (in the same way for all n) by pr(m) the relabellings: F
(n+m)
k → F

(n)
k that delete

the last m Booleans of the sequence w in the nullary symbols (a, w) and (aℓ, w).

Lemma 26. Let θ be the formula ∃Xn+1, ..., Xn+m.ϕ with free variables in {X1, ..., Xn}.

(1) Then Lθ(X1,...,Xn),k = pr(m)(Lϕ(X1,...,Xn+m),k).

(2) If A is a finite F
(n+m)
k -automaton that recognizes Lϕ(X1,...,Xn+m),k, then the F

(n)
k -automaton

B := pr(m)(A) recognizes Lθ(X1,...,Xn),k. It is not deterministic in general, even if A is.
If A is deterministic, then B is nondeterministic with 2m transitions associated with each
nullary symbol (a, w) or (aℓ, w), and all its other transitions are deterministic.

21

Proof. Follows easily from the definitions.

Lemmas 13, 15, 25, 26 and the automata constructions recalled in Definition 17 entail the
following result.

Theorem 27. Let P be a set of basic MS graph properties for which F
(.)
k -automata are known

for all k. For every k and every MS(P) sentence ϕ, one can define a finite Fk-automaton Aϕ,k

that accepts the regular language LP,k = Lϕ,k where P is the graph property expressed by ϕ.

The automata for the atomic formulas and the properties of P will be detailed in the next
section. Some of them have very large sizes because of the alternations of quantifications that
impose nested determinizations, and this is unavoidable. We will focus our attention on formulas
with few quantifier alternations.

Corollary 28. Let P be a set of basic graph properties. For each k and each property P (Y1, ..., Ym)
that belongs to P or is the negation of a property in P, we assume that we have defined a finite

F
(m)
k -automaton AP (Y1,...,Ym),k with N(P, k) states (that need not be deterministic). For every

sentence θ of the form ∃X1, ..., Xn.ϕ where ϕ is a conjunction of P-atomic and negated P-atomic
formulas α1, ..., αd, we can construct a finite Fk-automaton Aθ,k with N1× ...×Nd states where,
for each i, Ni := N(Pi, k) and Pi is the property used to define αi.

If APi(Y1,...,Ym),k is complete and deterministic, it can be used (up to the toggling of accepting
states and/or taking an inverse image) for αi of the form either Pi(S1, ..., Sm) or ¬Pi(S1, ..., Sm)
(and similarly for Pi(S1, ..., Sm)[Sm+1]). If APi(Y1,...,Ym),k is not deterministic, it can be used for
Pi(S1, ..., Sm). In order to avoid a determinization, we may use in some cases a nondetermin-
istic automaton A¬Pi(Y1,...,Ym),k with much less states than APi(Y1,...,Ym),k. We will do this for
connectedness : see Sections 6.1 and 6.4.

4.2.4. Irredundant vs. annotated terms

For certain graph properties P (X1, ..., Xm), the automaton AP (X1,...,Xm),k is quite compli-
cated whereas there exists a simpler (and smaller) automaton BP (X1, ...,Xm),k that works correctly
on irredundant terms. We mean by this that:

L(BP (X1,...,Xm),k) ∩ IT (F
(m)
k) = LP (X1,...,Xm),k ∩ IT (F

(m)
k).

The algorithm of Proposition 8(1) transforms in linear time a term in T (Fk) into an equivalent
one in IT (Fk). Hence, we can design automata intended to work correctly on irredundant terms
only. Using such automata will not affect the fixed-parameter tractability results of Theorem 1
(stated in the introduction).

We recall from Definition 7 that the notion of redundancy does not depend on the nullary

symbols. Hence, a term t in IT (F
(m)
k) is irredundant if and only if the term pr(m)(t) (belonging

to T (Fk)) is irredundant. For the same reasons the relabellings of Lemmas 13 and 15 preserve
redundancy and irredundancy. Hence, all constructions of Sections 4.2.1 to 4.2.3 apply to
automata for irredundant terms.

The transformation of Proposition 8(1) is based on the annotation ADDt on a term t. The
idea of this transformation is to replace an edge addition f at an occurrence u by an identity if

22

some operation above u defines all edges defined by f . Instead of transforming t in this way into

an equivalent irredundant term, we transform as follows an F
(m)
k -automaton B := BP (X1,...,Xm),k

built for irredundant terms, so as to make it work correctly on annotated terms:

we replace every transition of B of the form
−−→
adda,b[p] → q by the transitions of the

following forms:

• (
−−→
adda,b, R)[p] → p for each R containing (a, b), (the new transition acts as if

−−→
adda,b had

been replaced by an identity operation),

• (
−−→
adda,b, R)[p] → q for all R not containing (a, b).

The transitions relative to the other symbols are not modified. In a run on a term t, the
component R at a node u takes for value the set ADDt(u). This transformation of automata

simulates the replacement of
−−→
adda,b at u by the identity in the proof of Proposition 8(1) in the

case where R contains (a, b).

If B is an F
u(m)
k -automaton, then we replace adda,b[p] → q by the transitions (adda,b, R)[p] →

p for all R containing {a, b} and by (adda,b, R)[p] → q for all R not containing {a, b}. (We recall
that for t ∈ T (F u

k), each ADDt(u) is a set of two labels from [k]). In both cases, letting B′ be

obtained from B, we have, for every t ∈ T (F
(m)
k) ∪ T (F

u(m)
k):

t ∈ LP (X1,...,Xm),k if and only if (t, ADDt) ∈ L(B′).

5. Automata for basic properties

Our objective is now to detail some constructions of finite automata for the atomic formulas
(Definition 18(b)) and the basic properties of Table 1 (Section 4.1). Our method makes it
possible to prove that the constructions are correct, even if we do not give full proofs. In this
section all automata will be finite, hence, automaton will mean finite automaton.

5.1. First constructions

5.1.1. Easy cases

We consider the atomic formulas and the basic properties that do not depend on adjacency
or port labels:

Cardp, Card≤p,X1 = ∅, Sgl(X1), Cardp,q(X1),X1 ⊆ X2,X1 = X2, Partition(X1, ..., Xm)
and Disjoint(X1, ..., Xm).

Table 2 shows the characterizations of the corresponding languages (over Fk, F
(1)
k , F

(2)
k

or F
(m)
k) and, in each case, the number of states of the minimal complete and deterministic

automaton. (We recall that C : = {a,aℓ | a ∈ C := [k]}). In this table, we use the following
notation:

23

|t|A is the number of occurrences in t of symbols from a set A,

C′ := {(c, 1) | c ∈ C},

Ci\j := {(c, w) | c ∈ C and w[i] = 1, w[j] = 0},

Cij := {(c, w) | c ∈ C and w[i] = w[j] = 1},

C0 := {(c, w) | c ∈ C and w[i] = 0 for all i}.

P t ∈ LP,k ♯AP,k

X1 = ∅ |t|
C′ = 0 2

Sgl(X1) |t|
C′ = 1 3

X1 ⊆ X2 |t|
C1\2

= 0 2

X1 = X2 |t|
C1\2

= |t|
C2\1

= 0 2

Cardp |t|
C
= p p+ 2

Card≤p |t|
C
≤ p p+ 2

Cardp,q(X1) |t|
C′ = pmod q q

Partition(X1, ..., Xm) |t|
C0

= |t|
Cij

= 0, all i 6= j 2

Disjoint(X1, ..., Xm) |t|
Cij

= 0, all i 6= j 2

Table 2: Languages for some atomic and basic formulas

These automata are straightforward to construct. The next ones will not be so easy. We
introduce a way to describe the meaning of their states.

Let A be a complete deterministic F
(m)
k -automaton. Each term t ∗ (V1, ..., Vm) in T (F

(m)
k)

belongs to L(A, q) for a unique state q. We will say that a property Pq of (t, V1, ..., Vm) charac-

terizes an accessible state q if, for every t ∗ (V1, ..., Vm) ∈ T (F
(m)
k):

t ∗ (V1, ..., Vm) ∈ L(A, q) if and only if Pq(t, V1, ..., Vm) holds. (1)

We will actually specify automata by defining their states and the characteristic properties
of their accessible states. Provided the states are informative enough, the constructions of the
transitions will follow easily. We will specify in most cases deterministic automata that are
complete (each with an Error state). This state and the corresponding transitions may be
omitted, but they are needed for the complementation operation (Lemma 25(3)).

5.1.2. Adjacency

We first construct the deterministic and complete automaton Aedg(X1,X2),k denoted below
by A. Its set of states (where C := [k]) is:

Q := {0,Ok ,Error} ∪ {a(1), a(2), ab | a, b ∈ C, a 6= b}.

24

The meaning of each state q ∈ Q is described in Table 3 in terms of its characteristic property10

Pq(t, V1, V2). The automaton A will be constructed so that Condition (1) holds for all accessible

states q and terms t ∗ (V1, V2) ∈ T (F
(2)
k).

The transitions are in Table 4. We want A to be complete with Error as nonaccepting sink:
the transitions not listed in this table yield Error. (This will be the same for all automata
defined below and similarly for the accepting sink Success). The accepting state is Ok . One
can prove that the resulting automaton satisfies the conditions of Table 4. Without giving a
detailed proof, we indicate the method for doing it.

Let A be defined by the transitions of Table 4 (and the above convention about Error). For
proving the correctness of A, it suffices to prove, by induction on t, that for all t∗(V1, V2) ∈ T (Fk)
and states q:

t ∗ (V1, V2) ∈ L(A, q) implies that Pq(t, V1, V2) holds. (2)

which is one direction of Equivalence (1). Since A is complete and deterministic, and since the
properties Pq are mutually exclusive and cover all cases, we get the opposite implications. The
choice of Ok as single accepting state is then correct by the conditions of Table 4.

The proof of correctness proceeds as follows. The implication (2) holds if t is a nullary symbol.
A typical case of an inductive step is when t = t1 ⊕ t2. Assume that t ∗ (V1, V2) ∈ L(A, ab).
Then, the last transition used is one of:

⊕[a(1), b(2)] → ab,⊕[b(2), a(1)] → ab,⊕[ab, 0] → ab or ⊕ [0, ab] → ab.

In the first case, this means (by using the induction hypothesis) that V1 = {v1}, V2 = {v2},
v1 is an a-port of cval(t)/u1 and v2 is a b-port of cval(t)/u2. By the definition of ⊕, there is no
edge from v1 to v2, and so Pab(t, V1, V2) is true. The other proofs are similar.

Among the transitions to Error, we have the following ones: ⊕[Ok ,Ok] → Error , (a, 11) →
Error and relabh[ab] → Error if h(a) = h(b). (Note that Ok is not an accepting sink. Otherwise,
we would call it Success.) The number of states is k2 + k + 3 (and Table 4 specifies O(k4)
transitions, with or without counting the transitions to Error).

State q Property Pq(t, V1, V2)

0 V1 = V2 = ∅

Ok V1 = {v1}, V2 = {v2}, edgcval(t)(v1, v2)

for some v1, v2 in Vcval(t)

a(1) V2 = ∅, V1 = {v1}, πcval(t)(v1) = a

a(2) V1 = ∅, V2 = {v2}, πcval(t)(v2) = a

ab V1 = {v1}, V2 = {v2}, πcval(t)(v1) = a,

πcval(t)(v2) = b,¬edgcval(t)(v1, v2)

Error All other cases

Table 3: Meaning of the states of Aedg(X1,X2),k

10Since in a state ab we have by definition a 6= b, the characteristic property Pab implies v1 6= v2.

25

Transitions Conditions

∅ → 0
(c, 00) → 0
(c, 10) → a(1) c is a or aℓ

(c, 01) → a(2)

(aℓ, 11) → Ok

relabh[q] → q q ∈ {0,Ok}

relabh[a(1)] → b(1) b = h(a)
relabh[a(2)] → b(2)

relabh[ab] → cd c = h(a), d = h(b), c 6= d
−−→
adda,b[q] → q q 6= ab
−−→
adda,b[ab] → Ok

⊕[a(1), b(2)] → ab a 6= b
⊕[b(2), a(1)] → ab
⊕[q, 0] → q
⊕[0, q] → q

Table 4: The transitions of Aedg(X1,X2),k

For checking properties of undirected graphs defined by terms in T (F u
k), we can use adda,b

(for a < b) instead of the composition of
−−→
adda,b and

−−→
add b,a. We modify Aedg(X1,X2),k as follows:

we replace everywhere ba by ab if a < b, and we replace the transitions relative to
−−→
adda,b by

the transitions: adda,b[ab] → Ok and adda,b[q] → q for q 6= ab. The number of states is then
k(k + 3)/2 + 3.

A smaller automata for annotated terms

If the input terms are annotated as in Definition 6, then A can be replaced by a smaller
automaton A′ with set of states Q′ := {0,Ok ,Error}∪ {a(1), a(2) | a ∈ C} of cardinality 2k+3.
Consider for example an occurrence u of ⊕ where the transition ⊕[a(1), b(2)] → ab is used by
A (so that runA,t(u) = ab). If (a, b) ∈ ADDt(u), then we can replace the state ab by Ok
because we are certain that v1 → v2 in cval(t), although this is not yet the case in cval(t)/u. If
(a, b) /∈ ADDt(u), we can replace the state ab by Error.

The automaton A′ uses only the annotation at the occurrences of ⊕. Its transitions are shown
in Table 5. In this table, a pair (⊕, R) is used as a function symbol that occurs at a node u if
and only if R = ADDt(u).

Since the annotation ADDt does not depend on nullary symbols as observed at the end of
Definition 6, the direct and inverse image constructions of Section 3 that are useful to implement
Lemmas 13 and 15 and to prove Theorem 27 work for automata on terms annotated in this way.

5.1.3. Labels

For completeness sake, we consider the atomic formulas lab∀a(X1) for a ∈ C, although in
most cases, the formulas to be checked express properties of graphs (not of p-graphs) and thus

26

Transitions Conditions

∅ → 0
(c, 00) → 0
(c, 10) → a(1) c is a or aℓ

(c, 01) → a(2)

(aℓ, 11) → Ok

relabh[q] → q q ∈ {0,Ok}

relabh[a(1)] → b(1) b = h(a)
relabh[a(2)] → b(2)
−−→
adda,b[q] → q

(⊕, R)[a(1), b(2)] → Ok (a, b) ∈ R
(⊕, R)[b(2), a(1)] → Ok (a, b) ∈ R
(⊕, R)[q, 0] → q
(⊕, R)[0, q] → q

Table 5: The transitions of A′ for annotated terms

do not use these atomic formulas. The set of states is Q := P(C), the set of subsets of C. The
characteristic property of a state A is defined by :

PA(t, V1) if and only if A = πcval(t)(V1).

The transitions are straightforward to write. The state ∅ is accessible because t can denote
the empty graph. The accepting states are ∅ and {a}. (This automaton computes actually the
set of port labels of the vertices of V1.)

5.2. Other basic properties

5.2.1. Stability

We recall that stability, denoted by St, means that all edges are loops. The empty graph is
stable. We define an Fk-automaton ASt ,k with set of states Q := P(C)∪ {Error} of cardinality
2k + 1. The characteristic properties of its accessible states are in Table 6.

