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Abstract

This paper is devoted to describe the asymptotic behavior of a structure made
by a thin plate and a thin rod in the framework of nonlinear elasticity. We scale
the applied forces in such a way that the level of the total elastic energy leads to
the Von-Kédrman’s equations (or the linear model for smaller forces) in the plate
and to a one dimensional rod-model at the limit. The junction conditions include
in particular the continuity of the bending in the plate and the stretching in the
rod at the junction.
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1 Introduction

In this paper we consider the junction problem between a plate and a rod as their
thicknesses tend to zero. We denote by 0 and ¢ the respective half thickness of the plate
Qs and the rod B.. The structure is clamped on a part of the lateral boundary of the
plate and it is free on the rest of its boundary. We assume that this multi-structure
is made of elastic materials (possibly different in the plate and in the rod). In order
to simplify the analysis we consider Saint-Venant-Kirchhoff’s materials with Lamé’s
coefficients of order 1 in the plate and of order ¢ = " in the rod with n > —1 (see
(1.1)). It allows us to deal with a rod made of the same material as the plate, or made of
a softer material (n > 0) or of a stiffer material (—1 <7 < 0). It is well known that the
limit behaviors in both the two parts of this multi-structure depend on the order of the
infimum of the elastic energy with respect to the parameters § and €. Indeed this order
is governed by the ones of the applied forces on the structure. In the present paper, we



suppose that the orders of the applied forces depend on § (for the plate) and & (for the
rod) and via two new real parameters x and £ (see Subsection 5.1). The parameters
r, & and 7 are linked in such a way that the infimum of the total elastic energy be of
order 6?71, As far as a minimizing sequence vs of the energy is concerned, this leads to
the following estimates of the Green-St Venant’s strain tensors

5/@—1/2
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The limit model for the plate is the Von Karmén system (k = 3) or the classical linear
plate model (k > 3). Similarly, in order to obtain either a nonlinear model or the

classical linear model in the rod, the order of HVU:{VU(; — IgH L2(B.RX3) must be less

than ¢* with x> 3. Hence, §, € and ¢. are linked by the relation
5/@—1/2 — qsgﬁl-

Moreover, still for the above estimates of the Green-St Venant’s strain tensors, the

bending in the plate is of order §°~2 and the stretching in the rod is of order en -,

Since, we wish at least these two quantities to match at the junction it is essential to
have

Finally, the two relations between the parameters lead to
5 = ¢2e® = ¥, (1.1)

Under the relation (IL1l), we prove that in the limit model, the rotation of the cross-
section and the bending of the rod in the junction are null. The limit plate model
(nonlinear or linear) is coupled with the limit rod model (nonlinear or linear) via the
bending in the plate and the stretching in the rod.

A similar problem, but starting within the framework of the linear elasticity is in-
vestigated in [I7]. In this work the rod is also clamped at its bottom. This additional
boundary condition makes easier the analysis of the linear system of elasticity. In [17],
the authors also assume that

% — +oo. (1.2)

With this extra condition they obtain the same linear limit model as we do here in the
case k > 3 and k > 3 and they wonder if the condition (L2) is necessary or purely
technical in order to obtain the junction conditions. The present article shows that this
condition is not necessary to carry out the analysis.

The derivation of the limit behavior of a multi-structure such as the one considered
here rely on two main arguments. Firstly it is convenient to derive ”"Korn’s type inequal-
ities” both in the plate and the rod. Secondly one needs estimates of a deformation in
the junction (in order to obtain the limit junction conditions). In this paper this is



achieved through the use of two main tools given in Lemmas 4.1 and 5.2l For the plate,
since it is clamped on a part of its lateral boundary, a 'Korn’s type inequality” is given
in [§]. For the rod the issue is more intricate because the rod is nowhere clamped. In a
first step, we derive sharp estimates of a deformation v in the junction with respect to
the parameters and to the L? norm (over the whole structure) of the linearized strain
tensor Vo + (Vv)? — 2I5. This is the object of Lemma BTl In a second step, in Lemma
(.2 we estimate the L? norm of the linearized strain tensor of v in the rod with respect
to the parameters and to the L? norms of dist(Vv, SO(3)) in the rod and in the plate.
The proofs of these two lemmas strongly rely on the decomposition techniques for the
displacements and the deformations of the plate and the rod. Once these technical re-
sults are established, we are in a position to scale the applied forces and in the case
k = 3 or kK = 3 to state an adequate assumption on these forces in order to finally
obtain a total elastic energy of order less than §°.

In Section 2 we introduce a few general notations. Section 3 is devoted to recall a
main tool that we use in the whole paper, namely the decomposition technique of the
deformation of thin structures. In Section 4, the estimates provided by this method
allow us to derive sharp estimates on the bending and the cross-section rotation of the
rod at the junction together with the difference between the bending of the plate and the
stretching of the rod at the junction. In Section 5 we introduce the elastic energy and
we precise the scaling with respect to ¢ and k on the applied forces in order to obtain a
total elastic energy of order 6%*71. In Section 6 we give the asymptotic behavior of the
Green-St-Venant’s strain tensors in the plate and in the rod. In Section 7 we characterize
the limit of the sequence of the rescaled infimum of the elastic energy in terms of the
minimum of a limit energy.

As general references on the theory of elasticity we refer to [2] and [12]. The reader
is referred to [1, [27], [I§] for an introduction of rods models and to [15], [14], [11], [16]
for plate models. As far as junction problems in multi-structures we refer to [13], [14],
[24], [25], [26], [3], [22], [23], [19], [I7], [4], [5], [6], [21], [10]. For the decomposition
method in thin structures we refer to [20], [7], [8], [9].

2 Notations and definition of the structure.

Let us introduce a few notations and definitions concerning the geometry of the plate
and the rod. We denote I, the identity map of R3.

Let w be a bounded domain in R? with lipschitzian boundary included in the plane
(O; ey, ey) such that O € w and let 6 > 0. The plate is the domain

Qs = wx] — 6, 4].

Let 79 be an open subset of dw which is made of a finite number of connected components
(whose closure are disjoint). The corresponding lateral part of the boundary of Qs is

F075 = ’}/(]X] — 5,(5[



The rod is defined by
B.s=D.x|-46,L[, D.=D(0,e), D=D(O,1)

where ¢ > 0 and where D, = D(O,r) is the disc of radius r and center the origin O.
The whole structure is denoted

Sse = UDB. s

while the junction is
0575 =QsN Be,g = sz] — 5,5[.

The set of admissible deformations of the plate is

D5 = {v e HY(QsR%) | v=1I, on FM}.
The set of admissible deformations of the structure is

Ds. = {v € Hl(S(;vE;]Rg) | v=1; on Foﬁ}.

The aim of this paper is to study the asymptotic behavior of the structure S;. in the
case where the both paremeters § and € go to 0. In order to simplify this study, we link
0 and € by assuming that

there exists § € R% such that & = & (2.1)

where 0 is a fixed constant (see Subsection 5.1). Nevertheless, we keep the parameters
0 and ¢ in the estimates given in Sections 3 and 4.

3 Some recalls about the decompositions in the
plates and the rods.

From now on, in order to simplify the notations, for any open set @ C R? and any
field u € H'(O;R?), we denote by

GS(U, O) = ||VU + (VU)T||L2(O;R3><3).

We recall Theorem 4.3 established in [20]. Any displacement u € H'(Qs; R3) of the
plate is decomposed as

u(x) =U(x1, ) + x3R(x1, ) A €3 + u(x), x € Qs (3.1)

where U and R belong to H'(w;R?) and u belongs to H'(Qs; R?). The sum of the two
first terms U.(x) = U(z1,x2) + 23R (21, x2) A €3 is called the elementary displacement
associated to w.

The following Theorem is proved in [20].



Theorem 3.1. Let u € H'(Qs;R3), there exists an elementary displacement U,(z) =
U(x1, 1) + 23R(x1, 2) A eg and a warping U satisfying [B.1)) such that

HHHLZ(Q& R3) < CéGs(u, 95), ||VH||L2(Q(;;R3) < CGS(U, Q5)

C
L2 (w;R3) 53/2G s(1,42s)

H 0x,

— R Ae, L2k 51/2

|2,

where the constant C' does not depend on 9.

