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Abstract: 
The paper presents an analysis as well as a synthesis of oscillator systems described by 

single well Duffing equations under polynomial perturbations of fourth degree. It is proved 
that such a system can have a unique hyperbolic limit cycle. There has been obtained an 
analytical condition for the arising of a limit cycle and an equation giving the parameters of 
this limit cycle. There has been proposed a method for the synthesis of oscillator systems of 
the considered type, having preliminarily assigned properties. The synthesis consists of an 
appropriate choice of the perturbation coefficients in such a way, that the oscillator equation 
should have a preliminary assigned limit cycle. Both the analysis and the synthesis are 
performed with the help of the Melnikov function. 

 
Keywords: Duffing equation, Duffing oscillators, limit cycles, Melnikon function, 
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1. Introduction 
The paper presents an analysis as well as a synthesis of oscillator systems allowing 

self-sustained oscillations. The results obtained are based on the qualitative investigation of 
dynamic systems, whereas the self-sustained oscillations are regarded as limit cycles on the 
phase plane. 

The Melnikov theory allows us to establish the number, position, shape and stability of 
the limit cycles arising in autonomous perturbed planar systems. According to this theory the 
problem of finding the limit cycles is replaced by an equivalent problem of finding the zeros 
of a given function – the Melnikov function for autonomous systems [1-3]. 

Using the Melnikov theory, there has been performed an analysis of the limit cycles in 
oscillator systems described by single well Duffing equations under polynomial perturbations 
of 4th degree. It is proved that such a system can have a unique hyperbolic (simple) limit 
cycle. Conditions are derived for the arising of a limit cycle (or periodic oscillations) and the 
establishing whether this limit cycle is stable or unstable. Moreover, a method is suggested for 
the synthesis of oscillator systems having preliminarily assigned properties. 

In general, the synthesis of oscillators systems includes the following two stages: first, 
finding a differential equation to satisfy the preliminary assigned requirements and second, 
obtaining an electronic circuit corresponding to this differential equation. In this paper, it 
should be emphasized, that we are only interested in the first stage. The second stage is a 
separate problem and we are not examining it here. It is worth mentioning that detailed 
information concerning the circuit simulation of a given differential equation is presented in 
[4] (see also the references therein cited).In this expose, the synthesis of an oscillator system 
consists of choosing the perturbation coefficients in such a way, that the perturbed Duffing 
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equation should have preliminary assigned limit cycles, respectively self-sustained 
oscillations. 

The Melnikov theory is a successful approach for the synthesis of oscillator systems 
with preliminary assigned solutions and desired characteristics. Some applications of the 
Melnikov function for synthesizing generalized Van der Pol systems (perturbed harmonic 
oscillators) and some types of perturbed Duffing systems are given in References [5-6]. 

The analysis of the Melnikov function is a separate mathematical problem and there 
exist various mathematical techniques for its solving [7-12]. In the case of a polynomial 
perturbed Hamiltonian system the Melnikov function is generally an Abelian integral. Finding 
the zeros of an Abelian integral is known as the weakened Hilbert’s 16th problem (which still 
remains open [13-14]). 

In this paper expressing the unperturbed solution through the Jacobi elliptic functions 
allows us to compute the Melnikov function and the result is a function involving complete 
elliptic integrals. There exist some advantages in the study of the Melnikov function involving 
complete elliptic integrals compared to the study of the Melnikov function involving Abelian 
integrals. First of all, the complete elliptic integrals have been extensively studied - their 
properties and series expansions are well known. Furthermore, there exist a lot of handbooks, 
tables and computer software giving the values of the complete elliptic integrals [15-20]. All 
this facilitates the engineering applications of the obtained results. In addition, the analytical 
expression of the interdependence between both the Hamiltonian level h  and the modulus of 
the complete elliptic integrals k  is an essential element of the synthesis of oscillator systems. 

In order to analyze the Melnikov function, it is necessary to prove that a given 
function involving complete elliptic integrals is a monotonic function. The monotonicity of 
this function is proved with the help of appropriate Picard-Fuchs and Riccati equations. Then 
this monotonic function is used to establish that the Melnikov function has a single simple 
zero. Equations of Picard-Fuchs and Riccati are widely used to prove that a given function 
defined as a ratio of two Abelian integrals is monotonic [7-8, 21-23]. In this paper these 
equations are obtained for the functions involving complete elliptic integrals. 