State q Property Pq(t)

Error cval(t) is not stable

A cval(t) is stable and A = π(cval(t))

Table 6: Meaning of the states of ASt,k

All states are accepting except Error. The transitions are easy to define on the basis of the

following facts: for all p-graphs G and H and operations relabh, adda,b and
−−→
adda,b :

G⊕H is stable if and only if G and H are stable,
relabh(G) is stable if and only if G is stable,

adda,b(G) and
−−→
adda,b(G) are stable if and only if G is stable and a and b are not both

in π(G),
G is stable if it is defined by a,aℓ or ∅.

27

For the variant where stability forbids loops, each nullary symbols aℓ yields Error.
We recall from Lemma 15 that we can easily obtain from ASt ,k an automaton for St[X1]

expressing that the induced subgraph of G with vertex set X1 is stable.

Annotations are useful in the following way: if the automaton ASt ,k reaches a state A at a
node u of the tree t such that a, b ∈ A and (a, b) or {a, b} belongs to ADDt(u), then this state
can be replaced by Error because some edge-addition operation above u in t creates at least one
edge with two ends in cval(t)/u, so that cval(t) is not stable. The computation of the modified
automaton can thus be faster than that of ASt ,k on the terms to be rejected.

5.2.2. Clique

We let Clique be the property that any two distinct vertices are linked by an edge (in any
direction). The empty graph is a clique. As above, we define a complete and deterministic Fk-
automaton. Its states are the pairs (A,R) such that A ⊆ C and R ⊆ A×A. The characteristic
properties of the accessible states are in Table 7. The accepting states are the pairs (A, ∅). We
give only two transitions :

State q Property Pq(t)

(A,R) A = π(cval(t)) and R is the set of pairs (a, b) ∈ A×A
such that cval(t) has an a-port x and a b-port y

such that (x, y) /∈ edgG ∪ edg−1
G

Table 7: Meaning of the states of AClique,k

⊕[(A,R), (A′, R′)] → (A ∪A′, R ∪R′ ∪ (A×A′) ∪ (A′ ×A)),
−−→
adda,b(G)[(A,R)] → (A,R− {(a, b), (b, a)}).

The number of states is less than 2k
2+k but certain states are inaccessible, in particular,

those such that R is not symmetric. The minimal automaton has 2Θ(k2) states as one can check
easily. We can add a state Error and the transitions:

⊕[(A,R), (A′, R′)] → Error, if A ∩A′ 6= ∅,

relabh[(A,R)] → Error if h(a) = h(b) for some a and b 6= a in A,

because if a graph has two vertices with same label that are not adjacent, then no sequence
of operations applied to this graph can create an edge between these two vertices. The states
(A,R) such that (a, a) ∈ R become inaccessible and the resulting automaton is slightly smaller
than the previous one, but the same lower bound applies to the number of states.

An automaton for annotated terms (cf. Definition 6), that has only 2k + 1 states can
be built: its states are Error and A for all A ⊆ C; it reaches the state Error at u in t
whenever addADDt(u)(cval(t)/u) does not satisfy Clique and otherwise, it reaches the state
A = π(cval(t)/u). (We recall from Proposition 9 that addR is the composition of the operations
adda,b for all {a, b} ∈ R; if R is a set of pairs (a, b) with a 6= b, then addR is the composition of

the operations
−−→
adda,b for all (a, b) in R).

28

5.2.3. Set adjacency

The automaton for the property Link(X1, X2) that there is a edge with tail in X1 and head
in X2 has 22k + 1 states that are the pairs (A,B) for all A,B ⊆ C together with an accepting
sink Success. All these states are accessible and their characteristic properties are defined in
Table 8.

State q Property Pq(t, V1, V2)

(A,B) A = πcval(t)(V1), B = πcval(t)(V2),

and Link(V1, V2) does not hold in cval(t)

Success Link(V1, V2) holds in cval(t)

Table 8: Meaning of the states of ALink(X1,X2),k

The automaton is complete. The only accepting state is the sink Success. If the automaton
is intended to process annotated terms t, it can replace by Success any state (A,B) at a node
u if ADDt(u) ∩ (A × B) 6= ∅ (or {a, b} ∈ ADDt(u) for some a ∈ A and b ∈ B in case of terms
defining undirected graphs) and thus accept quickly.

5.2.4. Domination

We consider the property Dom(X1, X2) (meaning that every vertex in X1 is the head of an
edge with tail in X2). The automaton has 22k + 1 states which are Error and the pairs (A,B)
for all A,B ⊆ C. Their characteristic properties are in Table 9.

State q Property Pq(t, V1, V2)

(A,B) V1 ∩ V2 = ∅, B = πcval(t)(V2), A is the

set of port labels of the vertices in V1

that are not the head of an edge with tail in V2

Error V1 ∩ V2 6= ∅

Table 9: Meaning of the states of ADom(X1,X2),k

The accepting states are the pairs (∅, B), hence Error is not the only nonaccepting state.
Annotations do not seem to help in this case.

5.2.5. Paths

The following construction concerns paths in undirected graphs, hence we construct an F u
k -

automaton. If we want to check the corresponding property of undirected paths in directed
graphs, i.e., of paths where edges can be traversed in either direction, it suffices to replace adda,b

by
−−→
adda,b and by

−−→
addb,a in the transitions of the F u

k -automata we will construct.
We recall that Path(X1, X2) holds in G if and only if X1 ⊆ X2, |X1| = 2 and there is an

undirected path in G[X2] that links the two vertices of X1. This property is monadic second-

order expressible (we will write below the formula) but we will construct an F
u(2)
k -automaton

APath(X1,X2),k without using the logical expression of Path(X1, X2).

29

We need some auxiliary notions. Let G be an undirected p-graph with ports in a finite fixed
set C. For x ∈ VG, we let11:

α(G, x) := {πG(y) | y ∈ VG and x−∗
Gy} ⊆ C,

and
β(G) := {(πG(x), πG(y)) |x, y ∈ VG, x−

∗
Gy} ⊆ C × C.

Hence β(G) is a symmetric and reflexive relation on the set π(G). It determines π(G).
We will prove that the functions α and β can be computed inductively on t if G = cval(t). If

h : C → C and B ⊆ C ×C, then h(B) := {(h(a), h(b)) | (a, b) ∈ B}. We extend the composition
of binary relations (denoted by ·) to A ⊆ C and B ⊆ C × C by defining A ⊙ B as the set
{b ∈ C | (a, b) ∈ B for some a ∈ A}. It is the image of A under the multivalued function defined
by B. For a, b ∈ C with b 6= a, we let a⊛ b denote the relation {(a, a), (a, b), (b, a), (b, b)}.

Lemma 29. For disjoint p-graphs G and H and vertex x, we have:

(1) α(G⊕H,x) =

{

α(G, x) if x ∈ VG,
α(H,x) if x ∈ VH .

(2) β(G⊕H) = β(G) ∪ β(H).

(3) α(adda,b(G), x) =

{

α(G, x) ∪ α(G, x)⊙ ((a⊛ b) · β(G)) if a, b ∈ π(G),
α(G, x) otherwise.

(4) β(adda,b(G)) =

{

β(G) ∪ β(G) · (a⊛ b) · β(G) if a, b ∈ π(G),
β(G) otherwise.

(5) α(relabh(G), x) = h(α(G, x)).

(6) β(relabh(G)) = h(β(G)).

(7) α(a, x) = α(aℓ, x) = {a}.

(8) β(a) = β(aℓ) = {(a, a)}.

(9) β(∅) = ∅.

Proof. The verifications are easy from the definitions. We only sketch the proof of the inclusion
⊆ in (3).

If c is in α(adda,b(G), x), then either it is in α(G, x) or there exists a path from x to a c-port
z that uses one or more edges added to G by adda,b. If this path contains only one such edge and
goes through an a-port u and immediately after through a b-port w, we have a ∈ α(G, x) and
(b, c) ∈ β(G) and thus c ∈ α(G, x)⊙ ((a⊛ b) ·β(G)). If this path contains several such edges, the
first one being u−w and the last one being u′−w′, where u and u′ are a-ports and w and w′ are
b-ports, then there is also an edge between u and w′ and the previous case gives the result. If
u−w and u′−w′ are as above except that w′ is an a-port and u′ is a b-port, then there is also an
edge between w and w′. Then a ∈ α(G, x), (a, c) ∈ β(G) and thus c ∈ α(G, x)⊙ ((a⊛ b) · β(G))
because (a, a) ∈ a⊛ b.

11Here x −G y means that x and y are adjacent in G and x−∗
Gy means that they are equal or linked by an

undirected path.

30

We now construct an automaton with set of states Q defined as:

{Ok ,Error} ∪ {(0, B) |B ⊆ C × C} ∪

{(1, A,B) | ∅ 6= A ⊆ C,B ⊆ C × C} ∪

{(2, {A,A′}, B) |A,A′ ⊆ C,A 6= ∅, A′ 6= ∅, B ⊆ C × C}.

State q Property Pq(t, V1, V2)

(0, B) V1 = ∅, B = β(cval(t)[V2])

(1, A,B) V1 = {v} ⊆ V2, A = α(cval(t)[V2], v)
B = β(cval(t)[V2])

V1 = {v, v′} ⊆ V2, v 6= v′, A = α(cval(t)[V2], v),
(2, {A,A′}, B) A′ = α(cval(t)[V2], v

′), B = β(cval(t)[V2])
there is no path between v and v′ in cval(t)[V2]

Ok Path(V1, V2) holds in cval(t)

Error All other cases

Table 10: Meaning of the states of APath(X1,X2),k

The meaning of its accessible states is described in Table 10. The transitions are shown in
Table 11, where we use the following auxiliary functions :

f(B, a, b) := if {(a, a), (b, b)} ⊆ B then B ∪ (B · (a⊛ b) ·B) else B,

g(A,B, a, b) := if {(a, a), (b, b)} ⊆ B then A ∪ (A⊙ ((a⊛ b) ·R)) else A.

These definitions reflect respectively Properties (4) and (3) of Lemma 29. We take Ok as
accepting state. This completes the construction.

Table 10 shows that some states are not accessible : for example, by the definition of β,
the component B of each accessible state must be a reflexive and symmetric relation. State
(1, {a}, ∅) is not accessible either. The set Q has cardinality 2 + 2k + 2k+k2 + (2k(2k + 1)/2)2k

2

(where k ≥ 2). The cardinality of the set of accessible states is somewhat less than that, but
it lies between 2k

2/2 and 2k
2+2k as one can check easily. Determining its exact value is of no

interest. Annotations seem to be usable: the set of states remains the same but the transitions
are more complicated to define. The benefit of using them is not clear.

Let us now consider the expression of the property Path(X1, X2) by the MS formula:

∀x[x ∈ X1 ⇒ x ∈ X2]∧

∃x, y{x ∈ X1 ∧ y ∈ X1 ∧ x 6= y ∧ ∀z(z ∈ X1 ⇒ x = z ∨ y = z)∧

∀X3[x ∈ X3 ∧ ∀u, v(u ∈ X3 ∧ u ∈ X2 ∧ v ∈ X2 ∧ edg(u, v) ⇒ v ∈ X3) ⇒ y ∈ X3]}

of quantifier-height 5. Its translation into a formula without first-order variables and universal
quantifiers has the same quantifier-height. The given construction of APath(X1,X2),k avoids thus

31

Transitions Conditions

(c, 00) → (0, ∅), ∅ → (0, ∅)
(c, 01) → (0, {(a, a)}) c ∈ {a,aℓ}
(c, 11) → (1, {a}, {(a, a)})

relabh[Ok] → Ok
relabh[(0, B)] → (0, h(B))
relabh[(1, A,B)] → (1, h(A), h(B))
relabh[(2, {A,A

′}, B)] → (2, {h(A), h(A′)}, h(B))

adda,b[Ok] → Ok B′ = f(B, a, b)
adda,b[(0, B)] → (0, B′) D = g(A,B, a, b)
adda,b[(1, A,B)] → (1, D,B′) D′ = g(A′, B, a, b)
adda,b[(2, {A,A

′}, B)] → (2, {D,D′}, B′) (A⊙ ((a⊛ b) ◦B)) ∩A′ = ∅

adda,b[(2, {A,A
′}, B)] → Ok (A⊙ ((a⊛ b) ◦B)) ∩A′ 6= ∅

⊕[Ok , (0, B)] → Ok
⊕[(0, B),Ok] → Ok
⊕[(0, B), (0, B′)] → (0, B′′)
⊕[(0, B), (1, A,B′)] → (1, A,B′′)
⊕[(1, A,B′), (0, B)] → (1, A,B′′) B′′ = B ∪B′

⊕[(1, A,B), (1, A′, B′)] → (2, {A,A′}, B′′)
⊕[(0, B), (2, {A,A′}, B′)] → (2, {A,A′}, B′′)
⊕[(2, {A,A′}, B′), (0, B)] → (2, {A,A′}, B′′)

Table 11: The transitions of APath(X1,X2),k

32

lengthy computations. The minimal automaton equivalent to APath(X1,X2),k depends only on the
property Path(X1, X2) (cf. the beginning of Section 4). It is thus the same as the one derivable
from any monadic second-order expression of this property (provided the computations do not
abort by lack of memory).

5.2.6. Bounded degree and indegree

We first consider directed graphs. The indegree of a vertex is the number of incoming edges.
The indegree of a graph is the maximum indegree of its vertices. We will construct an automaton
for the property InDeg≤d(X,Y) meaning that every vertex in X is the head of at most d edges
with tail in Y . Hence, a graph G has indegree at most d if and only if InDeg≤d(VG, VG) is valid.

We will construct an automaton BInDeg≤d(X1,X2),k intended to work correctly on irredundant
terms (cf. Definition 7 and Proposition 8) and that can be easily modified into one with same
set of states intended to work on annotated terms (cf. the remarks of Section 4.2.4). For this
purpose, we define ∂G(x, Y) as the number of edges with head x and tail in Y and ∂(G):=
max{∂G(x, VG) | x ∈ VG}. For X,Y ⊆ VG, we let, for every a in C :

αG(X,Y)(a) := max{∂G(x, Y) | x ∈ X ∩ π−1
G (a)},

βG(Y)(a) := min{d+ 1,
∣

∣Y ∩ π−1
G (a)

∣

∣}.

Hence, αG(X,Y) is a mapping : C → [0, ∂(G)] and βG(Y) is one : C → [0, d+ 1].

The states of BInDeg≤d(X1,X2),k are Error and the pairs (α, β) where α : C → [0, d] and β :
C → [0, d+1]. (See Section 7.3.1 for another description). Their characteristic properties are in
Table 12.

State q Property Pq(t, V1, V2)

(α, β) InDeg≤d(V1, V2) holds in cval(t),
α = αcval(t)(V1, V2) and β = βcval(t)(V2)

Error InDeg≤d(V1, V2) does not hold in cval(t).