The warping u satisfies the following relations

s §
/ u(xy, o, x3)drs = 0, / T3TUa (T1, To, x3)drs = 0 for a.e. (r1,x2) € w.

_5 -4
(3.3)
If a deformation v belongs to D then the displacement u = v — I is equal to 0 on I'g .
In this case the the fields ¢, R and the warping w satisfy

U=R=0 on "o, u=20 on FO,&- (34)

Then, from ([B.2]), for any deformation v € D4 the corresponding displacement u = v— I
verifies the following estimates (see also [19]):

C
||R||H1(w;R3) + ||u3||H1( < —Gs(ua 96)7
(3.5)

||R3HL2(w) + ||Z/{a||H1( < WG (u, Q5)

The constants depend only on w.

From the above estimates we deduce the following Korn’s type inequalities for the
displacement u

uallz2(s) < CGs(u,Qs), |usl|L2s) <
C

Gs(u7 Qé)a

| Q

||u_u||L2(Qg ]R3 S G (U, 96)7 (36)
C

4}
Hvu||L2(Q(5;R9 G (U,Qé),

>

Now, we consider a displacement u € H 1(B€75; R3) of the rod B, 5. This displacement
can be decomposed as (see Theorem 3.1 of [20])

u(x) = Wixs) + Qas) A (z1€1 + 22€3) + (), T € B.g, (3.7)

where W, Q belong to H'(—d, L; R*) and w belongs to H'(B. s;R*). The sum of the
two first terms W(xs) + Q(x3) A (z1€1 + x2€5) is called an elementary displacement of
the rod.

The following Theorem is established in [20] (see Theorem 3.1).



Theorem 3.2. Let u € H'(B.5;R?), there exists an elementary displacement W(z3) +
Q(x3) A (a:lel + 1’262) and a warping W satisfying B.1) and such that

||w||L2(B 5;R3) S CEGS(U, B€76), ||VE||L2(BE,6;R3X3) S CGS(U, B&é)
C
L2(—5,LiR3) = ?GS(U’BE"S)
C
S _Gs(u7 BE,(s)
LQ(—J,L;RS) 9

deg
%, -2

dflfg

where the constant C' does not depend on €, § and L.

The warping w satisfies the following relations

/ w(iﬁl, I, l’g)dflﬁldl'g = 0, / l’awg(l'l, I, l’g)dl‘ldl'g = 0,
c (3.9)
/ {xlmg(:ﬂl, To, T3) — LWy (21, xg,:zg)}dxldxg =0 forae xz3€|—4 L[

1>

€

Then, from (3.8)), for any displacement v € H'(B. 5; R?) the terms of the decomposition
of u verify

C
||Q - Q(O)||H1(—6,L;R3) S gGs(ua Bans)a

C
[(Ws = Ws(0)|[m1(-s,0) < ;Gs(uu B.,), (3.10)

C
Wa = WalO)llm(-s0) < 5 Gslu, Beyy) + Cel| Q0)][2-

Now, in order to obtain Korn’s type inequalities for the displacement w, the following
section is devoted to give estimates on Q(0) and W(0).

4 Estimates at the junction.

Let us set
H) (W) ={p e H'(w); =0 on}.
Let v € s, be a deformation whose displacement v = v — I; is decomposed as in

Theorem B.11and Theorem 3.2l We define the function s as the solution of the following
variational problem

Us € HL (),
- D
VUsVp= [ (RNey) - €5 (4.1)
Vo € H,io (w).

Indeed Us satisfies due to the third estimate in (33)

¢ G (u Q(s) (4'2)



The definition (@) of Us together with the fourth estimate in (B2 lead to

~ C
|[Us — Us|| 1) < 52 Gs s (u, Qs) (4.3)
and moreover
82/{3 C
b R 4.4
H&Ca (Rhe) e, < 5Gelu D). (4.4)

Now, let pg > 0 be fixed such that D(O, py) CC w. Since R € H'(w;R?), the function
Us belongs to H*(D(O, py)) and the third estimate in (B.5) gives

C
HU?)HH2 (D(O,p0)) = 53/2(} s(u, Qs). (4.5)

Hence Us belongs to C°(D(O, po)).

Lemma 4.1. We have the following estimates on W(0):

WO < S 1eu w00 + 1+ 5] S [Cuw B (46)
and
W) ~ 0.0 < S[1+ 2] [, + O 5 [Guw B (47
The vector Q(0) satisfies the following estimate:
100)13 < 521+ 5] (Gl )" + € S [Gulu, Bu)]” (4.

The constants C' are independent of € and d.

Proof. The two decompositions of u = v — I; give, for a.e. x in the common part of the
plate and the rod C;,

Z/l(l’l, SL’Q) -+ LL’3R(SL’1, LL’Q) A\ es; + ﬂ(l’) = W(l’3) + Q(l’g) N (xlel + LL’QGQ) + w(l’) (49)

Step 1. Estimates on W(0).

In this step we prove (46]) and (4.7). Taking into account the equalities ([3.3]) and (3.9)
on the warpings u and w, we deduce that the averages on the cylinder Cjs. of the both
sides of the above equality (4.9) give

Mop. (U) = My (W) (4.10)

1 I
where MDE (Z/{) = W Z/[(.ﬁ(]l,IQ)dZL’ldSL’Q and MI& (W) = %/ W(l‘3)d$3
el J D¢ —é

Besides using (3.5) we have

Ce 2
ol 720,y < Cellhallfaw) < Cellthallti, < —[Gs(u, )]

=5



From these estimates we get

Mi (W) = M, (Ue) < [, 25)]” (4.11)

Moreover, for any p € |2, +o00] using (£3) we deduce that

s — Ths| | 2.y < C=*27||ths — Thy] o

. _ c1-2/p (4.12)
< Cpf - /p||U3 _u3||H1(w) < prGS(U, Q(;)
Then we replace Us with Us in (I0) to obtain
~ C
(Mo, (Us) — My, (W) > < =2 [G(u, )] (4.13)

— ey
We carry on by comparing M p_ (&g) with U3(0,0). Let us set

1

r, :Mps(R/\ea) -eg) = m
5 D

(R(.ﬁ(fl, ZL’Q) A ea) . e3dx1da:2 (414)

and consider the function W(z,zy) = ag(xl, x9) — Mp, (Z:i:g) — x1r9 — xor;. Due to the
estimate (AH) we first obtain

H foa

C
< —G Qs). .
02,015 a(: ) (4.15)

L2(D.) — 03/?

Secondly, from ([B.2]) and the Poincaré-Wirtinger’s inequality in the disc D, we get

3
||(R/\ ea) €3 — MDE ((R A ea) . e3)||L2(D5) S CWGS(U’ Q(;)

Using the above inequality and (£.4]) we deduce that

82

1
IV, 2y < C(5 + 55 ) (Gl 2], (4.16)

Noting that Mp_(¥) = 0, the above inequality and the Poincaré-Wirtinger’s inequality
in the disc D, and lead to

2

g2 € 9
112,y < 05 (14 ) [Gulu, )], (4.17)

From inequalities (d.15), (£16]) and (A.I7) we deduce that

82

1
“@“EO(E) < C(S + ﬁ) [Gs(ua Q&)}2



which in turn gives

(0,00 = 7 (0.0) — Mo, (@) < € (% + 5 [Cu(w. )]

This last estimate and (£.13)) yield
c,C, & 2
?< (S5 + ) [ )])” (4.18)

In order to estimate M, (Ws) —Ws(0), we set y(x3) = W(x3) — Q(0)x3 Aes. Estimates
in Theorem together with the use of Poincaré inequality in order to estimate ||Q —
Q(O)||L2(_575;R3) give

1Us(0,0) — M, (W)

Hiiliz L2(—5,8) C( ) (1, Be.g),
|Gl < St

which imply
2

52 )
[0 = 50|52y < O 5 (14 5) [Gulu, Bo)]"
52
Hy3 - y3(0)Hi2(_5,5) < C? [Gs(u, Be,5>}2'
Then, taking the averages on | — 4, [ we obtain
2

My, (W) = Wal0)F < (1 + g) :—2 [G.(u, B.)]”,

5 (4.19)
M, (Ws) — Wy(0)[2 < C5 [G(u, B.s)]”.