Brief information concerning the Melnikov function and the limit cycles bifurcations 
in perturbed planar Hamiltonian system is given below. It should be mentioned, that only the 
case of first order perturbations, respectively first order bifurcations of limit cycles from a 
“centre” and a first order Melnikov function are examined. 

Let’s consider the following system 
 

),,(
),,(
εε

εε
yxqxHy

yxpyHx
+∂∂−=

+∂∂=
 ,     (1) 

 
where the Hamiltonian ),( yxHH =  is an analytic function in 2R , the perturbation functions 

),,( εyxp  and ),,( εyxq  are analytic in RR ×2 , ε  is a small parameter, 1<<ε , tdd)( ≡⋅  
and t  is time. Let’s denote the solution of system (1) by ( ))(),(),( ttyx εε ψϕ= . In this case 
the solution of the unperturbed system (at 0=ε ) is ( ))(),(),( 00 ttyx ψϕ= . 

Further on, let’s assume that the unperturbed system (at 0=ε ) has at least one 
equilibrium point, which is a “centre”, surrounded by closed concentric trajectories 
parameterized by the set of constant Hamiltonian levels. Then the equation on the phase plane 
of a given closed trajectory )(0 hΓ , having a parameter h , is expressed by 
 

R⊂∈= ΩΓ hhyxHh ,),(:)(0  ,     (2) 
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where Ω  is an open set of values h , for which the trajectories are not degenerated in a point 
or a separatrix loop. 

Let’s denote the period of the unperturbed solution ( ))(),(),( 00 ttyx ψϕ= , 
corresponding to the closed trajectory )(0 hΓ , by )(0 hT . Using these notions the following 
function 
 

[ ]dtpqhM
hT

∫ −=
)(

0
000000

0

)0,,()0,,()( ψψϕϕψϕ ,    (3) 

 
is called First Order Melnikov function (briefly, Melnikov function). It plays a basic role in 
the study of limit cycles. The zeros of the Melnikov function determine the limit cycles in the 
system (1) emerging from the periodic orbits of the unperturbed Hamiltonian system. The 
stability of the bifurcating limit cycle is determined by the derivative of the function )(hM . 
More details on this subject can be found in [24-26]. 

In all computations further on the complete elliptic integrals of the first and second 
kind K  and E  are regarded as functions of 2k  ( k  is the modulus), i.e. )( 2kKK =  and 

)( 2kEE = . Some properties and identities concerning the Jacobi elliptic function sd  and the 
complete elliptic integrals K  and E , that have been used in the presentation, are given in an 
Appendix at the end of the paper for quick reference. The equations in the Appendix are 
marked by the letter A. 
 

2. Oscillator circuits and oscillator equations 
 

Examples of AC equivalent circuits of oscillator systems governed by perturbed 
Duffing equations are shown in Fig. 1. The parallel circuit, shown in Fig. 1a, consists of a 
resistor with conductance G , an inductive element with inductance L , a nonlinear resistor 
NR  of the type N , having a voltage-current characteristic )(1 ufi =  and a nonlinear 
capacitive element having a charge-voltage characteristic 3qqu βα += , where q  is the 
electric charge associated with the element, and α , β  are constants, 0>α , 0>β . The 
series circuit, shown in Fig. 1b, consists of a resistor with resistance R , a capacitive element 
with capacitance C , a nonlinear resistor NR  of the type S  having a current-voltage 
characteristic )(1 ifu =  and a nonlinear inductive element having a flux-current characteristic 

3βψαψ +=i , where ψ  is the magnetic flux associated with the element, and here, too, α , 
β  are constants, 0>α , 0>β . 

Let’s consider the parallel oscillator circuit. The characteristic of the nonlinear resistor 
is transformed in the following way: 
 

)()()( 2
3

11 qfqqfufi =+== βα  .     (4) 
 

Using Kirchhoff’s current law we obtain 
 

0)(
d
dd1

2 =+++ ∫ qf
t
quu

L
Gu  .     (5) 

 
After differentiating the equation above, there follows 
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Taking into account the expression for u , we find 
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d)(

d
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d
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L

q
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qqfqGqG
qt

q βαβα  .  (6) 

 
If we perform the substitutions 
 

)()(2
3 qFqfqGqG εβα −=++  ,    xq =  ,    a

L
=

α  ,    b
L
=

β  , 

 
Equation (6) takes its final form 
 

0
d
d

d
)(d

d
d 3

2

2

=++− bxax
t
x

x
xF

t
x ε ,   0>a ,   0>b .  (7) 

 
Equation (7) is known as a perturbed single well Duffing equation. The small parameter ε  
depends on the circuit parameters. 