Table 12: Meaning of the states of BInDeg≤d(X1,X2),k

Every state except Error is accepting. The number of states is (d + 1)k(d + 2)k + 1 ≤
(d + 2)2k = 22k log(d+2). The definition of transitions will use the following lemma where, to
simplify the notation, we let for every graph H:

αH(X,Y)(a) := αH(X ∩ VH , Y ∩ VH)(a) and

βH(Y)(a) := βH(Y ∩ VH)(a).

Similarly, InDeg≤d(X,Y) is defined as true in H if InDeg≤d(X ∩ VH , Y ∩ VH) is true (also
in H).

Lemma 30. (1) If G = G1 ⊕G2 and X,Y ⊆ VG,, then for every a ∈ C:

33

αG(X,Y)(a) = max{αG1(X,Y)(a), αG2(X,Y)(a)},

βG(Y)(a) = min{d+ 1, βG1(Y)(a) + βG2(Y)(a)},

InDeg≤d(X,Y) is true in G if and only if it is true in G1 and in G2.

(2) If G = relabh(G1) and X,Y ⊆ VG, then for every a ∈ C:

αG(X,Y)(a) = max{αG1(X,Y)(b) | h(b) = a},

βG(Y)(a) = min{d+ 1,
∑

h(b)=a

βG1(Y)(b)},

InDeg≤d(X,Y) is true in G if and only if it is true in G1.

(3) Let G =
−−→
adda,b(G1) and X,Y ⊆ VG be such that G1 has no edge from an a-port to a

b-port.

(3.1) For every c ∈ C − {b}, we have βG(Y)(c) = βG1(Y)(c) and αG(X,Y)(c) =
αG1(X,Y)(c).

(3.2) Let d′ := αG1(X,Y)(b) + βG1(Y)(a). If d′ ≤ d, then αG(X,Y)(b) = d′; other-
wise, αG(X,Y)(b) > d. Furthermore, InDeg≤d(X,Y) is true in G if and only if it
is true in G1 and d′ ≤ d.

Proof. All these facts are easy consequences of the definitions. About Assertion (3.2), we observe
that αG(X,Y)(b) = αG1(X,Y)(b) +

∣

∣Y ∩ π−1
G (a)

∣

∣. If αG1(X,Y)(b) + βG1(Y)(a) = d′ ≤ d, then
βG1(Y)(a) ≤ d, hence βG1(Y)(a) =

∣

∣Y ∩ π−1
G (a)

∣

∣ and so, we have αG(X,Y)(b) = d′. Otherwise,
since βG1(Y)(a) ≤

∣

∣Y ∩ π−1
G (a)

∣

∣ by definition, we have αG(X,Y)(b) > d if d′ > d, and so
InDeg≤d(X,Y) is false in G.

Lemma 30 yields the definitions of the transitions relative to ⊕, relabh and
−−→
adda,b. In par-

ticular
−−→
adda,b[α, β] → Error if α(b) + β(a) > d, by Assertion (3). The construction is correct

for irredundant input terms, because of the computation of αG(X,Y)(b) in the proof of this
assertion. The transitions relative to nullary symbols are as follows, for i = 0, 1:

(a, i0) → (0,0), (a, i1) → (0, 1a),

(aℓ, 00) → (0,0), (aℓ, 10) → (1a,0),

(aℓ, 01) → (0, 1a) and (aℓ, 11) → (1a, 1a)

where 0 denotes the mapping : C → N with constant value 0, and ja, for j > 0, is the one such
that ja(x) := if x = a then j else 0.

We now extend this construction to undirected graphs. For an undirected graph G without
loops, the degree of any vertex is equal to its indegree in the corresponding directed graph G′

(cf. Definition 3). If t is an irredundant term over F u
k that defines G, then we replace each

operation adda,b in t by
−−→
adda,b ◦

−−→
addb,a and we obtain an irredundant term t′ for G′, so that the

previous automaton can be used on t′. However, a loop counts for two edges. Hence, if G has
loops, we can do the same but we need to modify the last two types of transitions into:

34

(aℓ, 01) → (0, 2a) and (aℓ, 11) → (1a, 2a).

An automaton similar to BInDeg≤d(X1,X2),k can be constructed for the property InDegd(X,Y)
meaning that every vertex in X is the head of exactly d edges with tail in Y . It suffices to replace
αG(X,Y)(a) by:

εG(X,Y)(a) := d if d = ∂G(x, Y) for all x in X ∩ π−1
G (a) 6= ∅,

:= ⊥ if X ∩ π−1
G (a) = ∅ (⊥ means ”undefined”),

:= ⊤ if ∂G(x, Y) 6= ∂G(y, Y) for some x, y in X ∩ π−1
G (a) (⊤ yields an error).

It is easy to modify BInDeg≤d(X1,X2),k accordingly. This idea can be used to construct the

automata BDeg2(X1,X2),k with 2O(k) states that are useful to check the perfectness of loop-free
undirected graphs (cf. Example 22).

Having cycles is an important property for which we give two constructions of automata.
This property is useful to express the notions of forests and trees.

5.2.7. Undirected cycles

We consider loop-free, undirected (simple) graphs. The property that a graph has cycles,
denoted by Cycle, is expressed by the sentence ∃X.P [X] where P expresses that the graph is
not empty and all its vertices have degree at least 2. If X is minimal for inclusion with this
property, then it is the vertex set of an induced cycle. The minimal cardinality of such a set,
called the girth of the graph, can thus be computed by finite automata solving optimization
problems (cf. Chapter 6 of [9]).

An easy adaptation of the construction of Section 5.2.6 yields a deterministic automaton AP,k

with 9k states, hence a deterministic automaton ACycle,k with 29
k
states. These automata are

intended to run on irredundant terms. By the remarks of Section 4.2.4, they can be transformed
into automata with same number of states intended to run on annotated terms.

The states of AP,k are the 4-tuples (A1, A2, D0, D1) of subsets of [k] such that A1 ∩ A2 = ∅
and D0 ∪D1 ⊆ A1 ∪A2. The characteristic property of (A1, A2, D0, D1) is :

P(A1,A2,D0,D1)(t) if and only if :

A1 is the set of port labels having a unique occurrence in cval(t),

A2 is the set of port labels having at least two occurrences (hence A1 ∪ A2 =
π(cval(t))),

D0 is the set of port labels of the isolated vertices,

D1 is the set of port labels of the degree 1 vertices.

The accepting states are those such that A1 ∪A2 6= ∅ and D0 ∪D1 = ∅. The transitions (for
processing an irredundant term) are easy to write from this description.

As for connectivity, if we want to verify the absence of cycles in graphs of degree at most d,
we can use use a smaller automaton with less than 24d·k

2
states12.

12Its construction is similar to that for connectedness (cf. Section 6.3) and is based on that of a deterministic

automaton for Cycle that has 33
k

states. We can send it to anybody interested.

35

5.2.8. Directed cycles

The automata for checking the existence of directed cycles are surprisingly smaller than those
for undirected cycles. The construction is similar to that for Paths in Section 5.2.5 and we will
use notation from it. We only consider loop-free graphs.

If G is directed, the notation x→+
Gy means that there is a directed path from x to y

with at least one edge. We may have x = y. If G has ports in C, we define: β+(G) :=
{(πG(x), πG(y)) |x→

+
Gy} ⊆ C × C. This function can be computed inductively on t such that

G = cval(t). If R is a binary relation on C, we let g(R, a, b) := (R∪{(a, a)})·{(a, b)}·(R∪{(b, b)}).

Lemma 31. For disjoint p-graphs G and H, we have:

(1) β+(G⊕H) = β+(G) ∪ β+(H).

(2) β+(adda,b(G)) =

{

g(β+(G), a, b) if a, b ∈ π(G),
β+(G) otherwise.

(3) β+(relabh(G)) = h(β+(G)).

(4) β+(a) = β+(∅) = ∅.

Proof. Similar to that of Lemma 29 in Section 5.2.5.

State q Property Pq(t)

(A,R) A = π(cval(t)), R = β+(cval(t))
and there is no directed cycle in cval(t)

Success there is a directed cycle in cval(t)

Table 13: Meaning of the states of ADirCycle,k

We now construct a deterministic automaton ADirCycle,k with set of states Q = {(A,R) |A ⊆
C,R ⊆ A × A} ∪ {Success}. The input terms need not be irredundant. There are less than
2k

2+k accessible states whose meaning is in Table 13. The sink Success is the unique accepting
state. In Table 14, all transitions not listed yield Success, and since we only consider loop-free
graphs, there is no transition for aℓ.

Transitions Conditions

∅ → (∅, ∅)
a → ({a}, ∅)

relabh[(A,R)] → (h(A), h(R))

adda,b[(A,R)] → Success (b, a) ∈ R

adda,b[(A,R)] → (A,R) a and b are not in A

adda,b[(A,R)] → g(R, a, b) otherwise

⊕[(A,R), (A′, R′)] → (A ∪A′, R ∪R′)

Table 14: The transitions of ADirCycle,k

The property DirCycle is expressed by the sentence ∃X [X 6= ∅ ∧Dom(X,X)]. From this
expression, we get a non-deterministic automaton with O(22k) states, and a deterministic one

with 2O(22k) states. Our direct construction is thus better.

36

6. Connectedness

Connectedness is an important graph property that is used in the expression of several other
properties such as minor inclusion (cf. Example 21) or being a tree. We present in detail
several constructions of automata for it. Connectedness does not depend on edge directions: we
construct F u

k -automata that can be adapted to directed graphs. (See the beginning of Section
5.2.5).

6.1. ”Large” deterministic automata.

We first observe that a graph is not connected if and only if it satisfies the property:

∃X (X 6= ∅ ∧X 6= ∅ ∧ ¬Link(X,X)).

Hence, the associated nondeterministic F u
k -automaton, constructed with the tools of Sections

4.2 and 5.2.3 has O(22k) states, which gives a (deterministic) automaton with 2O(22k) states. We
will do better by constructing a deterministic automaton F u

k -automaton AConn,k with less than

22
k
states.
We will use the following notions and notation. If E is a set, we denote by M(E) the set of

finite multisets of elements of E. We denote by P ⊎ P ′ the union of two multisets P and P ′, by
|P | the cardinality of P , so that |P ⊎ P ′| = |P |+ |P ′|. If P ⊆ Q, i.e., if Q = P ⊎P ′ for some P ′,
we denote this unique P ′ by Q− P . We let Set(P) ⊆ P be the set of elements of E having an
occurrence in P , hence, Set(P) = P if and only if P is a set. Finally, we define:

Set†(P) := if Set(P) = {d} and |P | ≥ 2 then {d, d} else Set(P).

For all multisets P and P ′ :

Set†(P ⊎ P ′) = Set†(Set†(P) ⊎ Set†(P ′)). (3)

Every mapping f : E → E′ extends into a mapping : M(E) → M(E′) and we have, for all
multisets P :

Set†(f(P)) = Set†(f(Set†(P))). (4)

We fix C. If G is a p-graph of type included in C, then CC(G) is its set of connected
components and πCC(G) is the multiset of the types π(H) for H ∈ CC(G). It is clear that G
is connected if and only if

∣

∣Set†(πCC(G))
∣

∣ ≤ 1 (the empty graph is connected, but a connected
component is defined as nonempty).

We define the support of a multiset M ∈ M(P(C)) as the set union of the sets forming M ,
hence as the set of elements of C having at least one occurrence in an element of M . We denote
it by Support(M). This set is empty if and only if M is empty or is {∅, ..., ∅}. It is clear that
Support(πCC(G)) = π(G) for G as above.

We now define the set of states Q := QAConn,k
of AConn,k as the set of multisets of the form

Set†(M) where M ∈ M(P+(C)) and P+(C) is the set of nonempty subsets of C := [k]. Their
characteristic property is, for N ∈ Q:

PN (t) if and only if N = Set†(πCC(cval(t))).

37

Examples of states are {{a, b}, {a, b}} and {{a}, {a, b}, {b, c, d, f}}, that we will denote re-
spectively by {ab, ab} and {a, ab, bcdf}. (We will do the same in the sequel in our examples:
we will replace sets and multisets of labels by words, where letters are ordered in the alpha-
betical order. The original notation will be kept in definitions and proofs.) The state {ab, ab}
corresponds to a graph cval(t) that has at least two connected components, all of type {a, b}.
The state {a, ab, bcdf} corresponds to a graph that has at least three connected components
including at least one of each type {a}, {a, b} and {b, c, d, f}, and none of other types.

The number of states is thus 2|P+(C)| + |P+(C)| = 22
k−1 + 2k − 1 < 22

k
. The accepting

states are ∅ and the singletons. We will detail the transitions and prove the correctness of the
construction.

For every term t in T (F u
k), we let r(t) := Set†(πCC(cval(t))). We will define AConn,k in

such a way that r(t) is the state reached at the root of t.

Lemma 32. The function r : T (Fk) → M(P(C)) is computable inductively.

Proof. We consider each operation of F u
k in turn.

Claim 32.1 : Set†(πCC(G1 ⊕G2)) = Set†(Set†(πCC(G1)) ⊎ Set†(πCC(G2))).

Proof. Follows from Equality (3) above because CC(G1 ⊕G2) = CC(G1)∪CC(G2)
and πCC(G1 ⊕G2) = πCC(G1) ⊎ πCC(G2).

By using this claim for a term t = t1 ⊕ t2 with G1 = cval(t)/u1 and G2 = cval(t)/u2 (where u1
and u2 are the two sons of the root of t), we get: r(t) = r(t1 ⊕ t2) = Set†(r(t1) ⊎ r(t2)).

Claim 32.2: Set†(πCC(relabh(G))) = Set†(h(Set†(πCC(G)))).

Proof. We have CC(relabh(G)) = {relabh(H) | H ∈ CC(G)} hence, πCC(relabh(G)) =
h(πCC(G)). The result follows from Equality (4) about Set†.

By applying this claim to G = cval(t1), we get r(relabh(t1)) = Set†(relabh(r(t1))).

For handling the operations adda,b, we define, for a, b ∈ C, a 6= b a mapping fa,b : M(P(C))
→ M(P(C)) by13:

fa,b(P) := P if a and b are not both in Support(P),

and otherwise:

fa,b(P) := P ′ ⊎ {Support(P − P ′)}

where P ′ is the multiset {α ∈ P | α ∩ {a, b} = ∅}. Note that fa,b(P) = {Support(P)} if each set
in P contains a or b (or both).

13We will also use this definition in the case where a = b in Section 6.4 below.

38

Claim 32.3: Set†(πCC(adda,b(G))) = fa,b(Set
†(πCC(G))).

Proof. If a and b are not both in Support(Set†(πCC(G))) = π(G), then adda,b(G) =
G and fa,b(Set

†(πCC(G))) = Set†(πCC(G)), so the result holds.

Otherwise, we enumerate CC(G) as {G1, ..., Gq} in such a way that π(Gi)∩{a, b} = ∅
for all i = 1, ..., p and π(Gi) ∩ {a, b} 6= ∅ for all i = p+ 1, ..., q. Then, since {a, b} ⊆
π(Gp+1)∪ ...∪ π(Gq), we have CC(adda,b(G)) = {G1, ..., Gp, H} where H consists of
Gp+1, ..., Gq linked by the edges added by adda,b. It follows that:

πCC(adda,b(G))={π(G1), ..., π(Gp)} ⊎ {π(Gp+1) ∪ ... ∪ π(Gq)}
=fa,b(πCC(G))

Hence, Set†(πCC(adda,b(G))) = Set†(fa,b(πCC(G))). We now want to prove that :

Set†(fa,b(πCC(G))) = fa,b(Set
†(πCC(G))),

but this follows from the observation that we have Set†(fa,b(P)) = fa,b(Set
†(P)) for

every P ∈ M(P(C)).