Finally, from (4.I1]), (AI8]) and the above last inequality, we obtain (4.6]) and the fol-
lowing estimate:

_ 2
Wy(0) ~ E0,0) < S [ 4.2

slen T
Choosing p = max(2,4/6) (recall that § = %) we get (ET).

Step 2. We prove the estimate on Q(0). We recall (see Definition 3 in [20]) that the
field Q is defined by

=] 16 (w.0)] )+0§2 G.(uB.g)”.  (420)

4 4
Ql(l’g) = 7T—{;‘4 /E $1U3($)d$1d$2, QQ(I3) = _71'—{54 D, LE‘QU3(QE)dI1dSL’2,
2
Qs(w3) = @/ {:)sluQ(x) — l’gul(l')}dl’ldl'g, for a.e. x3 €] =9, L].
De



Now, again using the equalities (83)) and (39) on the warpings @ and w, the two
decompositions ([A.9)) of w in the cylinder Cj, lead to

ML; Qa

= ’MDE (Us z4)],

’4 ‘2/\415 Qg’—’/\/lps Uzﬂfl U1I2)’

Noticing that Mp_(U; z5) = Mp_ ([ — Mp.(Ui)]z2) and applying the Poincaré-
Wirtinger’s inequality with (3.5) yield

c 2

25 (G, )% (4.21)
From the definition of the function ¥ and the constants r, introduced in Step 1 we
deduce that

M, (Qs)]" <

‘MDE (U3l’a)‘ S ‘MDE (\IISL’Q)‘ + ‘MDE([Z/{g - (73]1’0{)‘ + C€2|I'a‘. (422)
Estimate (LI7) give
2 g2 g2
(M. (Uz,)|* < 03(1 52) (G, Q)] (4.23)
while (83) leads to
C C C C
ral® < SRz o) < ZIRIZa oz < ZIRIEnwmy < Z5[Gs(u, Q)] (4.24)
and (4.3) with the Poincaré-Wirtinger’s mequahty yield
~ Ce?
Mo, (Us = Usla) | < =[G, )] (4.25)
Finally, (4.22), [£23)), (£24) and (£.25) we obtain
2 C 2
Mi(Qu)f* < = (1 + 52) (G (u, Q)] (4.26)
The third estimate in ([B.8) implies
)
1Q(0) — M, (Q)]; < C51G(u, B.s))”. (4.27)

From (4.26) and (4.27) we get (A.8). O

5 Elastic structure.

In this section we assume that the structure Ss. is made of an elastic material. The
associated local energy W, : X3 — RT is the following St Venant-Kirchhoff’s law (see

91)

(5.1)

O Q(FT'F —13) if det(F)>0
() = + 0 if  det(F) < 0.

10



where the quadratic form @) is given by

Qp(E) in the plate Qs,

Q=(E) = { ¢2Q.(E) in the rod B., (5:2)
with
Qu(E) = %(tr(E)f + 2 (B),  Qu(B) = %(tr(E)f + 5w (), (53)

and where (A, 1) (resp. (@2, ¢2pr)) are the Lamé’s coefficients of the plate (resp. the
rod). The constant g. depends only on the rod, we set g. = ", the parameter 1 being
such that

e 1 = 0 for the same order for the the Lamé’s coefficients in the plate and the rod,
e 1 > 0 for a softer material in the rod than in the plate,
e ) < 0 for a softer material in the plate than in the rod.
Let us recall (see e.g. [16] or [7]) that for any 3 x 3 matrix F' such that det(F) > 0

we have
tr([FTF = L*) = [||[FTF = L3||]> > dist (F, SO(3))". (5.4)

Hence, we denote by
E(u, Sse) = [Go(u, 25))]* + ¢2[G (u, B )] (5.5)
the linearized energy of a displacement v € H'(S5.;R?). We define the total energy
J(s(’l})ﬂ over Ds . by

Js(w)= [ W (Vo)x)de — | fs5(x) - (v(z) — Lo(x))da. (5.6)

Séyg Sé,s

5.1 Relations between ¢, ¢ and g..

In Section Subsection 5.2 we scale the applied forces in order to have the infimum
of this total energy of order §2~! with x > 3. In such way, the minimizing sequences
(vs) satisfy

5/@—1/2

Vol Vs <c

) S OO || Vuy Vv

- I3HL2(95;R3X3 - I3HL2(BE;]R3X3)

4e

The above estimate in the plate 25 leads to the Von Karmén limit model (k = 3) or the
classical linear plate model (k > 3). Since we wish at least to recover the linear model

For later convenience, we have added the term fs(x) - Iy(x)dz to the usual standard energy,
56,5
indeed this does not affect the minimizing problem for Js.

11



in the rod which corresponds to a Green-St Venant’s strain tensor in the rod of order
e" with k" > 3, we are led to assume that

§U? = g e (5.7)

Furthermore, still for the above estimates of the Green-St Venant’s strain tensors, the

bending in the plate if of order 6*~2 and the stretching in the rod is of order £ 1. In
this paper, we wish these two quantities to match at the junction it is essential to have

’

=gt (5.8)
As a consequence of the above relations (5.7)) and (5.8) we deduce that
5 = ¢?e? = M1t (5.9)

which implies that n must be chosen such that n > —1.

From now on we assume that (5.9) holds true and to recover a slightly general model
in the rod we extend the analysis to K > 3.

5.2 Assumptions on the forces and energy estimate.

Let v € Ds. be a deformation. The estimates in Lemma 1] become (taking into

account (£.9))

2

C o
Wal0) < 5|1+ 5 |Ew, S50,

- C
[W3(0) = Us (0,0)" < =5 (£ + 6)E(u, Se) (5.10)
cri 1 E(u, Ss.)
2 Y
|@®Mﬁ55ﬂ5+ﬂaw&ggcw+@_§§_

The following lemma give the estimates of the displacement u = v — I in the rod B, s.

Lemma 5.1. For any deformation v in Ds. the displacement uw = v — 1 satisfies the
following Korn’s type inequality in the rod B. s:

E(u, ;.- £(u, S;.
el < CEETD, sl , < 02D
E(u, S;.) E(u, S;.) (5.11)

HVUH%Z(BE,(;;R% <C

2
2@ |Ju — W||L2(Bs,6;R3) <C e

Proof. We define the rigid displacement r by r(x) = W(0) + Q(0) A z. From (B.I0) we
obtain the following inequalities for the displacement u — r:

C
||ua - ra||L2(Bm;) S ;Gs(ua B&,é)a
HU3 — r3||L2(B&5) < CGS(U, B€75), (512)

C
||Vu — Vr||L2(Bs,6;R9) S zGS(u, Ba(;).

12



Then, the above estimates and (5.10) give (observe that due to relation (5.9) we have
C
1QO)IE < 560 85.)

£

C C
D) 25(%56,5)7 Hr3||%2(355;R3) < —25(%56,5)7
€74z ’ =

||ra||%2(3575;R3) <

Q

IVr 725, .m0y < 55E€ (1, Sse)-
s < q&

which lead to the first third estimates in (B.I1]) using (5.12)). Before obtaining the
estimate of u — W we write (see (8.7))

u(:z) — W(l’g) = (Q(l’g) — Q(O)) A (:):161 + 1'262) + ﬂ(l’) + Q(O) N (1’161 + 1’262).

Then due to estimates (3.8), (BI0) and (5.I0) we finally get the last inequality in
(G110, O

The following lemma is one of the key point of this article in order to obtain a priori
estimates on minimizing sequences of the total energy.

Lemma 5.2. Let v € D5, be a deformation and uw = v — I;. We have

||dist(Vv, SO(3))||72(q,)

G (u,Qs) < Cl|dist(Vu, SO(3))|| 2, + Ci 557 (5.13)
and the following estimate on Gg(u, B:s):
dist(Vv, SO(3))]]2.
G, (u, B.g) < C||dist(Vv, SO(3))|| 125, ;) + Cs dist 3( M.,
dist(Vo, SO By
1/27 N@LSUVY, L2(Qs)
+C[6+e"?] 53 iz

The constants C' do not depend on ¢ and €.

The proof is postponed in the Appendix.

As an immediate consequence of the Lemmas 5.1l and 5.2 we get the full estimates
of the displacement u = v — I; in the rod.