Starting from the series circuit (Fig. 1b) and using the Kirchhoff’s voltage law, we get 
the same equation as in (7). 
 

3. Melnikov function for perturbed single well Duffing equation 
 

In our work we assume that the function )(xF  is represented by the polynomial 
 

4
4

3
3

2
21)( xaxaxaxaxF +++= .     (8) 

 
In this case Equation (7) can be rewritten as the following perturbed Hamiltonian system 
 

3

4
4

3
3

2
21 )(

bxaxy
xaxaxaxayx

−−=
++++= ε

 ,    (9) 

 
where 0>a  and 0>b . Further on, we will investigate the system (9) from a point of view of 
the existence of limit cycles. As in section 1 let ( ))(),(),( ttyx εε ψϕ=  be the solution of the 
perturbed system (9). 

The unperturbed system (at 0=ε ) has a Hamiltonian  
 

422

422
1),( xbxayyxH ++=      (10) 

 
and a single equilibrium point )0,0(  which is a “centre” surrounded by a continuous one-
parameter family of closed trajectories, which can be expressed as follows: 
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hxbxayyxHh =++= 422
0 422

1),(:)(Γ  ,    ),0( ∞∈h  .   (11) 

 
The solution of the unperturbed system ( ))(),(),( 00 ttyx ψϕ=  in the time domain and 

its period are expressed as follows [27] 
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2
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00
21)(4)( −

== K  ,     (13) 

 
where sd , cd  and nd  are Jacobi elliptic functions. 
The modulus k  and the constant h  are related in the following way: 
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210 2 << k  ,    ∞<< h0  .     (14b) 

 
It is easy to prove that 0dd 2 >kh , and 0dd 2 >hk , i.e. the function )( 2khh =  and 

)(22 hkk =  are monotone increasing. 
According to Equation (3), the Melnikov function for the system (9) is 
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where 12 aac = , 23 aac = , 134 baaac += , 245 baaac += , 36 bac = , 47 bac = . Introducing a 

new variable 221 ktaz −=  and taking into account Equation (13) and the properties of 
the function sd  given in the Appendix (Equations (A1) – (A3)), we see that the integrals 
containing ),(sd 12 kzn+ , 3,2,1=n  vanish and the Melnikov function becomes 
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As it is seen from the last result, the Melnikov function and the arising of limit cycles do not 
depend on the terms with coefficients having odd indices - 3c , 5c , 7c . This means that the 
terms with even degrees in the polynomial perturbation in System (9) exert no influence on 
the arising of limit cycles and further we will assume that 042 == aa . This fact is important 
for the circuit realization of the oscillator equation. It is worth mentioning that similar 
assertions are valid for the generalized Van der Pol oscillators [5]. Finally, System (9), which 
we investigate, is reduced to the following system with respect to the limit cycles: 
 

3

3
31 )(

bxaxy
xaxayx

−−=
++= ε

 .     (16) 

 
Under these conditions, after quite long but straightforward calculations, using Equations 
(A7)–(A9) and introducing the notation 2km = , we obtain the final expression for the 
Melnikov function 
 

( ) ),;(
)21(
218)()()( 313 aam

m
mammhMhM BM

−
−

===
λ   ,   (17) 

 
where ba=λ  and 
 

)(
5
2)(),;( 231131 mIamIaaam λ+=B   ,     (18) 

 

[ ]EK )21()1()21(
3
1)(1 mmmmI −−−−=   ,     (19) 

 
KE )1)(2()1(2)( 2

2 mmmmmI −−−+−=  .     (20) 
 

Let’s remind that here and in the equations below, the complete elliptic integrals K  
and E  are regarded as functions of m , where 2km =  and k  is a modulus, i.e. )(mKK =  
and )(mEE =  [15]. 