By applying this claim to G = cval(t1), we get r(adda,b(t1)) = fa,b(r(t1)), and this observa-
tion completes the proof of the lemma.

Here is an example illustrating the last claim. Let G be such that πCC(G) = {b, b, c, c, ab, ac,
ad, cd}. We have πCC(adda,b(G)) = {c, c, abcd, cd} and Set†(πCC(adda,b(G))) = {c, abcd, cd}.
On the other hand, Set†(πCC(G)) = {b, c, ab, ac, ad, cd} and fa,b(Set

†(πCC(G))) = {c, abcd, cd},
hence fa,b(Set

†(πCC(G))) = Set†(πCC(adda,b(G))) as stated by the claim.

The transitions are shown in Table 15.

Transitions Conditions

∅ → ∅
c → {{a}} c is a or aℓ

relabh[P] → N N = Set†(h(P))

adda,b[P] → N N = fa,b(P)

⊕[P1, P2] → N N = Set†(P1 ⊎ P2)

Table 15: The transitions of AConn,k

Remarks. 1. This automaton is not minimal. The states {ab, ac} and {ab, ac, bc} are equivalent
as one can check easily. Characterizing the corresponding minimal automaton is both difficult
and uninteresting, because of the next fact.

2. We know from [CouEng, Example 4.54.4] that there exists no automaton with less than

22
⌊k−1⌋/2

states that checks the connectivity of graphs of clique-width at most k (with k ≥ 3).
3. Let us define the size of a multiset of words P (here, words represent subsets of C) as

‖ P ‖:= |P | + Σα∈P |α|. Each letter has size 1. For example, the size of {∅, abc, ac, bcd} is

39

4+3+2+3 = 12, which is the length of a possible coding by the word {, abc, ac, bcd. We obtain
a notion of size for the states of AConn,k (another one, based on a different syntax will be given
in Example 42). Each state occurring in a run of this automaton on a term that defines a graph
with n vertices has a size bounded by min{2n, (k + 1) · 2k} : if P is such a state, its number of
elements (as a multiset) is at most min{n, 2k}; the total number of occurrences of letters in P
is at most n which gives the bound n+n; each set in P has at most k elements, which gives the
other bound 2k + k · 2k. This shows that, even if k = 30, these states are manageable whenever
n is not too large. This observation will be used in Section 7.

6.2. Using annotated terms

We now show that if the given term t is annotated by ADDt (cf. Definition 6(b)), then
the automaton can be made to run with states of smaller sizes, hence faster if it is used as a
fly-automaton (cf. Section 7) because the transitions will be easier to compute.

First a notation: if R is a set of unordered pairs of port labels, then we denote by fR the
composition (in any order) of the unary functions fa,b for all {a, b} ∈ R (cf. Claim 32.3).We now
observe that if the graph cval(t)/u (where t and u are as above) has two connected components of
respective types {a, b} and {a, c}, and furthermore {b, c} ∈ ADDt(u), then these two components
will be part of a unique one in cval(t). Hence, anticipating that, the automaton can replace
{a, b} and {a, c} by {a, b, c}.

Table 16 shows the transitions of a modified automaton of A′
Conn,k. The annotation is

used only at the occurrences of ⊕ (cf. in Section 5.1.2, the automaton for edg(X1, X2) for the
notation (⊕, R) that puts the annotation with the function symbol). It contains all the necessary
information regarding edge additions, hence, the transitions for adda,b are just identity.

Transitions Conditions

∅ → ∅
c → {{a}} c is a or aℓ

relabh[P] → N N = Set†(h(P))

adda,b[P] → P

(⊕, R)[P1, P2] → N N = fR(Set
†(P1 ⊎ P2))

Table 16: The transitions of A′
Conn,k

The states of A′
Conn,k are the same as those of AConn,k. If we let r denote the run of AConn,k

on a term t, and r′ denote the run of A′
Conn,k on the annotated term (t, ADDt). We have

‖ r′(u) ‖≤‖ r(u) ‖ for every u in Pos(t) (cf. the end of the previous section for the size ‖ P ‖ of
a state P).

6.3. Graphs of degree at most d

We now define an automaton smaller than AConn,k for verifying the connectedness of graphs
that we know to be of degree at most d: we replace Q by the set Qd of states N in Q such that
each label of C belongs to at most d sets of N . The accepting states are the singletons and the
empty set, as in AConn,k. We denote this automaton by A≤d

Conn,k.

40

Here is the idea. If a port label a of a p-graph G belongs to d′ sets in Set†(πCC(G)) and
d′ > d, this means that there are a-ports in at least d′ connected components of G. If adda,b is
applied to G and πG(x) = b, then x has degree at least d′ in adda,b(G). If such a p-graph G is
defined as cval(t)/u for a term t such that cval(t) has degree at most d, then no edge addition
on the path in t between the root and u can create edges between a vertex x and one in π−1

G (a)
(because otherwise, this operation would create at least d′ edges incident with x, and this vertex
would have in cval(t) a degree larger than d). So the state at u for an automaton like AConn,k

running on t need not store the label a any longer. This label is somehow ”dead”. Hence, we can
delete a from Set†(πCC(G)) and then, we apply Set† again to remove the double occurrences
of elements that may have been created.

Formally, if N ∈ M(P(C)), we define Trimd(N) by removing from all the sets forming N
every label that occurs in more than d elements of N . Here is an example with d = 2. Let
N = {a, b, ab, ac, adef, bcg, def}. The mapping Trim2 removes a and b, so that Trim2(N) =
{∅, ∅, ∅, c, cg, def, def} and by removing duplicates, we get Set†(Trim2(N)) = {∅, c, cg, def}.

We define the set of states of A≤d
Conn,k as Qd, the set of multisets in M(P(C)) of the form

Set†(Trimd(N)) for N in M(P+(C)). Table 17 shows the transitions (to be compared with those
of Table 15). (We can also add an Error state that replaces every state N such that ∅ ∈ N and
|N | ≥ 2. Some terms are thus rejected faster. We cannot detail all possible optimizations.)

Transitions Conditions

∅ → ∅
c → {{a}} c is a or aℓ

relabh[P] → N N = Set†(Trimd(h(P)))

adda,b[P] → N N = fa,b(P)

⊕[P1, P2] → N N = Set†(Trimd(P1 ⊎ P2))

Table 17: The transitions of A≤d
Conn,k

Each multiset P in Qd has at most kd elements belonging to P(C). Hence, |Qd| ≤ 2d·k
2
. We

will prove that:
L(AConn,k) ∩ LDeg≤d,k ⊆ L(A≤d

Conn,k) ⊆ L(AConn,k) (5)

where Deg ≤ d is the property that a graph has maximal degree at most d. The automaton
A≤d

Conn,k may reject a term that defines a connected graph of maximal degree larger than d. It
does not check whether G has maximal degree at most d.

Let us give an example with d = 3. Let t := adda,c(a⊕ s) where

s := adda,b(a⊕ b)⊕ adda,c(a⊕ c)⊕ adda,b(a⊕addb,c(b⊕ c)).

The term a⊕ s defines the graph :

a a− b a− c a− b− c

and t defines a connected graph of maximal degree 5 (where the two c-ports are adjacent to four
a-ports). The runs of AConn,k and A≤d

Conn,k on the term s yield the same state : {ab, ac, abc}. On

41

the term a⊕ s, the automaton AConn,k yields {a, ab, ac, abc} while A≤d
Conn,k removes a and yields

{∅, b, c, bc}. Hence t is rejected by A≤d
Conn,k because we have a state of the form {∅, ...}. Since the

label a has been removed from the state, the operation adda,c applied to a ⊕ s is ”considered”
by the automaton has having no effect although it makes cval(t) connected.

For proving the correctness, we define a variant of p-graphs.

Definition 33. p∗-graphs
(a) A p*-graph G is a p-graph, some vertices of which may have no port label. In other

words, πG is a partial function : VG → C. Every p-graph is a p*-graph. So is every graph,
without using a default port label (cf. Definition 3, Section 2.1). Without being empty, it has
an empty type. The operations ⊕, adda,b and relabh (Definition 4) extend to p*-graphs in the
obvious way.

(b) Let B ⊆ C. We define delB(G) as the p*-graph obtained by deleting all labels belonging
to B. In particular, G◦ = delC(G).

For a multiset N ∈ M(P(C)), we define DelB(N) as the multiset in M(P(C −B)) obtained
by removing from the sets forming N every label of B. For every p*-graph G, we have :

DelB(πCC(G)) = πCC(delB(G)). (6)

(c) If G and H are p*-graphs, we say that G is a sub-p*-graph of H, written G ⊆ H, if
G◦ ⊆ H◦ and π−1

G (a) ⊆ π−1
H (a) for every a ∈ C. In particular, π(G) ⊆ π(H).

Lemma 34. Let t ∈ T (F u
k).

(1) If t ∈ L(A≤d
Conn,k), then cval(t) is connected.

(2) If t defines a connected graph of maximal degree at most d, then t ∈ L(A≤d
Conn,k).

Proof. The proof will use two claims. Let t ∈ T (F u
k), r be the run of AConn,k and r′ be the run

of A≤d
Conn,k on t. We will use r′ to define a p*-graph G with vertex set Vcval(t). We will define it

as G(roott) where, for every node u of t, G(u) is a p*-graph with vertex set Vcval(t)/u such that
G(u) ⊆ cval(t)/u. We define G(u) by bottom-up induction on u:

If u is a leaf, then G(u) := cval(t)/u. Note that VG(u) = {u}.

If u is an occurrence of adda,b with son u1, then G(u) := adda,b(G(u1)).

If u is an occurrence of relabh with son u1, then G(u) := delB(relabh(G(u1))) where
B is the set of labels that occur in more than d elements of the multiset h(r′(u1))
(see an example below).

If u is an occurrence of ⊕ with sons u1 and u2, then G(u) := delB(G(u1) ⊕ G(u2))
where B is the set of labels that occur in more than d elements of the multiset
r′(u1) ⊎ r′(u2) (see an example below).

Here are the examples. Let d = 3, let u be an occurrence of relabh with son u1 such that h
relabels a into b; assume that r′(u1) = {ac, bd, abc, bcd}. Then h(r′(u1)) = {bc, bc, bd, bcd}, and
since b belongs to four sets in h(r′(u1)), it must be deleted. We get r′(u) = Set†({c, c, d, cd}) =
{c, d, cd}. Let us now assume that u is an occurrence of ⊕ with sons u1 and u2, that r

′(u1) is as

42

above and that r′(u2) = {ac, acd}. Then r′(u1)⊎ r′(u2) = {ac, ac, bd, abc, acd, bcd} and we must
delete a and c, so that r′(u) = Set†({∅, ∅, b, d, bd, bd}) = {∅, b, d, bd}.

We prove two claims showing the meaning of G(u).

Claim 34.1:
For every t ∈ T (F u

k) and u ∈ Pos(t), we have r′(u) = Set†(πCC(G(u))).

Proof. By bottom-up induction on u. The fact is clear if u is a leaf.

Let u be an occurrence of adda,b with son u1. Then,

r′(u) = fa,b(r
′(u1))

= fa,b(Set
†(πCC(G(u1)))) (by induction),

= Set†(πCC(adda,b(G(u1)))) (by Claim 31.3)

= Set†(πCC(G(u))) (by the definition of G(u).

Let now u be an occurrence of ⊕ with sons u1 and u2. We have :

r′(u) = Set†(Trimd(r
′(u1) ⊎ r′(u2)))

= Set†(DelB(r
′(u1)⊎ r′(u2))) where B is the set of labels a that occur in more than

d elements of r′(u1) ⊎ r′(u2),

= Set†(DelB(Set
†(πCC(G(u1))) ⊎ Set†(πCC(G(u2))))) (by induction),

= Set†(DelB(πCC(G(u1)) ⊎ πCC(G(u2)))) as we can check easily14

= Set†(DelB(πCC(G(u1)⊕G(u2))))

= Set†(πCC(delB(G(u1)⊕G(u2)))) (by Equality (6)),

= Set†(πCC(G(u))) (by the definition of G(u)).

If u is an occurrence of relabh, the proof is similar, by using the fact that, for every
multiset M , set B and mapping h we have:

Set†(DelB(h(Set
†(M)))) = Set†(DelB(h(M))).

Claim 34.2: For every t ∈ T (F u
k) and u ∈ Pos(t):

(i) G(u) ⊆ cval(t)/u and these two p*-graphs have the same vertex set.

(ii) For every a ∈ C, if 0 6=
∣

∣

∣
π−1
cval(t)/u(a)

∣

∣

∣
≤ d, then π−1

cval(t)/u(a) = π−1
G(u)(a).

Furthermore, if cval(t) has maximum degree at most d, then:

(iii) G(u)◦ = (cval(t)/u)◦.

14Using the fact that, for every two multisetsM andN and every set B, we have Set†(DelB(Set
†(M)⊎Set†(N)))

= Set†(DelB(M ⊎N)).

43

Proof. For fixed t, we use bottom-up induction on u.

(i) This is clear from the definition of G(u) and cval(t)/u. (Because of the removal
of certain port labels, some edges created in cval(t) by the operations adda,b are no
longer created in G(u).)

(ii) Let 0 6=
∣

∣

∣
π−1
cval(t)/u(a)

∣

∣

∣
≤ d. We distinguish several cases.

(a) If u is a leaf, then G(u) = cval(t)/u, hence π−1
cval(t)/u(a) = π−1

G(u)(a) = {u}.

(b) If u is an occurrence of addb,c with son u1, then
∣

∣

∣
π−1
cval(t)/u1

(a)
∣

∣

∣
=

∣

∣

∣
π−1
cval(t)/u(a)

∣

∣

∣

≤ d, hence π−1
cval(t)/u1

(a) = π−1
G(u1)

(a). We get the desired equality because G(u) =

addb,c(G(u1)).

(c) If u is an occurrence of ⊕ with sons u1 and u2, then π−1
cval(t)/u(a) is the union

of the disjoint sets π−1
cval(t)/u1

(a) and π−1
cval(t)/u2

(a), hence d1 + d2 ≤ d where di :=
∣

∣

∣
π−1
cval(t)/ui

(a)
∣

∣

∣
for i = 1, 2. By induction, every a-port of cval(t)/ui is also one of

G(ui). The number of elements of Set†(πCC(G(ui))) that contain a is at most
∣

∣

∣
π−1
G(ui)

(a)
∣

∣

∣
= di. It follows that at most d elements of r′(u1) ⊎ r′(u2) which is equal

to Set†(πCC(G(u1))) ⊎ Set†(πCC(G(u2))), (this equality follows from Claim 33.1)
contain a. Hence a is still in π(G(u)). We have thus π−1

cval(t)/u(a) ⊆ π−1
G(u)(a) and the

equality by (i).