Corollary 5.3. For any deformation v in D5, the displacement u = v — I; satisfies the

13



following nonlinear Korn’s type inequality in the rod B; s:

||dist(Vv, SO(3))|| 20,

||dist(Vv, SO(3 ))Hmﬂ
[[uallz25..5) < C[ £q. +(Vo+VE) 32 : ]
|| dist(Vv, SO3))|| 2. ) ||dzst(Vv SO 2. 5
C LR . =3
e e
dist(Vv, SO(3))|| .2 ||dist(Vv, SO(3))|[72
sl 2 SC[H ist(Vv, SO(3))|r2(y) (Vo4 V) 2 12( 95]
’ qE € qa
|| dist(Vv, SO(3))| |2
+ | dist(Vo, SOB3))| 2 ) + 20  —
dist(Vv, SO(3))|| .2 dist(Vv, SO(3))|[2.
Vulls i < O LT SO irw) | (5., 7y T SO m”]
’ €qe € q€
dist(Vv, SO(3))|| 2 dist(Vv, SO(3))|]72
C’H ist(Vv 5( ))HL(BW;) +QC’2|| ( 84( ))HL (Be.s

(5.15)
First assumptions on the forces. To introduce the scaling on fs, let us consider f,,
g1, g2 in L*(0, L;R?) and f, € L*(w;R®) and assume that the force fs is given by

T2

fs(x) = e [fr 1(z3)er + fra(zs)es + 1fr3(173)e3 + 291(553) + ggz(ff?,)}

r € B.s, x3>9, (5.16)

fsalz) = 5'{_1fp,a(931>552), Js3(x) = 0" fp3(1, 22), x € (.
We set

2
N(fp) = llfollr2me), N(f) = [If 2oz + D 9allzorms.  (5.17)

a=1

Lemma 5.4. Let v € D5 be such that J(v) <0 and u= v — 1I;. Under the assumption
(BI6) on the applied forces, we have

o if k>3 and K > 3 then

||dist(Vv, SO(3))||r2s) + Gel|dist(Vv, SO(3))||2(5. 5)

< CF12(N(f,)+N (1), (518)

e if k =3 and K > 3 then there exists a constant C* which do not depend on § and €
such that, if the forces applied to the plate Qs satisfy

N(fp) < C"pyp (5.19)
then (B.I8) still holds true,

14



o if Kk >3 and K = 3 then there exists a constant C** which do not depend on & and €
such that, if the forces applied to the rod B. s satisfy

N(fr) < C%pr (5.20)

then (B.I8) still holds true,

o if i =3 and k = 3 then if the applied forces satisfy (519) and (5:20) then (5I8) still
holds true.

The constants C', C* and C** depend only on w and L.

Recall that we want a geometric energy in the plate ||dist(Vv, SO(3))||12(q,) of order
less than §°/2 in order to obtain a limit Von Kirméan plate model. Lemma [5.4] prompts
us to adopt the conditions (5I9) if x = 3 and (5.20) if ' = 3. Let us notice that in
the case k = 3 under the only assumption (5.16]) on the forces (i.e. without assumption
(5.19)) the geometric energy is generally of order 62 which corresponds to a limit model
allowing large deformations (see [9]).

Second assumptions on the forces. From now on, in the whole paper we assume
that

o if Kk =3 then
N(fp) < C* i, (5.21)

o if K =3 then
N(f,) < C*™p,. (5.22)

Proof. Proof of Lemmal[5.4. Notice that Js(I;) = 0. So, in order to minimize .J5 we only
need to consider deformations v of Ds, such that Js(v) < 0. From (3.6), (5.11]) and the
assumptions (5.I6]) on the body forces, we obtain for any v € D5, and for u =v — I

[ 5@ uladde] < €0 N (1) G, )
Ss,e (5.23)

+ Chgee™ N(f)\/E(u, Ss.).

Now we use the definition (5.5) £(u,Ss.) and Lemma to bound Gg(u,€)s) and
Gs(u, B:s) and E(u, S5). Taking into account the relations (5.7)-(5.9) we obtain

[ Ss(@) - u(@)de| SCLOTTIN)|dist(Tv, SO(3)) |y
86,5

+ C[VE + Ve BN(f,)||dist(V, SO3))| 22,
+2C,Cag%e" N (f,)||dist(Vo, SO(3)) | a(s.,

+ O V2IN(f,) + N(f) HIdist(Vo, SO(3))|| 2205
+ Cq2e® N(f,)||dist(Vv, SO(3)) |15, )

(5.24)

15



From (510, (52), (£3) and (54]) we have

2
) o Pl ) o
—4p||dzst(Vv, SOB)Z20y) + - ldist(Vo, SOB)72s. )

< [ WAVo)(a)dz < [ fs5(z) - ulz)da.
Ss,e Ss,e

(5.25)

Then using (5.24) we get

[% — O35 BN (f,) — C[6 + £12] X 3N ( fr)] ([ dist(Vo, SOB)| 2,

n [% 900" _3N(fr)] ¢2||dist(Vv, SO(B))H%z(BE’&)
<C&"MHN(f,) + N(f,) Hldist(Vo, SO(3))|| r2as)
+Cqe™ N(f,)||dist(Vo, SO(3)) 125, ;)

<CS*VN(f,) + N(f) }(|dist(Vo, SO3))|| r2y) + || dist(Vv, SO(3))| |25, 4 ) -

(5.26)
Now, recall that £ > 3 and & > 3, so that first [§ + £'/2]e” =% — 0. Secondly, setting
C* = 4C1C3 and C*™* = 8C5C} then (5.18) holds true in any case of the lemma. O

Recalling that 6%~ 1/2 = qea’i,, we first deduce from Lemma [5.4]
[ dist(Vv, SO3))|| 2y < C6 2, ||dist(Vv, SO3))|| 25,0 < Ce . (5.27)
Then applying (5.26) of Lemma [5.2] we obtain
G, (u,Q5) < Co~1/2 (5.28)
while (5.14) gives

2k—4

||dl$t(V’U,SO(3))||L2(Qé) S Cdﬁ_1/2—|—0[5—|—81/2:|5 -

€63

Gi(u, Bes) < C’a"f/ + 0[5 + 51/2}

and using (5.8)) yields
Gs(u, Bes) < Ce™. (5.29)

Finally for any deformation v € Dy, and u = v — I such that J(v) < 0 we have

E(u,S5c) < CO™ 1 = O, and | fyru< O (5.30)
56,6

Moreover, the above inequality together with (5.25)show that

W.(Vo)(z)de < C5% (5.31)
86,6
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which in turn leads to

’

[V V0 = T3] 1oy, sy < COT2, [ V0TI VU =T gy sy S C° 0 (5.32)
From (5.30) we also obtain
c6* 1 < Js(v) <0. (5.33)
We set
ms = inf Js(v). (5.34)
UED(;YE

In general, a minimizer of Js does not exist on Dy .. As a consequence of (5.33]) we have

ms
¢ < 5261 <0.

6 Limits of the Green-St Venant’s strain tensors.
In this subsection and the following one, we consider a sequence of deformations (vs)
belonging to Dy, and satisfying (us = vs — I4)
E(us, Sse) < C5* (6.1)

or equivalently
E(U(;,S(;,g) < ngé?% .

Inequality (6.1]) implies
G (us, Q) < C5 2 Gy(ug, Bg) < C™ |
For any open subset O C R? and for any field ) € H'(O;R?), we denote

10, | O
Yas () = 5(8:175 * 8xa)’

(o, B) € {1,2}. (6.2)

6.1 The rescaling operators.

Before rescaling the domains, we introduce the reference domain €2 for the plate and
the one B for the rod

O =wx]-1,1, B=Dx]0,Ll= D(0,1)x]0, L[.

As usual when dealing with thin structures, we rescale €25 and B. 5 using -for the plate-
the operator

s (w) (21, 22, X3) = w(x1, 9, 0X3) for any (a1, 22, X3) €
defined for e.g. w € L?*(2s) for which ITs(w) € L*(2) and using -for the rod- the operator
P.(w)(Xy, Xo,x3) = w(eXy,eXa, x3) for any (X, Xo,23) € B
defined for e.g. w € L?*(B.s) for which P.(w) € L*(B).