According to the Melnikov theory the zeros of )(hM  determine the limit cycles 
emerging from the periodic orbits of the unperturbed Hamiltonian systems. The stability of 
the limit cycle is determined by the sign of the quantity )( dhdMε . Since )(mhh =  and 

)(hmm =  are single-valued functions the zeros of )(hM  and )(mM  coincide. In other words, 
if 0m  is a zero of )(mM , i.e. 0)( 0 =mM , then )( 00 mhh =  is a zero of )(hM , i.e. 0)( 0 =hM . 
Moreover, from the relations 
 

h
m

m
m

h
m

h
M

d
d

d
)(d

d
)(d

d
d MM

==  ,        0
d
d

>
h
m  , 

 
it follows that the signs of the quantities hM dd  and mddM  also coincide. Having this in 
mind, we will look for the zeros of the function )(mM  and the sign of the quantity mddM . 
On the other hand, with )21,0(∈m , the zeros of )(mM  and ),;( 31 aamB  coincide. Besides, 
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if 0m  is a zero of ),;( 31 aamB , i.e. 0),;( 310 =aamB , then the quantities )( 0mM′  and 
),;( 310 aamB′  will have the same signs. Without any loss of generality, we may assume 

11 =a  and then 
 

)(
5
2)(),1;(:)( 2313 mIamIammB λ+== B  .    (21) 

 
Therefore we will look for the zeros of the function )(mB , or the roots of the equation 

0)( =mB , and the signs of the derivative )(mB′  evaluated at these roots. 
For further analysis it is convenient to rewrite the function )(mB  in the following way 

 

⎥⎦
⎤

⎢⎣
⎡ += 32 5

2)()()( amYmImB λ  ,     (22) 

 
where 
 

[ ]
KE

EK

)1)(2()1(2

)21()1()21(
3
1

)(
)()( 2

2

1

mmmm

mmm

mI
mImY

−−−+−

−−−−
==  .  (23) 

 
The analysis of the Melnikov function (respectively the analysis of function )(mB ), 

requires some preliminary results that are given in the following section. 
 

4. Functions involving complete elliptic integrals and equations of  
Picard-Fuchs and Riccati 

 
In order to find the zeros of the Melnikov function we need to analyze the functions 

)(1 mI , )(2 mI  and their ratio )(mY . The equations of Picard-Fuchs and Riccati play a crucial 
role in this analysis. At the beginning we will investigate the functions )(1 mI  and )(2 mI . The 
properties of these functions, which will be needed later, are summed up in the following 
lemma: 
 
Lemma 1: The following assertions hold: 
(a) 0)0(1 =I , 0)21(1 =I , 4)0(1 π=′I  and the function )(1 mI  is positive on )21,0( , i.e. 
 

0)(1 >mI     for    )21,0(∈m  .     (24) 
 
(b) 0)0(2 =I , 0)21(2 >I , 0)0(2 =′I  and the function )(2 mI  is positive and strictly 
monotone increasing on )21,0( , i.e. 
 

0)(2 >mI   ,     0)(2 >′ mI      for  )21,0(∈m  .    (25) 
 
(c) The functions )(1 mI  and )(2 mI  satisfy the following system 
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⎥
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⎡
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⎡

−
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1
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I
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which is called the Picard-Fuchs equation. 
 
Proof: (a), (b). In the first place, using Equations (A12),we calculate the derivatives 
 

[ ]KE )107()21(10
6
1)(1 mmmI −−−=′  ,     (27) 

 

[ ]
)21(

)(
2

15)21()1(
2
5)( 1

2 m
mImmmI

−
=−−−=′ EK  .    (28) 

 
Then the values )0(1I , )21(1I , )0(1I ′ , )0(2I , )0(2I ′  are obtained by direct calculations. 
Moreover, using elementary properties of the complete elliptic integrals, we find 
 

[ ] [ ] 0))(1()21(
3
1)21()1()21(

3
1)(1 >+−−−=−−−−= EEKEK mmmmmmmI  , 

 
From here it follows that 0)(2 >′ mI , i.e. the function )(2 mI  is monotone increasing. Further, 
in view of Equation (A11) we get 
 

0)21(
2
1)21(

2
3)21(2 >⎥⎦

⎤
⎢⎣
⎡ −= KEI  . 

 
From the relations 0)0(2 =I , 0)21(2 >I  and taking into account that )(2 mI  is a monotone 
increasing function, it follows the inequality 0)(2 >mI . 
(c) In order to obtain the system (26), we use the method of undetermined coefficients.  
Let’s consider the system 
 

212

211

DICII
BIAII

+=′
+=′

  , 

 
where A , B , C  and D  are unknown expressions. Replacing the expressions 1I , 2I , 1I ′ , 2I ′  
and using the fact that EK  is not a rational function, we make equal the expressions in front 
of K , respectively E , on the left and right sides of the system equations. In this way we 
obtain the coefficients A , B , C , D  and this yields the system (26).■ 

The following lemma gives the properties of the function )(mY . 
 