(d) If u is an occurrence of relabh with son u1, we let {b1, ..., bp} enumerate the set
h−1(a) ∩ π(cval(t)/u1). Hence :

π−1
cval(t)/u(a) = π−1

cval(t)/u1
(b1) ∪ ... ∪ π−1

cval(t)/u1
(bp).

The sets of this union are disjoint, hence d1+ ...+dp ≤ d where di :=
∣

∣

∣
π−1
cval(t)/u1

(bi)
∣

∣

∣
.

By induction π−1
cval(t)/u1

(bi) = π−1
G(u1)

(bi) for each i. The number qi of elements

of Set†(πCC(G(u1))) that contain bi is at most di. The number of elements of
h(Set†(πCC(G(u1)))) = h(r′(u1)) (by Claim 33.1) that contain a is at most q1 +
...+qp hence, at most d, and a is in π(G(u)). We have π−1

cval(t)/u(a) ⊆ π−1
G(u)(a), hence

the equality by (i).

(iii) Assume now that cval(t) has maximum degree at most d. Let x−y be an edge of
cval(t)/u. It is created by an operation adda,b at some occurrence w above the leaves
x and y and below or equal to u. Since t defines a graph of degree at most d, we have

0 6=
∣

∣

∣
π−1
cval(t)/w(a)

∣

∣

∣
≤ d and 0 6=

∣

∣

∣
π−1
cval(t)/w(b)

∣

∣

∣
≤ d. Hence by (ii), letting w1 be the

son of w, we have πG(w)(x) = πG(w1)(x) = a and πG(w)(y) = πG(w1)(y) = b, so this
edge is also created in G(w) hence is an edge of G(u). We have (cval(t)/u)◦ ⊆ G(u)◦

and the desired equality by (i).

We now prove the lemma.

44

(1) If t is accepted by A≤d
Conn,k, then r(roott) is empty or singleton, hence, by Claim 33.1,

G = G(roott) is connected. Since, by (i) of Claim 33.2, G◦ is a spanning subgraph of cval(t)◦,
the p-graph cval(t) is connected.

(2) Conversely, let t ∈ T (F u
k) define a connected graph of maximal degree d. Then, by (iii),

G◦ = cval(t)◦ is connected. By Claim 33.1, |r′(roott)| =
∣

∣Set†(πCC(G))
∣

∣ hence,
∣

∣Set†(πCC(G))
∣

∣ ≤ 1 and t is accepted by A≤d
Conn,k.

This lemma establishes the inclusions (5) and the correctness of the construction. Annotated
terms can also be used as in 6.1. With the same definitions and notation as at the end of Section
6.1, we can evaluate the maximal size of a state as min{2n, (k + 1) · k · d}.

6.4. ”Small” nondeterministic automata

In Section 6.1, we have constructed deterministic F u
k -automata for connectedness and non-

connectedness with less than 22
k
states, and shown the existence of a nondeterministic automaton

for nonconnectedness with O(22k) states. Here, we construct a nondeterministic automaton for
connectedness with 2O(k log(k)) states. This is interesting for testing minor inclusion (cf. Example
21, Section 4.1). The sentence of Example 21 yields (by means of Corollary 28) a nondetermin-
istic automaton with 2O(k log(k)) states, whereas, the construction derived from the sentence of
Section 6.1 yields a much larger automaton.

We will use the annotation ADDt of Definition 6(b)15 (in Section 2.3) together with another
one, denoted by π′. In a few words, ADDt describes edges (and we used it already in Section
6.2 to accelerate computations) whereas π′ describes similarly paths of length 2. The major
difference is that ADDt(u) depends only on the operation symbols above u in t, whereas π′(u)
depends in a more complicated way on the symbols of the context of u in t. This explains why
we need nondeterminism.

Definition 35. The annotation π′

Let t ∈ T (F u
k). For u ∈ Pos(t), we define π(u) := π(cval(t)/u) and π′(u) as the set of port

labels a in π(u) such that (a, u) →+
t (b, w1) →t (b, w) where w is an occurrence of addb,c or addc,b

such that cval(t)/w1 has a c-port x that is not in cval(t)/u (cf. Definition 6(b) for the relation
→t). Hence, a ∈ π′(u) if and only if the operations of the context of u in t create edges between
all a-ports of cval(t)/u and at least one vertex not in cval(t)/u. In other words, any two vertices
of cval(t)/u with same port label belonging to π′(u) are linked in cval(t) by a path of length 2.
Our use of π′ will be based on the fact that, if cval(t)/u has connected components whose types
α1, ..., αp contain all some a ∈ π′(u), then these components are included in a single connected
component of cval(t). Hence, we can anticipate and merge α1, ..., αp into a single set at node u
during a bottom-up computation on t. We have used ADDt in Section 6.2 in a similar way.

If R ⊆ P2(C) and A ⊆ C, we define R ◦ A as the set {a ∈ C | {a, b} ∈ R for some
b ∈ A}. The mapping π′ satisfies the following conditions which offer the possibility of a top-
down computation of π′ using π : Pos(t) → P(C) that can be computed during a previous

15We recall that for t ∈ T (F u
k), ADDt(u) is a subset of P2(C), the set of 2-element subsets of C := [k].

45

bottom-up traversal (cf. Section 5.2.1) and ADDt : Pos(t) → P2(C) that can be computed
top-down (Definition 6(b)) simultaneously with π′:

π′(roott) = ∅. (7a)

If u is an occurrence of ⊕ with sons u1 and u2, then

π′(u1) = π(u1) ∩ (π′(u) ∪ADDt(u) ◦ π(u2)) (7b)

and

π′(u2) = π(u2) ∩ (π′(u) ∪ADDt(u) ◦ π(u1)). (7c)

If u is an occurrence of relabh with son u1, then

π′(u1) = π(u1) ∩ h−1(π′(u)). (7d)

If u is an occurrence of adda,b with son u1, then

π′(u1) = π′(u). (7e)

Furthermore, if u is an occurrence of ⊕ with sons u1 and u2, we also have:

π′(u1) = π(u1) ∩ (π′(u) ∪ADDt(u) ◦ π
′(u2)), (8a)

π′(u2) = π(u2) ∩ (π′(u) ∪ADDt(u) ◦ π
′(u1)), (8b)

π′(u) ⊆ π′(u1) ∪ π′(u2). (8c)

These facts are easy to check from the definitions and Equalities (7b) and (7c). We illustrate
them with the term t of Figure 2. Some of its positions are designated by w,w1, · · · , w7. The
bottom-up computation of π yields :

π(w5) = {a, c, d}, π(w6) = {b, e}, π(w7) = {d},
π(w4) = {a, b, c, d, e} = π(w3) = π(w2) = π(w1) = π(w).

The top-down computation of ADDt yields :
ADDt(w) = ∅, ADDt(w1) = {{c, d}} = ADDt(w2),
ADDt(w3) = {{a, b}, {c, d}},
ADDt(w4) = {{a, b}, {c, d}, {c, e}} = ADDt(w5) = ADDt(w6).

The top-down computation of π′ yields :
π′(w) = ∅ = π′(w1).
Equalities (7b) and (7c) give respectively (since π′(w1) = ∅) :
π′(w2) = {a, b, c, d, e} ∩ ({{c, d}} ◦ {d}) = {c}, and
π′(w7) = {d} ∩ ({{c, d}} ◦ {a, b, c, d, e}) = {d}.
Equality (8a) holds because π′(w7) = π(w7) and Equality (8b) because π′(w2) = {c} and we

have :
π′(w7) = {d} ∩ ({{c, d}} ◦ {c}) = {d}.
Inequality (8c) holds since π′(w) = ∅.
We have :
π′(w3) = π′(w2) = π′(w4).
Again by (7b) and (7c) we have:

46

Figure 2: A term t.

π′(w5) = {a, c, d} ∩ ({c} ∪ {{a, b}, {c, d}, {c, e}} ◦ {b, e}) = {a, c}, and
π′(w6) = {b, e} ∩ ({c} ∪ {{a, b}, {c, d}, {c, e}} ◦ {a, c, d}) = {b, e}.
It is easy to verify that Properties (8a), (8b) and (8c) also hold.

Informal presentation

We can construct a deterministic (bottom-up) automaton for checking the connectedness16

of a graph given by a term annotated by ADDt and π′, but we cannot apply Lemma 15 to
get from this automaton another one to check Conn[X1] (the connectedness of the induced
subgraph with vertex set X1) because this lemma is based on a transformation of terms that
replaces some nullary symbols specifying vertices by the symbol ∅ whose value is the empty
graph. If a term t is transformed in this way into t′, the annotation ADDt′ is the same as
ADDt, but the annotation π′ for t′ is not the same as the corresponding one for t because it
depends on the nullary symbols. Hence, we will not use π′ as a ”fixed annotation” like ADDt.
We will compute it ”in the states of the automaton” as we can do for π (cf. Section 5.2.1) (that
also depends on the nullary symbols). A difficulty comes from the fact that π′ is computable
deterministically in a top-down way (by using ADDt and π) whereas we want a bottom-up
automaton. To handle this, we will construct a non-deterministic bottom-up automaton that
will guess for each u a possible value of π′(u) and check simultaneously the consistency of the

16There are simpler linear-time algorithms for doing that. Our objective is not to check the global connectedness
of a graph, but rather, the connectedness of its induced subgraphs, cf. Example 21.

47

guessed value with the previously guessed values. The correctness of all the guesses made during
a run will be ascertained if the state reached at the root is accepting.

Non-deterministic computation of π′

We first define a complete non-deterministic automaton Bk intended to compute π′ on terms
t ∈ T (F u

k) annotated by ADDt. Its states are the pairs (A,B) such that B ⊆ A ⊆ C (:= [k],
as usual). That a state (A,B) is reached at a node u means that A = π(u) and that B is a
potential value of π′(u). The transitions are in Table 18. As in Section 5.1.2, the annotation
ADDt is only used for the transitions relative to ⊕ (cf. Table 5 for the notation (⊕, R)). The
accepting states are (A, ∅) for all A ⊆ C. The transitions implement the characterization of π′

by Properties (7a)-(7e) so that Bk has a unique accepting run on each term t. The transitions
for (⊕, R) also use Property (8c) in order to narrow a priori the set of possible sets B′, hence
to limit the degree of nondeterminism.

This automaton is non-ambiguous: on each accepted term t, it has a unique accepting run.
The unique possible accepting root state is (π(cval(t)), ∅); the transitions yield the top-down
computation of π′ and at each position u, the state is (π(u), π′(u)).

Transitions Conditions

∅ → (∅, ∅)
c → {{a}, B} c∈ {a,aℓ} and, either B = ∅ or B = {a}

relabh[(A,B)] → (A′, B′) A′ = h(A), B′ ⊆ A′, B = A ∩ h−1(B′)

adda,b[(A,B)] → (A,B)

A′ = A1 ∪A2, B
′ ⊆ B1 ∪B2

(⊕, R)[(A1, B1), (A2, B2)] → (A′, B′) B1 = A1 ∩ (B′ ∪ (R ◦A2))
B2 = A2 ∩ (B′ ∪ (R ◦A1))

Table 18: The transitions of Bk

The non-deterministic automaton Ck for connectedness

We will construct Ck by ”enriching” Bk. Its states are the triples (A,B,Π) such that B ⊆
A ⊆ C, Π is a partition in nonempty sets of B if B is not empty and is {∅} or ∅ if B = ∅.
(We could remove B from these triples because it can be determined from Π but the description
is more clear in this way). We denote by Q this set of states (for fixed k). Its cardinality is
bounded by 2k.B(k) where B(k) is the number of partitions in nonempty sets of [k]. We have
B(k) ≤ k! if k ≥ 8, hence, |Q| = 2O(k log(k)). (B(k) is a Bell number, see Wikipedia or any
textbook in Combinatorics). In order to describe the meaning of a state (A,B,Π) at node u in
t and to define the transitions of Ck, we need more technical definitions.

Definition 36. More operations on multisets and on p*-graphs.
(a) For each a ∈ C, we define fa : M(P(C)) → M(P(C)) as the mapping17 such that :

fa(P) := P ′ ⊎ {Support(P − P ′)} where P ′ is the multiset {α ∈ P | a /∈ α}.

17In Claim 32.3, Section 6.1, we defined a similar mapping fa,b.

48

If a /∈ Support(P), then P ′ = P and fa(P) := P . If a belongs to each set of P , then P ′ = ∅
and fa(P) = {Support(P)}.

If B ⊆ C, we define fB as the composition in any order of the mappings fa for a ∈ B (the
resulting mapping does not depend on the order of composition).

(b) If G is a p*-graph and B ⊆ C, we let addB(G) be G augmented with edges between
every two distinct vertices x and y such that π(x) = π(y) ∈ B (an edge is added between x and
y only if there does not already exist one). We will use the following obvious fact :

πCC(addB(G)) = fB(πCC(G)), for B ⊆ C18 (9)

(c) For a term t ∈ T (F u
k) and u ∈ Pos(t), we define

Hu := delC−π′(u)(addπ′(u)(addADDt(u)(cval(t)/u))), and

Πu := πCC(Hu).

The p*-graph Hu is obtained from cval(t)/u in three steps :
1) by adding the edges that are created by the context of u in t, hence, that are in cval(t)

but not in cval(t)/u;
2) by adding an edge between any vertices x and y 6= x (unless there exists one already)

such that πcval(t)/u(x) = πcval(t)/u(y) ∈ π′(u): in cval(t) such vertices x and y are linked by a
path of length 2, hence are in the same connected component; the vertex sets of the connected
components of cval(t) and Hroott are the same.

3) Finally, the port labels not in π′(u) are removed.

The multiset Πu is obtained from πCC(cval(t)/u) by merging any two sets containing, one
a label a and the other a label b such that {a, b} ∈ ADDt(u), then by merging any two sets
containing a same label from π′(u) (by (9)) and finally by removing the port labels not in π′(u).
It is a partition of π′(u) if this set is not empty. We also have, Πroott := DelC(πCC(cval(t))),
hence this multiset is empty if cval(t) is the empty graph, and it consists of n times ∅ if cval(t)
has n connected components.

Lemma 37. For every term t ∈ T (F u
k) the following are equivalent:

(i) cval(t) is connected,

(ii) Πroott is empty or {∅},

(iii) for every u ∈ Pos(t), if ∅ ∈ Πu, then Πu = {∅}.

Proof. The equivalence of (i) and (ii) and the implication (iii) =⇒ (ii) are clear from the previous
remarks (the empty graph is connected). We prove (i) =⇒ (iii) by contradiction. If some
multiset Πu contains ∅ and another set, then the p-graph cval(t)/u has at least two connected
components, one of which, say H, is such that π(H) ∩ π′(u) = ∅. This implies that there is no

18This equality also holds for B ⊆ P2(C): addB is defined in the proof of Proposition 9 and we define fB as
the composition of the mappings fa,b for {a, b} in B.