17



6.2 Asymptotic behavior in the plate.

Following Section 2 we decompose the restriction of us = vs — I; to the plate. The
Theorem Bl gives Us, Rs and g, then estimates (B.3]) lead to the following convergences
for a subsequence still indexed by ¢

1 .
WU;M — Us strongly in  H'(w),
1
FUW; — Ua Weakly in HI(W),
1 .
= Rs =R weakly in  H'(w;R?), (6.3)
1
5—HH5(E(5) — 7 weakly in L*(w; H'(—1,1;R?),
1
= (g—i{i —Rs N ea) — Z, weakly in L*(w;R?),

The boundary conditions (3.4]) give here
Uy =0, U,=0, R=0 on 7o, (6.4)

while (6.3) show that Us € H?(w) with

s Uy
=R =R (6.5)
We also have ) U
—TI5(tas) — Us — X3=—— weakly in  H(Q),
ot ’ Oq (6.6)

1
5&—2
which shows that the rescaled limit displacement is a Kirchhoff-Love displacement.

s(us;s) — Us strongly in - H' ()

In [8] the limit of the Green-St Venant’s strain tensor of the sequence v; is also
derived. Let us set

X X
ﬂp =Uu-+ 73(21 . eg)el + 73 (Zg . 63)62 (67)
and 1 0Us OU
ws(U) + 272222 i g = 3,
Zop = Yas(U) 20x, Oxp (6.8)
Yas(U) if k > 3.
Then we have
1
5 5n_1H5((vaJ)Tvm ~I;) = E, weaklyin L'(Q;R),

18



where the symmetric matrix E, is defined by

821/{3 022/{3 10u 1
—-X Z -X Z S
o2 TN 0,0, T 9ok,
a Z/{3 18u 2
E, = * —X +Z —Bs (6.9)
p 3002 3 2 5 X,
* * 8up73
0X5

6.3 Asymptotic behavior in the rod.

Now, we decompose the restriction of us = vs — Iy to the rod. The Theorem
gives Ws, Qs and wWs, then the estimates in (B.10), (5.10) allow to claim that

! i
|[@s]| L2(B. yirs) < Ce™ ||VWs|| 2B, 5r8) < C”

aw, g
195 — Q5(0) (s iy < O 2, H—5 Qs hey $Cen

L2(=8,LR?) (6.10)

[[We,3 — Ws3(0)||m1(—s,0) < Cer !,
Wy — Wi(0) = Qs(0)azy A e |1 (o 1) < C" 2.
Moreover from (B.10) we get
Was(0)] < C/3(8 + e 2,
Wi s(0) — Uy 5(0,0)] < OV + 2" (6.11)
195(0)|2 < CVE + 2272
Due to the above estimates we are in a position to prove the following lemma:

Lemma 6.1. There exists a subsequence still indexed by & such that

1
— W5 — W, strongly in  H'(0, L),

ek —2
1
T Wss = Ws  weakly in H*0, L),
gr -
1
EQ(; — Q weakly in H'(0,L;R?),
% (6.12)
— P.(w5) =W weakly in L*(0, L; H'(D;R?)),
Eli
1
e (82/;}21 - Q5,2) — Z,  weakly in L*(B),
1
,—(8W52 + Qs 1) — Z, weakly in L*(B).
er -1 81’
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We also have W,, € H*(0, L) and

dW1 dW2
= = —-0,. 1
d,’L‘3 Q27 d$3 Ql (6 3)
The junction conditions
W,(0) =0, Q(0)=0, Ws(0) = Us(0,0) (6.14)
hold true. Setting
w, =W+ [XlZl + XQZQ} (S (615)
we have
1
- P ((Vus)'Vus; —13) = E, +F  weakly in  L'(B;R*?), (6.16)
gr

where the symmetric matrices B, and F are defined by

1 dQ3 1 awr,i&

y1(w,)  y2(w,) —§X2 s +§ aX,

B 1. do, 10w,
E =1 * =@ 7 dxj t3 8X23 )

d*Uy Uy dUs (6.17)
* * —% da3 - X da3 + dxs
_— %(HQH%Ig ~-0.9") ifx =3,
0 if K >3
Proof. First, the estimates (6.10) and (6.11]) imply that the sequences (SM%W""S’ 6/@,—1—1]/\)3’6’

1
—— Qs are bounded in H(0, L; R*), for k = 1 or k = 3. Taking into account also (6.10)
gr -

and upon extracting a subsequence it follows that the convergences (6.12) hold true to-
gether with (6.13). The first strong convergence in (6.12) is in particular a consequence
of (6I0). The junction conditions on Q and W, are immediate consequences of (6.11))
and the convergences (6.12)).

In order to obtain the junction condition between the bending in the plate and
the stretching in the rod, note first that the sequence Wﬁm converges strongly in

H'(w) to Us because of ([E3) and the first convergence in (6.3)). Besides this sequence is
uniformly bounded in H?(D(O, py)), hence it converges strongly to the same limit U5 in

W6,3 in H1(07 L)>

C°(D(O, py)). Moreover the weak convergence of the sequence

1
Eli/—l
gives the last condition in (6.14]).

€Hl_1

implies the convergence of Wis.3(0)to W5(0). Using the third estimate in (G.11))
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Once the convergences (6.12) are established, the limit of the rescaled Green-St
Venant strain tensor of the sequence vy is analyzed in [7] and it gives (6.17). O

The above Lemma and the decomposition (3.7) lead to

1
,—2P€(ua75) — W, strongly in H'(B),
gr =
1
K =1

€

Pe(um — W175) — —X2 Qg Weakly in HI(B>,

k' —1

P.(ug5 —Whs) = X193 weakly in Hl(B),
€

1 dW, dWs
——P. —~ W5 — X - X
(U3,5) Ws 1 s 2 s

= weakly in  H'(B),
gl —

which show that the limit rescaled displacement is a Bernoulli-Navier displacement.

ms
§52k—1 *

7 Asymptotic behavior of the sequence

The goal of this section is to establish Theorem [[.2l Let us first introduce a few
notations. We set

PR — {(u,w, Q;) € HY(w;R?) x HY(0,L; R*) x H'(0, L) |
ks

Us € H2(w)> Wa € H2(0aL)a U=0, 87 =0 on 7, (71)
dWw,
Wi0) =2(0.0).  Wa(0) = T(0) = Qs(0) = 0}

We introduce below the ”limit” rescaled elastic energies for the plate and the rod

)= gt [ [0 3 [

2

+ v, (Al/{g) 2]

SR /[(1—%) i \za5\2+yp(211+222)2],

(1 =13) Ju et (7.2)
B [Frd®Wi2 | dPWy 21 B dWs 2
Q) - Wy |
TV, Qs) S/O[dxg‘ dx§H+2 dog T
L
r dQs |2
L H W/ Qs‘
8 0 d(l?g
where the Z,3’s are given by
10Us oUs .
« aa. Ao f )
Zaﬁ = i g(U) + 28xa aSL’g nE 3
Yas(U) if k > 3.

21



and where F33 is given by
1L/71dWy12  |dWy )2
Fays = { 2 Qd—xg drs
0 if K > 3.

) if kK =3, (73)

The total energy of the plate-rod structure is given by the functional J defined over
PR3
Ts(UW, Q3) = T,(U) + T, (W, Q3) — Ls(U, W, Q3) (7.4)

with
L - (L
L3U,W, Q3)22/fp~u+7r/ fT~Wd:c3+§/ Jo - (QNeq)das (7.5)
w 0 0

where

dWs n AW,
dflfg “ dflfg
It is worth noting that the functional J,(U) corresponds to the elastic energy of a Von
Kérmén plate model for k = 3 (see e.g. [11]) and to the classical linear plate model for
k > 3. Similarly the functional J,.(W, Q3) corresponds to a nonlinear rod model derived
in [7] for 5" = 3 and to the classical linear rod model for £ > 3. Let us also notice that
in the space PR3 the bending in the plate is equal to the stretching in the rod at the

junction while the bending and the section-rotation of the rod in the junction are equal

to 0 (see ([T.4))).

Q:_

ey + Qzes. (7.6)

In the lemma below we give sufficient conditions on the applied forces in order to
insure the existence of at least a minimizer of J (see [11] for a proof of the result for
different boundary conditions for the displacement on dw).