Lemma 2: The following assertion is valid: 
(a) The function )(mY  satisfies the following Riccati equation 
 

222 )21()661(6)1(45)21)(1(6 mYmmYmmYmmm −++−+−−=′−−  .  (29) 
 
(b) The function )(mY  satisfies the following second order differential equation 
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YYmmmYmYmYmmm ′−−−−−−−−=′′−− )1(90)21(4)21(36)21(45)21)(1(6 2  .    (30) 

 
(c) +∞==

+→
)(lim)0(

0
mYY

m
 , 0)21( =Y  and 

 
0)( >mY     for )21,0(∈m  .     (31) 

 
(d) The function )(mY  is strictly monotone decreasing on the interval )21,0( , i.e. 
 

0)( <′ mY      for  )21,0(∈m  .     (32) 
 
Proof: (a) Differentiating (23) and introducing )21)(1(6 mmmc −−=  we obtain 
 

2

2

2

1
2
2

2121

I
IcY

I
Ic

I
IIIIcYc

′
−

′
=

′−′
=′  . 

 
Replacing in this equation 1Ic ′  and 2Ic ′  from (26), and making some transformations we get 
(29). 
(b) Equation (30) is obtained after differentiation of (29). 
(c) The values of )(mY  with +→ 0m , and )21(Y  are obtained by using l’Hôpital rule and 
direct calculations using the results of Lemma 1. We obtain 
 

+∞=
′
′

==
+→+→ )(

)(lim
)(
)(lim)0(

2

1

0
2

1

0 mI
mI

mI
mIY

mm
 , 

 

[ ] 0
)21()21()21()23(

0
)21(
)21()21(

2

1 =
−

==
KEI

IY  . 

 
Moreover, )(mY  is a positive function on the interval )21,0( , since )(1 mI  and )(2 mI  are 
positive functions on the same interval. 
(d) We have +∞=)0(Y , 0)21( =Y , and 0)( >mY  for )21,0(∈m . Suppose now, that 
function )(mY  is not monotone decreasing i.e. it has stationary points. Let m  be the first 
stationary point, which is a point of minimum. In this case the following relations hold 
 

0)( =′ mY  ,      0)( >′′ mY       for  )21,0(∈m  . 
 
Taking into account the last relations, Equation (30) yields 
 

0)21(4)()21(36)()21(45)()21)(1(6 2 <−−−−−−=′′−− mmYmmYmmYmmm  . 
 
The last result gives the inequality 0)( <′′ mY , which means that the stationary point m  is a 
point of maximum (it could be stated that all stationary points are points of maximum). This 
fact is in contradiction to our supposition and this proves part (d) of the lemma.■ 

The graph of the function )(mY  is shown in Figure 2. 
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5. Analysis of the Melnikov Function and limit cycles 
 

We are now able to formulate the following theorem which gives the main results 
concerning the limit cycles analysis in perturbed single well Duffing oscillators. 
 
Theorem: The system (16) (with 11 =a ) can have a unique hyperbolic limit cycle. The 
condition for the arising of a limit cycle is the fulfillment of the following inequality 
 

03 <a  .       (33) 
 
The parameters of the limit cycle are determined by the equation 
 

0
5
2)( 3 =+ amY λ  .      (34) 

 
In addition, the limit cycle is stable when 0>ε  and unstable when 0<ε . 
 
Proof: As it has been emphasized above, the zeros of the Melnikov function are determined 
by the solution of the following equation 
 

0
5
2)()()( 32 =⎥⎦

⎤
⎢⎣
⎡ += amYmImB λ  .    (35) 

 
We have reached the result 0)(2 >mI  and 0)( >mY  with )21,0(∈m . Since 0>= baλ , 
Equation (35) has a solution if and only if the inequality (33) is satisfied. Moreover the zeros 
of )(mB  are determined by Equation (34). Equation (34) has a unique solution with a given 
negative constant 3a , since )(mY  is a monotonic function. Then the function )(mB  has also a 
unique zero. Denote the solution of Equation (34) by 0m . In this case the following relations 
are valid 
 

0)( 0 =mB      ,     0)()()( 0020 <′=′ mYmImB  .   (36) 
 