49

edge in cval(t) that links a vertex of H and one not in Vcval(t)/u. Hence, H is also a connected
component of cval(t). Hence cval(t) is not connected.

Lemma 38. On every term t ∈ T (F u
k) annotated by (ADDt(u), π(u), π

′(u)) at each node u, the
mapping u 7→ Πu is computable bottom-up.

Proof. If u is an occurrence of ∅, then Πu = ∅.
If u is an occurrence of a or aℓ, then Πu is {∅} if π′(u) = ∅ and it is {{a}} if π′(u) = {a}.
If u is an occurrence of adda,b with son u1, then addADDt(u)(cval(t)/u) = addADDt(u1)(cval(t)/u1),

π′(u) = π′(u1) (by Property (7e)), and so Πu = Πu1 .
If u is an occurrence of relabh with son u1, then we have

Claim 38.1: Πu = fπ′(u)(h(Πu1)).

Proof. By the definitions, Hu is obtained from h(Hu1) by adding an edge x − y
whenever x is an a-port and y is a b-port of Hu1 such that a 6= b and h(a) =
h(b) (so that h(a) ∈ π′(u)). Consider two connected components A and B of Hu1 .
Their types α and β belong to Πu1 = πCC(Hu1), are included in π′(u1) and are
disjoint. Clearly, A and B are connected components of relabh(Hu1) of respective
types h(α) and h(β) included in π′(u). If h(α) ∩ h(β) 6= ∅, then A and B are
linked in Hu by an edge created by addπ′(u) applied to addADDt(u)(cval(t)/u) =
relabh(addADDt(u1)(cval(t)/u1)) and h(α) and h(β) get merged in Πu = πCC(Hu).
The multiset Πu is obtained from h(Πu1) by such merges. It follows that Πu =
fπ′(u)(h(Πu1)).

The last case to consider is when u is an occurrence of ⊕ with sons u1 and u2.

Claim 38.2: Πu = DelC−π′(u)(fπ′(u)(fADDt(u)(Πu1 ⊎Πu2))).

Proof. By the definitions, we have Πu = πCC(Hu) where

Hu = delC−π′(u)(addπ′(u)(addADDt(u)(cval(t)/u1 ⊕ cval(t)/u2))). We define

K := delC−π′(u)(addπ′(u)(addADDt(u)(Hu1 ⊕Hu2))) and we compare it to Hu.

It is clear that Hu and K have the same vertices. Their vertices have the same port
labels: every a-port of K is an a-port of Hu. Conversely, let x be an a-port of Hu.
Then a ∈ π′(u) ∩ π(ui) ⊆ π′(ui) (i = 1, 2, by 7b, 7c), hence x is an a-port of Hui ,
hence of K.

We now compare their edges, and prove first that every edge of Hu is in K. Let
x− y be an edge of Hu. If it is an edge of cval(t)/ui, it is one of Hui , hence of K. If
it is added to cval(t)/ui by addADDt(u), then it is in Hui , hence in K. If it is added
to cval(t)/ui by addπ′(u), then x and y have a same port label a ∈ π′(ui) (by the
previous argument), hence, it is in Hui , whence in K.

Assume now that x is in cval(t)/u1 with label a and y is in cval(t)/u2 with label b.
If x − y is created by addADDt(u), then a ∈ π′(u1) and b ∈ π′(u2) by the definition

50

of π′. Hence, x and y have the same respective labels in Hu1 and in Hu2 and the
edge is also created in K by the same operation. If x− y is created by addπ′(u), then
a = b, and we have a ∈ π′(u1) ∩ π′(u2), hence x and y are a-ports of Hu1 and Hu2 ,
and the edge is also created in K by addπ′(u).

Conversely, consider an edge x− y of K. It is an edge of Hu, except possibly if it is
an edge of Hui not in cval(t)/ui. Assume this with i = 1. If this edge is added to
cval(t)/u1 by addADDt(u1), then it is also added to cval(t)/u1 (in Hu) by addADDt(u),
because ADDt(u1) = ADDt(u) (by Definition 6 in Section 2.3). If it is added to
cval(t)/u1 by addπ′(u1), then, either it is added to cval(t)/u1 inHu by addπ′(u), or not.
The latter case happens if x and y are a-ports of cval(t)/u1 with a in π′(u1)−π′(u).
In this case, there is in cval(t)/u2 a b-port such that {a, b} ∈ ADDt(u) (by (8a)).
Hence, the operation addADDt(u) creates in Hu two edges x− z and y− z. These two
edges form a path in Hu linking x and y.

This analysis shows that the p*-graphs Hu and K do not have exactly the same
edges (because of the very last subcase) but that the vertex sets of their connected
components are the same. Since the port labels are the same, we have πCC(Hu) =
πCC(K). Hence, we have :

Πu = πCC(Hu) = πCC(K)

= πCC(delC−π′(u)(addπ′(u)(addADDt(u)(Hu1 ⊕Hu2))),

= DelC−π′(u)(fπ′(u)(πCC(addADDt(u)(Hu1 ⊕Hu2)))) (by (6), Definition 33 and (9),
Definition 36(b))

= DelC−π′(u)(fπ′(u)(fADDt(u)(πCC(Hu1) ⊎ πCC(Hu2)))) (by (9))

= DelC−π′(u)(fπ′(u)(fADDt(u)(Πu1 ⊎Πu2))) as was to be proved.

This concludes the proof of the claim and that of the lemma.

Finally, the transitions of Ck

We let Ck be the non-deterministic automaton with set of states Q, transitions defined by
Table 19 and accepting states of the form (A, ∅, ∅) or (A, ∅, {∅}). The conditions about (A,B)
in Table 19 are the same as in Table 18.

Proposition 39. For every term t in T (Fk) annotated by ADDt:
(1) if r is an accepting run of Ck, then for every node u, if (A,B,Π) = r(u), we have:

i) A = π(u),

ii) B = π′(u),

iii) Π = Πu and, if ∅ ∈ Πu then Πu = {∅},

iv) cval(t) is connected.

(2) Conversely, if cval(t) is connected, then Ck has a unique accepting run on t.

51

Transitions Conditions

∅ → (∅, ∅, ∅)
c → ({a}, B,Π) c∈ {a,aℓ}, B = ∅ and Π = {∅},

or B = {a} and Π = {{a}}.

A′ = h(A), B′ ⊆ A′,
relabh[(A,B,Π)] → (A′, B′,Π′) B = A ∩ h−1(B′),

Π′ = fB′(h(Π)),
if ∅ ∈ Π′ then Π′ = {∅}.

adda,b[(A,B,Π)] → (A,B,Π)

A = A1 ∪A2, B ⊆ B1 ∪B2

B1 = A1 ∩ (B ∪ (R ◦A2)),
(⊕, R)[(A1, B1,Π1), (A2, B2,Π2)] → (A,B,Π) B2 = A2 ∩ (B ∪ (R ◦A1)),

Π = gB(fR(Π1 ⊎Π2)),
if ∅ ∈ Π then Π = {∅}.

Table 19: The transitions of Ck

Proof. (1) Let r be an accepting run of Ck on t. The first two components of each state define
the unique accepting run of Bk. This fact implies the equalities i) and ii) for each u.

We now prove iii) by bottom-up induction on u. This is actually a consequence of the facts
proved in Lemma 38. Since r is defined as accepting, the conditions that Π = {∅} if ∅ ∈ Π
(cf. Table 19) is satisfied for each Π in an accessible state (A,B,Π). Hence, Condition (ii) of
Lemma 37 holds and cval(t) is connected by this lemma.

(2) By Lemma 37, if cval(t) is connected and u is a position in t, then Πu = {∅} if ∅ ∈ Πu.
It follows that the mapping r : Pos(t) → Q such that r(u) := (π(u), π′(u),Πu) is an accepting
run of Ck on t.

This proposition establishes the correctness of the construction of Ck.
The maximal size of a state is 2min{n, k} for an appropriate encoding similar to that of

Section 6.1. This is not much but remember that this automaton is non-deterministic.

7. Fly automata

Table 20 collects results of Sections 5-6 and shows an upper-bound to the number of states
N(k, P) of the constructed automaton for Property P . These values come from constructions of
complete and deterministic automata that are not necessarily minimal. The mark (*) indicates
that the automata must take irredundant terms as input. The use of Θ indicates that we know a
lower bound for the minimal automaton. Nann(k, P) and Nndet(k, P) are the numbers of states
of a deterministic and, respectively, a nondeterministic automaton on annotated terms. The
large number of states in many cases motivates the introduction of fly-automata.

A fly-automaton is an automaton whose transitions are defined by computable functions.
Each time a transition is needed, it is computed. To take an example, the automaton AConn,4

of Section 6.1 has more than 215 states. Its transitions described in Table 15 in a concise way

52

Property P N(k, P) Nann(k, P) Nndet(k, P)

edg(X1, X2) k2 + k + 3 2k + 3

St 2k + 1
Link(X1, X2) 22k + 1
Dom(X1, X2) 22k + 1

InDeg≤d(X1, X2) < 22k log(d+2) (*)

Path(X1, X2) < 2k
2+2k

DirCycle < 2k
2+k O(22k

Clique < 2k
2+k, 2Θ(k2) 2k + 1

ConnIfDegd < 2d·k
2

Conn 22
Θ(k)

2O(k log(k))

¬Conn 22
Θ(k)

O(22k)

Cycle 29
k
(*)

Table 20: Some basic graph properties

can be expressed by programs but cannot be stored in a table. However, for checking a term of
size 100, only 100 transitions need to be fired. They can be computed on the fly.

Since we need not list its states and transitions, a fly-automaton can be infinite. For example,
the automata AConn,k for all values of k can be merged into a single infinite automaton. This
infinite fly-automaton can run on any term in T (F u

∞) where F u
∞ is the union of all signatures

F u
k . Hence,we need not use a particular automaton AConn,k for each k.

7.1. Definitions and general properties

Definition 40. Fly-automaton
An F -automaton A = 〈F,QA, δA,AccA〉 is a fly-automaton (a fly-F-automaton if F must be

specified) if it satisfies the following conditions:
(a) The signature F is finite or countably infinite. In the latter case, F must be effectively

given, that is, defined with a bijection to a recursive (i.e., decidable) set of integers or of words
over a finite alphabet such that its arity mapping is computable via this bijection. (Effectively
given sets and computable functions over them are defined in detail in Chapter 2 of [9].) Each
state has thus a size defined as the length of the corresponding word (cf. the end of Section 6.1
and Example 42 below). An integer is also handled as a word.

(b) The set of states QA is finite or countably infinite and effectively given. In the latter
case (and without loss of generality), we assume that it is a recursive set of words over a finite
alphabet Z. The set AccA must be recursive.

(c) The transition relation δA is defined by a computable function γA that maps any tuple
(f, q1, . . . , qm) where f ∈ F has arity m and q1, . . . , qm ∈ QA to a finite sequence of states that
enumerates in increasing order the set {q | f [q1, . . . , qm] →A q} for some fixed (say lexicographic)
linear order on Z∗. This condition implies that, if A is not deterministic, then each transition
yields only finitely many states.

Tables 4,5,11,14-18 describe computable functions γA in concise ways: we callmeta-transitions
such descriptions.

53

(d) All definitions given for automata in Definition 17 are applicable to fly-automata.
(e) A finite automaton A whose sets of states QA and AccA are enumerated and whose

transitions are listed in a table is called a table-automaton. Fly- and table-automata will be
compared in Section 8.

Example 41. We let F = {a, f} with ρ(a) = 0 and ρ(f) = 2. We define A = 〈F,QA, δA,AccA〉
with Z = {0, 1}, AccA = 1{0, 1}∗, QA = {0} ∪ AccA. Each state is the binary notation of
a nonnegative integer. With this convention, the transitions are specified by the meta-rules
a →A 1, f [i, i] →A i + 1 if i 6= 0 and f [i, j] →A 0 if i = 0 or j 6= i. Hence A is a complete and
deterministic fly-automaton. It recognizes the set of terms in T (F) whose syntactic tree has all
branches of the same length. This set is not regular.

Example 42. We consider the finite F u
k -automata AConn,k for connectedness constructed in

Section 6.1. It is clear that AConn,k is a subautomaton of AConn,k′ for every k′ > k. Hence we
can define AConn as the union of the automata AConn,k (cf. Definition 17(i)). Its signature F u

∞

is the union of the signatures F u
k ; it is effectively given. For making the union of the automata

AConn,k into a fly-F u
∞-automaton AConn, we must specify their states by words, in a computable

way.
The method used in Section 6.1 only works for fixed k. We let Z0 the alphabet consisting

of19 0,1, (,) and ,. The states of AConn,k are either {α, α} or {α, β, ..., δ} for pairwise distinct
nonempty subsets α, β, ..., δ of [k]. We encode an integer i ∈ [k] by its binary writing Bin(i) ∈
1{0, 1}∗, a set α ⊆ [k] by the word b(α) = (Bin(i1),...,Bin(ip)) where i1, ..., ip are the elements
of α in increasing order. Then, we encode {α, α} by ((bin(α))) (we double parentheses) and
{α, β, ..., δ} by (bin(α),bin(β),...,bin(δ)) where the words bin(α), bin(β), ... , bin(δ) are ordered
by increasing order. This syntax specifies the states of the automata AConn,k in a unique way. A
state {α, β, ..., δ} with m elements is thus represented by a word of length at most 4m ·k · log(k).
It is then straightforward to see that the transitions of Table 15 are computable. The set of
accepting states is recursive.

Example 43. We now define a fly-F u
∞-automaton C that counts the number of vertices of the

graph defined by an input term. Its set of states is N (integers are encoded in binary as words
in {0} ∪ 1{0, 1}∗), and its transitions are specified by the following meta-transitions :

a →C 1, aℓ →C 1,∅ →C 0,

adda,b[i] →C i, renh[i] →C i and

⊕[i, j] →C i+ j.

For each state i, L(C, {i}) is the set of terms that define graphs having i vertices. If we
let AccC be a recursive set of integers, then L(C) is the set of terms that define graphs (of
any clique-width) whose number of vertices is in AccC . The corresponding set of graphs is not
monadic second-order definable if AccC is, for example, the set of prime numbers.

19Note the use of the boldface symbols (,) and , to distinguish them from the corresponding symbols of the
meta-language.

54

Proposition 44. Let A be a fly-F -automaton. The membership in L(A) of any term t ∈ T (F)
is decidable. The emptiness of L(A) is not decidable in general.

Proof. Let A be given. For every term t ∈ T (F) and every position u in t, the set run∗
A,t(u) is

finite. One can compute these sets for all u by bottom-up induction. Then t ∈ L(A) if and only
if the set run∗

A,t(roott) contains an accepting state.

For proving the undecidability, we associate an automaton Ah with every primitive recursive
mapping h : N → N. We let F = {a, f, g} with ρ(a) = 0 and ρ(f) = ρ(g) = 1. We define
Ah = 〈F,QA, δAh

,AccAh
〉 with QA as in Example 41, AccAh

= {0} and the meta-transitions
a →Ah

1, f [i] →Ah
i + 1 if i > 0 and g[i] →Ah

0 if h(i) = 0. Hence Ah is a deterministic
fly-automaton. It recognizes a term in T (F) if and only if h(i) = 0 for some i > 0. This fact is
undecidable, hence, the emptiness of L(Ah) is undecidable.