Lemma 7.1. We have
o if k>3 and K > 3 then the minimization problem

min jg(U,W, Q?,) (77)
(UW,Q3)€PR3

admits an unique solution,
e if k =3 and K > 3 then there exists a constant C; such that, if (fo1, fr2) satisfies

ol Z2g) + 1 fpelliow) < CF (7.8)
then (L1) admits at least a solution,
e if k >3 and K = 3 then there exists a constant C;* such that, if f.3 satisfies

I frallz2(0,0) < CFF (7.9)
then (LX) admits at least a solution,

e if k =3 and k' = 3 then if the applied forces (fu1, fpe) and f,3 satisfy (L.8) and (T9)
then (LX) admits at least a solution.

22



Proof. First, in the case x > 3 and & > 3 the result is well known.

We prove the lemma in the case s = 3 and & = 3. The two other cases are simpler and
left to the reader.

Due to the boundary conditions on U3 in PR3, we immediately have

1Us| |2y < CTWU). (7.10)
Then we get
| Va,5(U ||L2w < U +CHVU3H »
aﬂzl @ = 5 LR (7.11)
< J,(U) + C1T,(U)]*.
Thanks to the 2D Korn’s inequality we obtain
) + ol i1y < CTU) + Cp[T,U)]. (7.12)
Again, due to the boundary conditions on W, and Qs in PR3, we immediately have
WAz 0.y + Wl T2 0.0y + 119311 H1 0,0y < Te(WV, Qs). (7.13)
Then we get
dW3 dWl dW2
.20+ [T o * |
H dxs lL2(0,L) — < Jr(W, Q) + { dxs 11La( dxs 1lL4(0,L) } (7.14)
< JW, Qs) + C[T.(W, Qs)] :
From the above inequality and(Z.10) we obtain
2 9 dWs |2
< - -
Wil < CWOP + €[4 (715

< CT,U) + CTW, Q3) + CrlT,(W, Q3)]*.

Since J3(0,0,0) = 0, let us consider a minimizing sequence (™), WV, )) € PR;
satisfying Js(U™), W), Q )) <0

m = inf TJs(U, W, Q3) = Nl—ig-loo j3(u(N)u W(N)v Q:(sN))

(Z/{,W,Qg)GPRg

where m € [—o0, 0].

With the help of (T.10)-(7.15) we get

ToU™N) + J, W, QM) < C||fially/ T U™
+ (1l B + 12l o) (C) T ™) + A/ Cr T, (U™))

2 ~ (7.16)
+> (1frallzo.n) + 190l 220, 1:25)) \/JT(W(N% Q3")

a=1

Fllfallzon (Y ZVD, M) + 0\ TUN) + CrT W, o))
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1 . r . : :
oo and Cf = o if the applied forces satisfy (7.8) and (7.9) then
the following estimates hold true

Choosing C} =

N N N N
W™ 2wy + U | ) + 1SN 1) + IV 20,1

(7.17)
N N N
HIWE 20,0y + 1195 10,0y + WY o,y < C

where the constant C' does not depend on N.

As a consequence, there exists (™) W), Qé*)) € PR3 such that for a subsequence

UM < Ul weakly in H?(w) and strongly in Wh4(w),
UM ~ Y weakly in H'(w),
W WS weakly in H*(0, L) and strongly in W40, L),
éN) — Q:(,)*) weakly in H'(0, L),
W?EN) — W?E*) weakly in H'(0, L).
Finally, since J5 is weakly sequentially continuous in

H2(w) x H'(w; R?) x L2(R%) x HX(0, L;R?) x HY(0, L;R?) x L*(0, L)

with respect to
(u37 u17u27 le7 2127 2227 W17 W27 W37 Q37 F33)

The above weak and strong converges imply that

TUD WD 0N =m= min  FHUW,Q;)
(Z/{,W,Qg)GPRg

which ends the proof of the lemma. O

The following theorem is the main result of the paper. It characterizes the limit of

= inf Js(v) as the minimum of
52H—1 ’UE]D)(;,E ( )

the limit energy J3 over the space PR3. Due to the conditions on the fields U, W, Q3 in
PR3, this minimization problem modelizes the junction of a 2d plate model with a 1d
rod model of the type ”plate bending-rod stretching”.

Theorem 7.2. Under the assumptions (5.10), (5.2I)- B22)and ([T8)-(CI) on the

forces, we have

m
the rescaled infimum of the total energy 52%:

My min _ J3(U, W, Q3), (7.18)

550 0251 (U W,0n)cPRy
where the functional J is defined by (4.
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Proof. Step 1. In this step we show that

ms

. < Tim . .
B, T W, @) < lipigl 2 (719)
Let (vs)s be a sequence of deformations belonging to D;. and such that
o Js(vs) L my
(lsl_I)I(l) 1 hgn_}onf 5o (7.20)

One can always assume that Js(vs) < 0 without loss of generality. From the analysis of
the previous section and, in particular from estimates (5.30) the sequence vs satisfies

E(us, Sso) < OO L = C2e> | ||dist(Vos, SO(3))| |2y < CO* /2
| dist(Vvs, SO(3))|| s, ,) < Ce" .

Estimates (5.32)) give

HVU?VU(;

(7.21)

) < Cor12, | Vvs Vs < Ce" . (7.22)

- :[3HL2(Q(5;R3><3 - I3HL2(3575;R3X3)

Firstly, for any fixed ¢, the displacement us = vs— I, restricted to €2, is decomposed
as in Theorem B3Il Due to the second estimate in (7.21]), we can apply the results of
Subsection to the sequence (vs). As a consequence there exist a subsequence (still
indexed by ) and U, RO € H'(w;R3), such that the convergences (6.3) and (6.6])
hold true. Due to (64) and (6.5) the field Us belongs to H?(w), and we have the
boundary conditions

U9 =0, vui” =0, on A, (7.23)

Subsection [6.2] also shows that there exits u(”) € L*(w; H*(—1,1;R?)) such that

1
S5n (Vog Vs —I3) — EI(,O) weakly in  L'(€; RY) (7.24)
where ES)) is defined
92V 92 \© 10a%
-X 3 Z(O) X 3 Z(O) 1Y%
3 or? ten % 01,020 ten 2 0X5
27 /(0) ou'”
EO = _X 0°Us z(0) 19Uy, (7.25)
P * 3 83:% + 2 2 8X3
(0)
* * Ot 5
0X3

with

1o ouy”
s (U©)) £ 2258 3
Z(ioﬁ) = " B( )+ 2 (9£Ea 01175 ’

Yo (U?) if k > 3.

if k= 3
e (7.26)
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Moreover thanks to the first estimate in (T.22), the weak convergence (T.24]) actually
occurs in L?(2; RY).

Secondly, still for ¢ fixed, the displacement us = vs — I, restricted to B, s, is de-
composed as in Theorem Bl Again due to the third estimate in (22]), we can apply
the results of Subsection [6.3] to the sequence (vs). As a consequence there exist a sub-

sequence (still indexed by 6) and W, Q O cH 1(0 L;R3), such that the convergences
(6I2). As a consequence of (6.13) the fields W® belongs to H?(0, L) and we have

dw®

dl’g

The junction conditions (6.14) and (6.14) give

= Qéo) A €3.

Q) =0, WP0)=0,  W0)=u"(0,0). (7.27)

The triplet (U@, W©®_ 0" belongs to PR;.
Subsection [6.3 also shows that there exits w\” € L?(0, L; H'(D;R?)) such that

1

ﬁPE((Vv(;)TVv(; ~I;) ~EY  weakly in L'(B;R¥?), (7.28)
er -

where the symmetric matrices EY is defined by

(0) —(0) _-X il
711(11)7« ) 712(% ) 5 *2 dis 20X,
(0)
RO . () ledgg 10w +FO  (7.29)

27 4(0 27 4(0) (0
N . _de U, de U, dUy

dI?& d 2 dl’g

1 T

FO — §(||Q N3 — QW(Q)") ifk =3
" if £ >3, (7.30)
d (0) d (0)
where QU = — W e + ldd €2 + Q;(;O)E?,.

dLU3 dLU3
Moreover thanks to the second estimate in (7.22)), the weak convergence (7.28)) actually
occurs in L?(B;RY).
First of all, we have

1 —~ 1 — 1 —
o2+t / e (W‘S) Tt /95 WelVes) + q2e> /BE,J\C(S,E We(ve)
1
/ Qp H5 -((Vvs) Vs — Ig]) / Q; (XB\DX}O s P [8 ((VU5) Vs — 13})
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From the weak convergences of the Green-St Venant’s tensors in (7.24) and (7.28)) (recall
that these convergences hold true in L?) and the limit of the term involving the forces