This, according to the Melnikov theory, means that for a sufficiently small 0≠ε , there exists 
such an εh  in an )(εO  neighbourhood of )( 00 mhh =  (see Equations (14a)), that the perturbed 
Hamiltonian system (16) has a hyperbolic (simple) limit cycle )( εεΓ h . The limit cycle 

)( εε hΓ  is localized in a )(εO  neighbourhood of the curve )( 00 hΓ  and tends to )( 00 hΓ  
with 0→ε . The stability of the limit cycle is determined by the sign of the quantity )( 0mB′ε  
and it follows from Equation (36) that the limit cycle )( εε hΓ  is stable when 0>ε , and 
unstable when 0<ε . The theorem is proved.■ 

The limit cycle )( εε hΓ  in practice coincides with the curve )( 00 hΓ  and its first order 
approximation in the time domain is expressed by the functions (12). 
 
 
 
 
 



 11

6. Synthesis of perturbed single well Duffing oscillators 
 

The presented theory can be used to perform a synthesis of the considered oscillators. 
The relations between the Hamiltonian level h  and the elliptic modulus k  and 2km =  given 
in Equation (14a) allow us to compute the value of 0m  corresponding to the preliminarily 
assigned Hamiltonian level 0h . Then Equation (34), for a given 0m , yields the coefficient 3a  
in such a way that the system (16) is to have a limit cycle localized in a )(εO  neighbourhood 
of the assigned Hamiltonian level. The synthesis procedure includes the following steps: 

1) Formulation of the synthesis problem: 
Find an oscillator system of the type (16) (with 11 =a ), having a limit cycle localized 

in an )(εO  neighborhood of the curve  
 

0
422

00 422
1:)( hxbxayhΓ =++  ,     (37) 

 
where the values of a , b , 0h  are given. We note that the preliminarily assigned values of a , 
b  ( ba=λ ) and 0h  form the desired characteristics of the oscillator. In other words, these 
values determine the shape, position and period of the limit cycle which will arise in system 
(16). 

2) Computation of the values of 0m  and modulus 0k  of the complete elliptic integrals: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=

0
20

4
1

2
1

bha
am    .      00 mk =  ;    (38) 

 
2) Computation of the value of  )( 0mY : 

 

[ ]
KE

EK

)1)(2()1(2

)21()1()21(
3
1

)(
00

2
00

000

0 mmmm

mmm
mY

−−−+−

−−−−
=  .   (39) 

 
4) Computation of the perturbation coefficient 3a : 

 

λ)52(
)( 0

3
mYa −=  .      (40) 

 
The perturbation coefficient 3a  obtained in this way ensures that the system (16) is to 

have a simple limit cycle )( εε hΓ , which is localized in a )(εO  neighborhood of the curve 
(37). The limit cycle )( εε hΓ  is stable with 0>ε , and unstable with 0<ε . 

Finally, as an application of the proposed method, we shall briefly consider an 
example of a synthesis of an oscillator system. The computation of the numerical data is given 
after the synthesis procedure. 
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Example: Find an oscillator system of the type (16) (with 11 =a ), having a simple 
limit cycle which is localized in a )(εO  neighbourhood of the curve (37) with 1=a , 2=b  
and 30 =h . 

Solution: 
1) 1=a , 2=b , 30 =h , 5.0== baλ ; 
2) 4.00 =m , 632456.00 =k ; 
3) 777519.1)4.0( =K , 399392.1)4.0( =E , 124667.0)4.0( =Y ; 
4) 623.0623335.03 −≈−=a . 

In this way we find the following system 
 

3

3

2
)623.0(

xxy
xxyx

−−=
−+= ε

 .      (41) 

 
The system (41) has a hyperbolic limit cycle )( εε hΓ , which in an )(εO  approximation is 
presented by the curve 3)21()21()21(:)3( 422

0 =++ xxyΓ . The self-sustained oscillations 
generated by system (41) are expressed practically in the time domain as follows 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 632.0,

2.0
1sd095.1)( ttx  .     (42) 

 
The phase portrait of the system (41) for 25.0=ε  and initial data )5.0,0(  and )4,0(  

obtained by a numerical integration is shown in Fig. 3. The numerical perfectly computations 
confirm the analytical results. 
 