We say that a relabelling h : F → F ′ between two effectively given signatures F and
F ′ is computable if the integer or the word representing h(f) can be computed from the one
representing f . We say that its inverse is computable if each set h−1(f ′) is finite and one can
compute from the integer or the word representing any f ′ ∈ F ′ the set of those representing the
elements of h−1(f ′).

Proposition 45. Let A and B be two fly-F -automata and F ′ be another effectively given sig-
nature.

(1) There are fly-automata A∪B and A∩B that define respectively L(A)∪L(B) and L(A)∩
L(B).

(2) There exists a complete and deterministic fly-F -automaton equivalent to A. The language
T (F)− L(A) is thus recognized by a fly-automaton.

(3) If h : F → F ′ is a relabelling whose inverse is computable, then the image automaton
h(A) is a fly-automaton.

(4) If h : F ′ → F is a computable relabelling, then the inverse-image h−1(A) of A is a
fly-automaton.

Proof. (1) Without loss of generality, we can assume that QA ∪ QB ⊆ Z∗ where Z contains
the alphabet Z0 of Example 42. We take for QA∪B the language (0,QA) ∪ (1,QB) ⊆ Z∗. The
standard construction of the union of two automata with disjoint sets of states yields the result.
We take for QA∩B the language (QA,QB) ⊆ Z∗. The standard construction of the product of
two automata yields the result.

(2) Given A = 〈F,QA, δA,AccA〉, we define as follows a determinized fly-automaton D =
det(A).

We let QD be the set of finite strictly increasing sequences of states of QA (increasing with
respect to some fixed linear order on Z∗, cf. Definition 40) and including the empty sequence.
We define AccD as the set of those that contain a state in AccA. If f ∈ F has arity m and
σ1, . . . , σm ∈ QD, we let γD(f, σ1, . . . , σm) be the finite sequence20 that enumerates in increasing
order the set {q ∈ QA | f [q1, . . . , qm] →A q for some q1 ∈ σ1, . . . , qm ∈ σm}.

20See Definition 17(f) in Section 3 for the notation γD.

55

It is clear that D is a complete and deterministic fly-automaton, and that for every term
t ∈ T (F), the sequence run∗

D,t(roott) enumerates in increasing order the finite set run∗
A,t(roott),

cf. Definition 17(g) (Section 3). It follows that L(D) = L(A).
The language T (F)− L(A) is recognized by the fly-automaton 〈F,QD, γD, QD − AccD〉.
(3) and (4): these assertions are straightforward to prove from the definitions and the con-

structions of Definition 17(h).

7.2. Bounding space and time

We now examine the space and time used to check whether a term is recognized by a fly-
automaton. In view of our applications, we will only consider binary signatures, i.e., with
symbols of arity at most 2.

Definition 46. The Strahler number of a term.
Let F be a binary signature.
(a) The Strahler number of t ∈ T (F) is the positive integer such that :
Strh(t) = 1 if t = a ∈ F (hence a has arity 0),
Strh(t) = Strh(t1) if t = f(t1),
Strh(t) = Strh(t1) + 1 if t = f(t1, t2) and Strh(t1) = Strh(t2),
Strh(t) = max{Strh(t1), Strh(t2)} if t = f(t1, t2) and Strh(t1) 6= Strh(t2).

The Strahler number of a slim k-expression (cf. Definition 5(c)) is 1 or 2. Strahler numbers are
studied in [15].

(b) An m-register program over F is a sequence P of assignments of the form

Ri := a for a ∈ F of arity 0, or

Ri := f(Rj) for f ∈ F of arity 1, or

Ri := f(Rj , Rℓ) for f ∈ F of arity 2, or

Ri := Rj ,

where 1 ≤ i, j, ℓ ≤ m and R1, · · · , Rm are the registers that can hold values of any relevant
type. By evaluating in sequence these assignments in T (F), we obtain, either a term val(P)
defined as the one computed in the last assignment or nothing if some register in a right-hand
side of an assignment has undefined value. For an example, if P is the sequence R1 := a;R2 :=
R1;R2 := g(R1, R2);R3 := f(R1, R2);R1 := g(R1, R3), then val(P) = g(g(a, a), f(a, g(a, a))).
If P is R1 := a;R2 := g(R1, R1);R1 := f(R3, R2);R1 := g(R2, R2), then val(P) is undefined
because R3 has no value in R1 := f(R3, R2).

If t = val(P) is defined, then P can be used for computing the value of t under any inter-
pretation of the function symbols of F by total functions. The following fact is easy to prove by
induction on the structure of t.

Fact [30]: Every term t ∈ T (F) is val(P) for some Strh(t)-register program P over F that
consists of |t| assignments.

The integer Strh(t) is an easy to compute upper bound to the minimal number of registers
of a program P that is necessary to get t = val(P), but it does not give the minimal value (just
take t = f(a, a) for a counter-example).

56

Definition 47. Parameters for measuring computations.
Let A be a complete and deterministic fly-automaton over a finite binary signature F . Each

state q has a size by Definition 40.
(a) Let τA be a mapping: N → N such that τA(0) bounds the time for computing γA(a) for

any a ∈ F of arity 0 and τA(m) bounds the time for computing γA(f, q) and γA(g, q, q
′) for any

f ∈ F of arity 1, any g ∈ F of arity 2 and any q, q′ of size at most m. We assume also that
τA(m) bounds the time for checking if a state q of size at most m is accepting.

(b) For t ∈ T (F), we denote by bA(t) the maximal size of a state occurring in the unique
run of A on t.

(c) For a fly-automaton that is not complete and deterministic, we use these parameters
relative to the associated complete and deterministic fly-automaton constructed in Proposi-
tion 45(2).

Table 23 collects some maximal sizes resulting from our constructions of deterministic au-
tomata (n is the number of vertices of the checked graph). States are encoded by words over
appropriate alphabets, typically Z0 of Example 42. We have log(k) factors because each label
of [k] is encoded by a binary word. The O(.) notation does not hide large constants.

Property Maximum size of a state

Sgl, Cardp, edg constant
Partition, Disjoint constant

St, Link,Dom O(min{n, k}. log(k))

Path,DirCycle, Clique O(min{n2, k2}. log(k))

ConnIfDegd O(min{n, d.k2}. log(k))

Conn,Cycle O(min{n, k.2O(k)}. log(k))

Table 21: Sizes of states

Proposition 48. Let A be a complete and deterministic fly-automaton over a finite binary
signature F . The time and space required to check if a term t ∈ T (F) belongs to L(A) are
respectively bounded by (|t|+ 1).τA(bA(t)) and by Strh(t).bA(t).

Proof. The time bound is clear from the definitions (the term +1 is for checking that the state
found at the root is accepting). For the space bound, we consider a term t and a Strh(t)-register
program over F that computes this term (cf. Definition 46(b)). We run this program by letting
its registers take values in QA. A nullary symbol a evaluates to the state γA(a), a function
symbol f of arity 1 denotes the mapping q 7−→ γA(f, q) and a function symbol g of arity 2
denotes the mapping q, q′ 7−→ γA(g, q, q

′).
This program computes runA,t(roott) by maintaining simultaneously at most Strh(t) states

in its registers. We neglect the fact that, for evaluating Ri := f(Rj) or Ri := g(Rj , Rℓ), some
auxiliary space may be necessary. We have never seen cases where the space bound Strh(t).bA(t)
should be increased in a significant way for this reason.

Remarks. (1) If we check properties of graphs defined by slim k-expressions t, then the space
bound Strh(t) · bA(t) can be replaced by 2 · bA(t).

57

(2) In applications to graphs, it may happen that for two terms t and t′ defining the same graph,
the values bA(t) and bA(t

′) are very different. This shows that the bounds of Proposition 48
depend strongly on the given term t.

Here is an example where A is AConn, the fly-automaton for checking connectedness defined
as the union (cf. Definition 17(i) in Section 3) of the automata AConn,k (we use the simple
encoding of states defined at the end of Section 6.1). Let k > 0. For every nonempty subset of
[k], we let PA be a path with |A| vertices and of type π(PA) = A. If B ⊆ P+([k]), we let GB be
the graph c⊕

⊕

A∈B PA where c is an isolated vertex labelled by k+1, and we denote this graph
by a slim term tB. Finally we let HB be defined by the term t′B = addk+1,[k](tB) ∈ T (F u

k+1),
where addk+1,[k] is the composition of the operations addk+1,i for all i ∈ [k]. It is clear that GB

has |B| + 1 connected components of pairwise different types, whereas HB is connected. The
maximal size of a state of A occurring in a run on t′B is thus larger than |B| and may be more
than 2k. However, HB can also be defined by a slim term sB ∈ T (F u

k+2) any subterm of which
defines a graph with at most 2 connected components: the vertices are added one by one and
each time a vertex is added, it is immediately linked to a (k + 1)-port. The maximal size of a
state of A running on sB is thus O(k).

However, if we use the annotation of t′B defined in Section 6.2, the states are as in the run on
sB hence of size O(k · log(k)). This example shows the usefulness of annotations and also that
the choice of a term t yielding a small value bA(t) depends strongly on the property checked by
A. We do not see how to make a general statement (based of the syntax of a defining formula)
about this choice. �

7.3. Fly-automata constructed from MS formulas

We let F∞ (resp. F
(n)
∞) be the union of the signatures Fk (resp. F

(n)
k) for all k (cf.

Definitions 4 and 11). For every MS formula ϕ(X1, ..., Xn), we let Lϕ(X1,...,Xn) be the set of

terms t ∗ (V1, ..., Vn) in T (F
(n)
∞) such that val(t) |= ϕ(V1, ..., Vn), and similarly for a property

P (X1, ..., Xn).

Proposition 49. For every MS formula ϕ(X1, ..., Xn), one can define a fly-F
(n)
∞ -automaton

Aϕ(X1,...,Xn) that recognizes Lϕ(X1,...,Xn).

Proof. For every formula ϕ(X1, ..., Xn), either atomic or that defines one of the basic properties
of Section 4.1 and for every k < k′, we have Aϕ(X1,...,Xn),k ⊆ Aϕ(X1,...,Xn),k′ . This is clear from
the definitions and constructions of Sections 5 and 6. Hence, we take for Aϕ(X1,...,Xn) the union

of the automata Aϕ(X1,...,Xn),k for all k. It is clear that it is a fly-F
(n)
∞ -automaton.

By Proposition 45, the constructions of Section 4.2 extend to fly-automata. In particular, the
relabellings used for existential quantifications (Lemma 26) are computable and have computable
inverses. Those used for variable substitutions and relativization (Lemmas 13 and 15) are
computable. So all our previous constructions of finite automata extend to fly-automata.

7.3.1. One automaton for all clique-widths

The observation that Aϕ(X1,...,Xn),k ⊆ Aϕ(X1,...,Xn),k′ if k < k′ also holds for all properties of
Section 5 except for maximal indegree at most d : the states of the automata constructed in

58

Section 5.2.6 are pairs (α, β) where α : [k] → [0, d] and β : [k] → [0, d + 1]. However, if k is
replaced by k′ > k, then a function α : [k] → [0, d] is replaced by the function α′ : [k′] → [0, d]
such that α′(i) := if i ≤ k then α(i) else 0, as one checks easily and similarly for β. In the
description of a state, the function α can be defined by the set of pairs (i, α(i)) such that i > 0
and α(i) 6= 0 with the convention that α(i) = 0 if there is no pair (i, p) in the set. With this
variant of the definition given in Section 5.2.6 and the similar one for β, we have inclusions of
the sets of states and so, AInDegd(X1,X2),k ⊆ AInDegd(X1,X2),k

′ .

7.3.2. Existential quantifications

We examine the bounds of Proposition 48 for the automata of a sentence ϕ of the form

∃X1, ..., Xp.θ(X1, ..., Xp). We let N(k, θ) be the number of states of a deterministic fly-F
(p)
k -

automatonA = Aθ(X1,...,Xp),k. We letA′ be the corresponding nondeterministic fly-Fk-automaton
constructed by Lemma 26 and B = det(A′) (cf. Proposition 45(2)) be the determinized fly-Fk-
automaton recognizing Lϕ,k.

Our objective is to bound the time and space needed for running B on t ∈ T (Fk). To do
that, we will use ndegA′(t), the degree of nondeterminism of A′ on t (cf. Definition 17(g)). It is

clear that bB(t) ≤ ndegA′(t) · bA(t) where bA(t) := max{bA(t
′) | t′ ∈ T (F

(p)
k), pr(p)(t′) = t} and

so the memory space is bounded by Strh(t) · ndegA′(t) · bA(t).
We now bound the time necessary to fire a transition of B at a position u of t.
We consider first an occurrence u of a nullary symbol (not ∅). The automaton A′ has 2p

transitions at u yielding a multiset of 2p states. This multiset must be made into a sorted set.
This step takes time O(p · 2p): we consider that the lexicographical comparison of two states
obtained from nullary symbols takes time τA(0), a (small) constant depending on k. We get the
time bound O(τA(0) · p · 2

p) that does not depend on t.
Let now u be an occurrence of a binary symbol. The transitions of A′ on binary symbols

are those of A, hence are deterministic. There are thus at most ndegA′(t)2 transitions of A′

at u. The corresponding multiset can be computed in time at most ndegA′(t)2 · τA(bA(t)) and
transformed into a sorted set in time O(ndegA′(t)2 · log(ndegA′(t)) · bA(t)) (the lexicographical
comparison of two states of A takes time at most bA(t)). The same bound can be used if u is
an occurrence of a unary symbol.

A graph with n vertices of clique-width at most k can be defined by a term of size at most
n(k2 − k + 4) as proved in Section 2.5.3 of [9]. Hence, running B on such term t takes time
bounded by :

O(n · [p · 2p · τA(0) + k2 · ndegA′(t)2.
(

τA(bA(t)) + log(ndegA′(t)) · bA(t)
)

]).

The fly-automaton A is over a finite signature F . It can be the restriction of an F∞-
automaton to Fk. In this case, the values τA(0), ndegA′(t) etc. depend on k.

7.3.3. Improvements

A slight improvement is possible for sentences ϕ of the form ∃X1, ..., Xp.(Partition(X1,
..., Xp) ∧ θ(X1, ..., Xp)). The sentences expressing vertex coloring problems and minor inclusion
(cf. Examples 20 and 21) are of this form. Instead of replacing a nullary symbol c by (c, w)

59

with w ∈ {0, 1}p, (cf. Lemma 26), we can replace it by (c, i) with i ∈ [p], to mean that the cor-
responding vertex belongs to Xi. The condition Partition(X1, ..., Xp) is ensured by this choice
(the automaton need not check it). In the above evaluation, we can replace p.2p by p. log(p).
This technique is applicable to ∃X1, ..., Xp(Disjoint(X1, ..., Xp) ∧ θ(X1, ..., Xp)) because it is
equivalent to ∃X1, ..., Xp+1.(Partition(X1, ..., Xp+1) ∧ θ(X1, ..., Xp)).