(C.32) we obtain

1
lim inf 2 % 1 > / QEY) + / Q(EY) —lim /S fs-(vs—1Ia)  (7.31)

6—0

where EY and E”) are given by ([C25) and ([Z29]). In order to derive the last limit in
((C.31)) we use the assumptions on the forces (L.16]) and the convergences (6.3) and (6.12)
and this leads to

/ f5 (vs = 1g) = LaUO, WO, Q) (7.32)
Sé,s

im
§—0 §2r—1

where L3(U, W, Q3) is given by (TH) for any triplet in PR3. From (7.31)) and (7.32), we
obtain

hfsllof 52 & —/Q (E)) /Q (BO) - Ls@ W, Q). (7.33)

The next step in the derivation of the limit energy consists in minimizing [ _11 Qp (EI(,O))dX 3
(resp. [, Qr (E&O))XmdXﬂ with respect to ul”)( resp. wl).
First the expressions of ), and of E;E,O) under a few calculations show that

U
0,073

[(1 — 1) 22: ‘2 + (AU?EO)>2]

«,

' (0) Ep
/_1 QP(Ep )dX3 23(1 _ ,/2)
(7.34)

E,
+(1_V2 [1_’/17 Z } B +Vp Zl((l))+z2(2)) }
a,f=1

the expression in the right hand side of (Z.34)) is obtained through replacing ﬂl(,o) by

—(0) v X2 1
Ty (e Xa) = 7 - (5 5) AU = X2 + 25) e (7.35)

Then the expressions of (), and of EVY permit to obtain

E 214(0) 2 2147(0) 2 E (0) 2
@@y 2= ||+ [+ ST+
X X
b 0 ) 3 3 (7.36)
+ Hr T dQ3 ’
8 dflfg
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and similarly the expression in the right hand side of ([Z.30]) is derived through replacing

@” by
(0) 2117(0) (0)
—(0) X2 — X2 d*W, d*W; dW;, 0) 0 X2
Wr1 =" [ 2 da? R da? Xl( FENEIE )} XiFiy P
(0) 294 (0) (0)
—(0) X2 — X2 d*W. a=w dw.
W2 =T [ Ea d:é _X1X2T§ X2< iz, +F§?”))} -G F - XoFy
—(0)
’UJE" = —Xng?;’ X2F2
(7.37)
In view of (T.33), (34)) and (7.36), the proof of (7.19) is achieved.
Step 2. Under the assumptions (7.8)-(7.9), we know that there exists (U™, WO, él)) €
PR3 such that
i u, NAZARRIUR :
o T3 UW, Q3) = T;UD, WO, o)
Now, in this step we show that
lim sup 7271 - < < Js(UD WL, (1 ).
0—0 92r
Let u be in L?(w; H'(—1,1;R3)) obtained through replacing ¥ by UM in (7.26)-
(7.35) and w ) be in L2(0, L; H'(D;R?)) obtained through replacing W(O and QY by

UD and O in (T30)- (737).

We now consider a sequence (U™, W™, é”),ﬂ(")jw(n))nzz

o U € W2 (w) N H. (w) and
° L{én)
° Wé")

° W?En)

° Qén)

U — uh

€ W (w) N H2 (w) and

strongly in H'(w),

U — Ul strongly in H?(w),

such that

€ W3(—1/n, L) with W{" = 0 in [-1/n, 1/n] and

W s

€ W2(=1/n, L) with W™

Wy
€ W2(—1/n, L) with Q"

Qs

— Wél)

— Qél)

strongly in H*(0, L),

strongly in H'(0, L),
=0in [-1/n,1/n] and

strongly in H*(0, L),
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o 7™ € Whe((Q;R?) with 7™ = 0 on dwx] — 1,1[, @™ = 0 in the cylinder
D(O,1/n)x] —1,1] and

ﬂ(") — i;l) strongly in L2(W§ Hl(_1> 1;R3))7

o W™ € W(] —1/n, L[x D; R?) with @™ = 0 in the cylinder Dx] —1/n, 1/n[ and
o™ s M strongly in L?(0, L; H'(D; R?)).

First, the above strong convergences and the expression of 7 show that

lim U™, W™, QfY) = U, WD, of). (7.38)

n——+00
For n fixed, let us consider the following sequence (vs) of deformations of the whole
structure Ss., defined below:
e in ()5 we set

n 25 OU™ i x
vs1(z) = 21 + 5“_1(1/{1( )(xl,x ) — 32 (1, 22) + 5u§ )(:L’l,:cg, —3)),
0 O )
o1/ w3 U i x 7.39
vs2(7) = 29 + 0 1(“2( )(551,932)——3 . (951#52)4'5“5 )(931,932,—3))> ( )
0 81’2 )
n —(n ‘,L,
U&g(l’) = X3+ 5’i_2 (Z/{gg )(LL’l, SL’Q) + 52U§’ )(1’1,1’2, 73))
e in B, 5 we set
n xXr 81/{ n) I n
v51(7) = a1 + 67! (L{l( )(xl,:cg) — 73 8; ($1,I2)) +e” 2(W1( )(xg)
1
N A
- Z'QQ:S )(1'3) + 52@% )(_17 _27I3))7
25 OU™ /
v5o(r) = +5“_1(Z/{2( )(1’1,1'2) — § 8:1732 (z1,32)) +&" _2(W2( )(xg)
(n) 2-—(n) (L1 T2 (7'40)
+x193 ($3) + e w2 (_7 ) 3)))
—9,,(n o n n 21 dW™
vs3(x) = w5 + 82U (1, ) + % (W (as) — U™ (0,0)] — ?1 dl}g (x3)
T dW(n) /T T
O ) (22 ).

Obviously, if ¢ is small enough (in order to have § < 1/n) the two expressions of v;
match in the cylinder Cs. and are equal to

vs1(7) = x1 + 67! (Ul(n)(:cl,xg) 3 on (21, 72)),
1
(7.41)

Vso(7) = 19 + 671 (u2(n)(.§(71,$2) 3 on (I1,$2))7
2

vs3(z) = 23+ 5“_22/{35")(1'1, 7).
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By construction the deformation vs; belongs to Ds.. Then we have
ms S Jg(v(g). (742)

In the expression (7.39) of the displacement vs — I; the explicit dependence with
respect to 0 permits to derive directly the limit of the Green-St Venant’s strain tensor
as 0 tends to 0 (n being fixed)

1
255—1

I5((Vovs)"Vovs —I3) — EMY strongly in - L®(Q; R), (7.43)

where the symmetric matrix EIE,") is defined by

U™ U™ 1 o™

Xy + 21 —Xs—— + 2 -

> 0n? e 302107, + 2 2 0X5

27 /(n) paE)

E(" = I g 100
P * s 83:% + 22 2 an
. . ouy”

09X

Now, in the rod B.; we have

(n)

ol . au
vsa(z) = 21 + " 2 [Wf ) (a3) + 6U™ (0, 0) — c23752—(0,0)

— 2,00 (z3)] + @) (),

e . ous”
vsa(2) = @y + 5 2 [wg ) (a5) + 0US™ (0,0) — a3752—(0,0)
(7.44)
+ 010" ()| + @ (a),
P 21 AWM ous™
vs3(r) = 23+ € ! [W§ )(:53) -~ d:clg (x3) + 21 8;1 (0,0)
T dWén) (%{?f") ~(n)
=) g (0.0)] + 8l(),
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where

g ¢
'y (O ouy”
. K —1 3 . 3
r3s ( 81’1 (5(71, 1172) 81’1 (O’ 0)> ’
1 T

o™ o™
k —1 3 3
- 0,0
x3€ ( 81'2 (xlaxQ) a ) ( 9 ))a
~(n Kk —I(n Zz T K/,— n n
@) = wl (22 ) + 2 (U (w1, 22) — U5 (0,0)
o™ o™
— T (0,0) — m (0,0))
First notice that
1 27 4(n) 27 4(n)
—P.(a™) — 7" =7™ — 14 [Xl%(o, 0) + X U (0, ())]e1
ek Oxy 0x10x, (7.45)
. [X U (0,0) + X %?En)(o 0)]e strongly in W1(B; R%)
3 1 61'101'2 ) 2 8&7% ) 2 gly ’ .