7. Conclusions 
 

An analysis of oscillator systems described by single well Duffing equation under 
polynomial perturbations of 4th degree has been presented. It has been proved that the 
considered system can have a unique hyperbolic limit cycle. The obtained inequality (33) 
represents a condition for the arising of a limit cycle and the equation (34) determines the 
parameters of this limit cycle. 

Moreover, a method for the synthesis of oscillator systems of the considered type is 
proposed. The synthesis consists of finding such appropriate perturbation coefficients that the 
prescribed properties are fulfilled. Both the analysis and the synthesis are performed with the 
help of the Melnikov function. 

An example of the synthesis of oscillator system is given. Together with the numerical 
simulation, it illustrates and confirms the presented theory.  

The results obtained can be used for more complete analysis and synthesis of oscillator 
systems. 
 

Appendix 
 

In this section we give some properties and identities concerning the Jacobi elliptic 
function ),sd(sdsd kzz ==  and the complete elliptic integrals of the first and second kind, 
K  and E , which are used in the presentation. Recall that the complete elliptic integrals K  
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and E  are regarded as functions of 2k , where k  is a modulus, i.e. )( 2kKK =  
and )( 2kEE = . 

The function ),sd(sdsd kzz ==  is a periodic and odd function with a period K4 . 
Moreover the following identities are valid 
 

0),4sd(),0sd( == kk K   ,   ),2sd(),sd( kzkz K+−=  ,    (A1) 
 

∫ =+
K4

0

12 0),(sd dzkzn  ,    ,2,1,0=n ,     (A2) 

 

∫ ∫=
K K4

0 0

22 ),(sd4),(sd dzkzdzkz nn  ,    ,2,1=n ,    (A3) 

 
The results concerning the integration of Jacobi elliptic function sd  are given in two 

lemmas. 
 
Lemma A1: The following recurrence formula is valid 
 

∫∫∫ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
KKK

0

4
22

0

2
22

2

0

dsd
)1(

1
1
3dsd

)1(
12

1
2dsd z

kkn
nz

kk
k

n
nz nnn  ,  (A4) 

 
where n  is an even number and 4≥n , ( ,8,6,4=n ). 
 
Proof: In order to prove the recurrence formula (A4) we start from the identity 
 

422223 sd)3(sd)12)(2(sd)1()1(nd)cd(sd
d
d −−− −+−−+−−−= nnnn nknkkn
z

.  (A5) 

 
where cd  and nd  are Jacobi elliptic functions. This identity can be easily obtained using the 
usual dependencies between the Jacobi elliptic functions [15-20]. Integrating (A5) and taking 
into account the relations (A1), we obtain 
 

⎥
⎦

⎤
⎢
⎣

⎡
−+−−

−−
= ∫∫∫ −−

KKK 4

0

4
4

0

22
22

4

0

dsd)3(dsd)12)(2(
)1()1(

1dsd znzkn
kkn

z nnn  .  (A6) 

 
Equation (A6) is transformed to (A4) with the aid of (A2) and (A3). ■ 
 
Lemma A2: The following identities hold 
 

[ ]KE
K

)1(
)1(

1dsd 2
22

0

2 k
kk

z −−
−

=∫  ,       (A7) 

 

[ ]KE
K

)253()12(2
)1(3

1dsd 242
224

0

4 +−+−
−

=∫ kkk
kk

z  ,     (A8) 
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[ ]KE
K

)8273415()82323(
)1(15

1dsd 24624
326

0

6 −+−++−
−

=∫ kkkkk
kk

z  . (A9) 

 
Proof: Equation (A7) is given in [16]. Equations (A8) and (A9) are obtained with the help of 
the recurrence formula (A4). ■ 

The following relation 
 

2)1()()()1()1()( π=−−−+− mmmmmm KKKEKE  .   (A10) 
 
is known as the Legendre’s Relation [15-16]. At 212 == km  Equation (A10) becomes 
 

[ ] 2)21()21(2)21( π=−KEK  , 
 
from where it follows 
 

0)21()21(2 >−KE  .     (A11) 
 
The derivatives of the functions )(mK  and )(mE  with respect to 2km =  are 
 

)1(2
)()1()(

d
)(d

mm
mmm

m
m

−
−−

=
KEK    ,   

m
mm

m
m

2
)()(

d
)(d KEE −
=  .  (A12) 
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Captions for the figures 
 
Figure 1. Oscillator circuits governed by perturbed Duffing equations 
Figure 2. Graphical plot of the function )(mY  
Figure 3. Phase portrait of system (41) 
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