We now apply it to the p-coloring problem (cf. Example 20) expressed by the sentence

∃X1, ..., Xp.(Partition(X1, ..., Xp) ∧ St(X1) ∧ ... ∧ St(Xp)).

The states of the automaton C for St(Xi) are Error and the subsets of [k]. Those of the
automaton A for St(X1) ∧ ... ∧ St(Xp) are Error and the p-tuples of subsets of [k]. It follows
that bA(t) ≤ pk and that τA(pk) = O(pk).

If t of size O(n.k2) defines a graph with n vertices, then we get the time bound

O(n · [p · log(p) + k2 · (22kp · p · k + (k · p)2)]) = O(n · p · k3 · 22kp).

8. Experiments

Many constructions of automata described in the previous sections have been implemented
in a system written in Common Lisp. We describe some aspects of this implementation and we
report some experiments.

8.1. Scratch and composed fly-automata

We call scratch fly-automata those that are built directly from meta-transitions in order to
distinguish them from the ones that are constructed by using Proposition 45 as combinations of
previously defined or computed fly-automata. We call the later composed fly-automata.

In order to implement a scratch fly-automaton, we must specify the structure of the states
and transform the meta-transitions into procedures that compute the specific transitions. We
consider for example the counting automaton C of Example 41(3). Its Lisp implementation is
shown in Figure 3.

The software Autowrite21 implements table- and fly-automata on terms. As in Definitions 17
and 40, the symbols have fixed arities, but the most recent version admits also unranked symbols
denoting associative and commutative binary operations. On top of it, we have developed a
software called Autograph (also written in Common Lisp) to compute the fly-automata that
verify graph properties (in particular monadic second-order ones, but not only, cf. Example 43).
This software is intended for the signature F∞, hence for graphs of bounded clique-width. Its
extension to graphs of bounded tree-width is not difficult and will be done in the next future.

The disjoint union operation can be handled in Autowrite either as an ordinary binary oper-
ation or as an unranked associative and commutative one. The annotation ADDt of Definition 6
(computable on t in a top-down way) has been implemented and has proved useful in some cases.

21Autowrite is written in Common Lisp (see [13]) and still under development http://dept-info.labri.

u-bordeaux.fr/~idurand/autowrite

60

(defclass counting-state (state)

((num :initarg :num :reader num)))

;; add and rel operations do npt change the count

(defmethod graph-add-target (a b (s state)) s)

(defmethod graph-ren-target (a b (s state)) s)

;; the count of the disjoint union is the sum of the counts

(defmethod graph-oplus-target

((co1 counting-state) (co2 counting-state))

(make-counting-state (+ (num co1) (num co2))))

;; a constant yields a state with count 1

(defmethod cardinality-transitions-fun

((root constant-symbol) (arg (eql nil)))

(make-counting-state 1))

Figure 3: Lisp implementation for an automaton counting vertices

8.2. Fly- versus table-automata

When a fly-automaton A is finite, it can be compiled into a table-automaton, provided the
resulting transition table is not too large. The accessible states and the corresponding transitions
can be computed from the transition function γA (cf. Definition 40) in the following way: starting
from the transitions relative to the nullary symbols, we can compute them by using a standard
saturation algorithm. This algorithm determines actually the accessible subautomaton B of A.
It can be used even if A is infinite but has a finite signature, and it terminates if and only if
B is finite. Provided B fits in the main memory, it is faster for recognizing a term than the
original fly-automaton A. If this is not the case, the access time is no longer constant and the
fly-automaton A is a priori preferable.

An infinite fly-automaton can be stored in a finite memory space. A finite fly-automaton
uses in general a much smaller space to encode the transition function than the corresponding
table-automaton but it is slower for term recognition, especially if the transition function is
complex (but we never met cases where the computation of transitions is difficult). We have
discussed in Section 7 the space needed to recognize a term.

We now examine for which properties scratch table-automata can be built.

Property Compilation

St up to cwd = 13

edg(X1, X2) up to cwd = 90

Card≤p(X1) or Card=p(X1) p+ 2 states, any cwd

Col(X1, . . . , Xp) up to p = 3 for cwd = 4

Conn up to cwd = 3

Path(X1, X2) up to cwd = 4

Cycle fails

Table 22: Direct constructions

61

Table 22 shows some positive cases. See Example 20(1) for the definition of Col(X1, . . . , Xp)
and p-Col.

With these properties and by using relabellings and Boolean operations (cf. Lemmas 25 and
26), we can obtain automata for properties like p-colorability, p-AC-colorability, p-VertexCover
among others. Some results appear in Figure 23.

Property Compilation

p-Col up to p = 3 for cwd = 2, p = 2 for cwd = 3.

p-AC-Col failed

p-Chord− Free− Cycle up to p = 4 for cwd = 4

p-MaxDegree up to p = 1 (cwd = 3), p = 5 (cwd = 2)

p-V ertexCover up to p = 800 for cwd = 3, p = 100 for cwd = 6

Table 23: Derived constructions

We recall that a set of vertices X of a graph G is a vertex cover if every edge has an end
in X, i.e., if VG − X is stable. We let p-VertexCover mean that the considered graph has a
vertex cover of cardinality p. This property is thus expressed by ∃X1.(Card=p(X1) ∧ St(X1));
(X1 is a set term denoting the set of vertices not in X1). The corresponding Lisp code is shown
in Figure 4. The property p-Chord-Free-Cycle for p ≥ 4 means that every cycle with at least p
vertices has a chord.

;; Vertex-Cover(X1) = Stable(V-X1)

(defun fly-vertex-cover (cwd)

(x1-to-cx1 ; Stable(V-X1)

(fly-subgraph-stable-automaton

cwd 1 1))) ; Stable(X1)

;; E. X1 | vertex-cover(X1) & card(X1) = k

(defun fly-k-vertex-cover (k cwd)

(vprojection

(intersection-automaton

;; Vertex-Cover(X1)

(fly-vertex-cover cwd)

;; Card(X1) = k

(fly-subgraph-cardinality-automaton

k cwd 1 1))))

Figure 4: Lisp code for Vertex-Cover

8.3. Running time comparisons

We now report comparisons of the running times of a fly-automaton and that of the cor-
responding table-automaton. The implementation has been done by using SBCL (Steel Bank
Common Lisp) on a MacBook Pro laptop equipped with a processor 2.53 GHz Intel Core Duo
and a 4 GB memory.

62

Figure 5: Fly- versus table-automata for connectedness

The running times are usually averaged over 10 runs22 except when they are exceptionally
large (more than hundreds of minutes).

8.3.1. Connectedness

We have chosen the property Conn for which the deterministic automata are described in
Section 6.1. For a bound k on clique-width, the table-automaton has 22

k−1 + 2k − 2 states. It
can be compiled up to k = 3. (For k = 4, it has 32782 states; the number of transitions is
quadratic in the number of states, see Definition 17).

Each graph PN (an undirected path with N vertices) has clique-width 3 if N ≥ 4. We will
compare the computation times of the fly-automaton and the table-automaton for increasing
(and large) values of N . The size of a term representing PN is 5N + 1 and its depth is 4N − 3.

Figure 5 shows that the computation time is roughly linear with respect to n and that the
slope of the line is steeper for the fly-automaton. The up and down variations around the line
could possibly be explained by the launching of the automatic garbage collector. However, the
global shape of the curve is linearly ascending. The sudden decrease which appears around
N=3900 in both curves is probably due to memory cache organization.

8.3.2. Coloring problems

Table 24 shows some results concerning two coloring problems that are NP-complete for
fixed numbers of colors (at least 3). We made some tests for three classical graphs defined by
Grünbaum, Petersen and McGee. They are on figures 6,7 and 8 respectively. The 24 vertices of
McGee’s graph are on the external cycle.

Using a term in T (F3) of size 15 that defines this graph, its non 4-AC-colorability has been
verified in less than 0.3 seconds and its 5-AC-colorability in 1.3 seconds; the last time is reduced
to 0.9 seconds when using the annotation ADDt.

22The times may vary because of the garbage collector.

63

Figure 6: A graph by Grünbaum

Figure 7: Petersen’s Graph

For defining Grünbaum’s graph, we have used a term in T (F3) of size 15 and a term in T (F5)
of size 21. For Petersen’s graph the automata are all impossible to construct and fly-automata
have been used. For McGee’s graph (24 vertices, 36 edges), we have found a term in T (F10) of
size 99 and depth 76. Using the annotation ADDt, the verification took around 11 hours which
is not that bad.

We have also checked the 3-colorability of grids of moderate clique-width. Grids are trivially
2-colorable, but our point was to use them for tests. A square grid GN×N has clique-width
N +1 ([21]). It was difficult to verify its 3-colorability for N = 8 and impossible for N > 8. See
Figure 10.

Figure 8: McGee’s graph

64

Graph term in Verified property Time without/with annotations

Grünbaum T (F3) 3-col., non 4-AC-col., 5-AC-col. 0.01/0.01, 0.27/0.18, 1.3/0.9

Grünbaum T (F5) non 4-AC-col., 5-AC-col. 0.44/0.44, 2.6/0.9, 13.1/5.6

Petersen T (F7) 3-col., not 3-AC-col. 4-AC-col 1.1/1.1, 6/1.6, 8mn/4mn

McGee T (F10) 3-AC-col. 21h/11h

Table 24: Some results for coloring problems

Figure 9: 3-colorability of grids 6×N

For the grids G6×N (they are denoted by terms in T (F8)), we could reach N > 1000 by using
a fly-automaton23 Figure 9 shows the results for these grids.

9. Conclusion

We have presented some tools intended to yield practically usable methods for the verifi-
cation of certain monadic second-order graph properties for graphs of bounded tree-width or
clique width. We have proposed to restrict the constructions of automata to the formulas of
an appropriate fragment of monadic second-order logic and to use fly automata (a notion first
presented in [8]). Although some experimental results are encouraging, these ideas have to be
tested on more cases.

These constructions extend to counting problems (e.g., how many p-colorings or p-AC-
colorings has a given graph?) and optimization problems (e.g., what is the minimum number
of vertices that must get color 1 for a p-coloring of a given graph?): the theoretical results of
Chapter 6 of [9] should be implemented. These constructions also extend to graphs of bounded
tree-width and MS properties written with edge quantifications by using the results of [7].

23A table-automaton can be obtained only for clique-width 2.

65

Figure 10: 3-colorability of square grids N ×N

References

[1] B.-M. Bui-Xuan, J. A. Telle and M. Vatshelle, H-join decomposable graphs and algorithms
with runtime single exponential in rankwidth, Discrete Applied Mathematic 158 (2010)
809-819.

[2] M. Chudnovsky, et al., Recognizing Berge graphs, Combinatorica 25 (2005) 143-186.

[3] M. Chudnovsky, et al., The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229.

[4] H. Comon et al., Tree Automata Techniques and Applications, http://tata.gforge.inria.fr/

[5] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of graphs,
Information and Computation 85 (1990) 12-75.

[6] B. Courcelle, The monadic second-order logic of graphs III: Tree-decompositions, minors
and complexity issues, Inform. Théor. et Applications 26 (1992) 257-286.

[7] B. Courcelle, On the model-checking of monadic second-order formulas with edge set quan-
tifications, Discrete Applied Mathematics 160 (2012) 866-887.

[8] B. Courcelle and I. Durand, Verifying monadic second-order graph properties with tree
automata, 3rd European Lisp Symposium, May 2010, Lisbon, Proceedings edited by C.
Rhodes, pp. 7-21.

[9] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic, A language-
theoretic approach, Cambridge University Press, 2012.

[10] B. Courcelle, J. A. Makowsky and U. Rotics, Linear-Time Solvable Optimization Problems
on Graphs of Bounded Clique-Width. Theory Comput. Syst. 33 (2000) 125-150.

[11] B. Courcelle and S. Olariu, Upper bounds to the clique-width of graphs, Discrete Applied
Mathematics 101 (2000) 77-114.

66

[12] R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag, 1999.

[13] I. Durand, Autowrite: A Tool for Term Rewrite Systems and Tree Automata, ENTCS 124
(2005) 29-49.

[14] M. Fellows, et al., Clique-width is NP-Complete. SIAM J. Discrete Math. 23 (2009) 909-
939.

[15] P. Flajolet, J.-C. Raoult and J. Vuillemin, The number of registers required for evaluating
arithmetic expressions, Theoretical Computer Science 9 (1979) 99–125.

[16] J. Flum and M. Grohe, Parametrized complexity theory, Springer, 2006.

[17] M. Frick and M. Grohe: The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic 130 (2004) 3-31

[18] R. Ganian and P. Hlinený, On parse trees and Myhill-Nerode-type tools for handling graphs
of bounded rank-width. Discrete Applied Mathematics 158 (2010) 851-867

[19] R. Ganian, P. Hlinený and J. Obdrzálek, Better Algorithms for Satisfiability Problems for
Formulas of Bounded Rank-width, FSTTCS, 2010, LIPIcs 8 (2010) pp. 73-83.

[20] F. Gécseg and M. Steinby, Tree languages, Chapter 1 of Handbook of Formal Languages,
Vol. 3: Beyond Words, G. Rozenberg and A. Salomaa eds., Springer, 1997, pp. 1-68.

[21] M. Golumbic and U. Rotics, On the Clique-Width of Some Perfect Graph Classes. Int. J.
Found. Comput. Sci. 11 (2000) 423-443.

[22] G. Gottlob, R. Pichler and F. Wei: Tractable database design and datalog abduction
through bounded treewidth. Inf. Syst. 35 (2010) 278-298.

[23] G. Gottlob, R. Pichler and F. Wei: Monadic datalog over finite structures of bounded
treewidth. ACM Trans. Comput. Log. 12(1)(2010) 3.

[24] M. Kanté and M. Rao : F-Rank-Width of (Edge-Colored) Graphs, CAI 2011, Lecture Notes
in Computer Science, 6742, (2011), pp. 158-173. Full version to appear in Discrete Applied
Maths.

[25] J. Henriksen et al., MONA: monadic second-order logic in practice, Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science 1019
Springer, 1995, pp. 89-110.

[26] P. Hlinený and S. Oum: Finding Branch-Decompositions and Rank-Decompo-sitions. SIAM
J. Comput. 38 (2008) 1012-1032.

[27] S. Oum and P. Seymour: Approximating clique-width and branch-width. J. Comb. Theory,
Ser. B 96 (2006) 514-528.

[28] M. Rao, MSOL partitioning problems on graphs of bounded treewidth and clique-width.
Theor. Comput. Sci. 377 (2007) 260-267.

67

[29] K. Reinhardt, The complexity of translating logic to finite automata. in Automata, Logics,
and Infinite Games: A Guide to Current Research. Lecture Notes in Computer Science
2500, Springer, 2002, pp. 231-238.

[30] R. Sethi and J. Ullman: The Generation of Optimal Code for Arithmetic Expressions. J.
ACM 17 (1970) 715-728.

[31] L. Stockmeyer and A. Meyer, Cosmological lower bound on the circuit complexity of a small
problem in logic. J. ACM 49 (2002) 753-784.

68