As above, the expression ([T.44)) of the displacement vs — I; being explicit with respect
to 0 and €, a direct calculation gives

1
2k —1

P.((Vos)"Vus —I3) — EW  strongly in  L®(B; R*®), (7.46)

where the symmetric matrices E"™ and F™ are defined by

1,49 1 owy

(") L) _- -
Y (@) vz (W) 5 %2 dzs 50X,
2 2 ! dflfg 2 8X2
(7.47)
R Z Y 7 S 7
-X L _ X 2 3
. i L R R S T,
(1™ |15 — @™.(Q™)") if &' =3,

F® —

O N =

if K > 3.

From the strong convergences ([.43))-(7.46]) and taking to account the expressions of the
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applied forces (5.16) and the ones of the deformation, we get

lim 5 1/ W(Vos)( d:):—/Q (EYY) +/BQ(E§">)

/ -f5 'Ué [d) ‘63(“ a (n)’ Qi(in))

6—>0 §2r—1

Then, from the above limits and (7.42]) we finally get

: m n n n n n
limsup <25 < / QE) + / QEM) — L™, W, Q). (7.48)
§—0 Q B

Now, n goes to infinity, the above inequality and (.38)) give

lim sup 57” _ < Z U, W, o), (7.49)
—0
This conclude the proof of the theorem. O

Remark 7.3. Let us point out that Theorem|[7.9 shows that for any minimizing sequence
(vs)s as in Step 1, the third convergence of the rescaled Green-St Venant’s strain tensor
in (L24) is a strong convergence in L*(;R3*3) and the convergence (I.28) is a strong
convergence in L*(B;R3*3).

8 Appendix

Proof of Lemma (5.2)). The first estimate (5.13) is proved in Lemma 4.3 of [§]). Now
we carry on by estimating Gg(u, B: 5).

Step 1. In this step we prove the following inequality:

G (u, B 5) <C||dist(Vv, SO(3))|r2(B. 5)

|| dist(Vv, SO(3))]|2. (8.1)
c EE) 4 Ce)]1Q(O0) — T |

e3

The restriction of the displacement © = v — I; to the rod B, s is decomposed as (see
Theorem 11.2.2 of [7])

U(LL’) = W(LL’3) + (Q(l’g) — Ig) (x1e1 + LL’QGQ) —|—w/(l’), T € Be’(;, (82)
where we have W € H'(—6, L; R?), Q € H'(—6,L; SO(3)) and W € H'(B.s;R?). This

displacement is also decomposed as in ([B.1]). In both decompositions the field W is the
average of u on the cross-sections of the rod.
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We know (see Theorem 11.2.2 established in [7]) that the fields W, Q and @ satisfy

1@ || (5. 55m3) < Cel|dist(Vo, SO3))|| 128, ),
||VE/||L2(B 5R3><3 < C’||dlst(Vv SO( ))||L2(Bs,6)

Hd:):3 < = ||d1st(Vv SOG)|r2s. )

L2(—6,L;R3) (8.3)
H_ ~ QT , < ;||dist(Vv,SO(3))||L2(B&6)
HVU - QHL2(B€76;R3><3) < CHdiSt(VU, SO(S))HL2(BE,6)

where the constant C' does not depend on ¢, § and L.

We set v = Q(0)"v and u = v — I;. The deformation v belongs to H!(B. s; R?) and
satisfies
||d1$t(vv, SO(B)) | |L2(Bs,6) = ||dlst(Vv, 50(3))||L2(Bs,6)‘

The last estimate in ([83]) leads to

[Vu+ (Vu)" ) <C|dist(Vv, SO(3)|]12(5.5)

HL2(BE,5;R3x3 = : (8.4)
+ Cel|Q(0)"Q + Q"Q(0) — 2Is|2(—s,L.r9)

First, we observe that for any matrices R € SO(3) we get |||R — L[| = V2||[R+ R —
203]|]. Hence, we have v2([|Q(0)"Q+Q"Q(0) — 2Is/[| = |||Q — Q(0)|||* and using again
([®3) we obtain

||dist(Vv, SO(3))[|7:5

et

1Q(0)"Q + Q" Q(0) — 2Is| 12 (s rr0) < C

which implies with (8.4))
||dist(Vo, SOB3))|[325

S (8.5)

G;(u, B. 5) < C|dist(Vo, SO(3))||L2(3575) +C

Observing that Vu+ (Vu)” = Vu+ (Vu)' + (I; — Q(O))T(Vu —(Q(0) —1I3)) + (Vu—
(Q(0) —13)) " (Is — Q(0)) + 2(Q(0) + Q(0)” — 2I,), we deduce that
G.(u, B ) < Ga(u, Be ) +2/[1Q(0) — L[| Ve — (Q(0) = Ls)|[ 1o 5, s
+ Cell]Q(0) + Q(0)" — 2L

< Gs(u, Bes) + Cf|Q(0) — T

+ Ce|||Q(0) — I3]|?
||dISt(VU, 50(3))||L2(BE 5)

e3

||dist(Vv, SO(3))||2(s. )
15

< Gy(u, B.s) +C +Cel||Q(0) — Ls||?
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Thanks to (8H) we obtain (8.1]).
Now we carry on by giving two estimates on |||Q(0) — I3|||*.
Step 2. First estimate on |||Q(0) — I3]|.

We deal with the restriction of v to the plate. Due to Theorem 3.3 established in
[8], the displacement u = v — I is decomposed as

u(x) = V(x1, 22) + 23(R(x1, 22) — I3)es + v(x), x € Qs (8.6)

where V belongs to H'(w;R?), R belongs to H'(w;R3*?) and v belongs to H'(Qs; R?)
and we have the following estimates

||@| |L2(95;R3) S C(S| |dzst(Vv, 50(3))||L2(Q(5)

V|| 12005 m9) < CHdist(Vv SO L2y

||dzst(Vv SO( D r2es)

H&xa L2(wiR9) 53/2 (8.7)

I3)eq IIdzst(Vv SOB)) 205

H 81@ L2(w;R3) 51/2
Vo — RHLZ(Q&RQ) < C||dist(Vv, SO(3))||r20y)

where the constant C' does not depend on 9. The following boundary conditions are
satisfied
V=0, R=1I; on "o, =0 on Tygs. (8.8)

The last estimates in (8.3) and (87) allow to compare Q — I3 and R — I3 in the
cylinder Cs.. We obtain

2211Q — Tyl 22 gy < C{Ildist(Tv, SO(3)) sy + lldist (Vo, SO(3) s o}
+CO8| R — Ts|[72 . oy
Besides, the third estimate in (8.7]) and the boundary condition on R lead to
IR~ L2, 0) < C=2I[R ~ Tyl s, 0

dist(Ve, SO, (8.9)
53

<Ce*?||R — L3 3 p, oy < C?

Then, we get

elQ = L[> s gm0y < CIIdist(Vo, SOB))|[72q,) + dist(Vo, SOB)|725_,) }

3/2
Ced/ 5

(8.10)
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Furthermore, the third estimate in (83) gives

|||Q( )_:[3|||2 _HQ I3HL2 —5,6;R9) +C(5de3

L2(Be,5;R?)

< gHQ Ls|[72(s0m9) +C 7lldist(Vo, SOB)I[125, ,)

which using (8I0) yields
||dist(Vv, SO(3))||72(q;)

2 52 1/2
11Q() ~ LI[* < ¢ =+

53
2. ||dist(Vv, SO(3))]]2.
ol £ 14T SOB) s,
) g3

Finally (8] and the above estimate lead to

2. [|dist(Vo, SO(3))| 2
G, (1. Bg) < C|dist (V0. SOE) s,y + C1 + =] CE

||dist(Vv, 50(3))||L2(95

€63

+C[6* +¢]
(8.11)
Step 3. Second estimate on |||Q(0) — I3|||2.

Now, we consider the traces of the two decompositions (82]) and (80) of the dis-
placement u = v — I; on D, x {0}. From (83)) and (8.7)) we have

w1, ©2,0) — W(0) — (Q(0) — I3)(0)(z1€1 + z2€5)|[3

De

=1A)miumx%omzSCkWﬁaahasom»Héwwy

[lu(@r, 22,0) = V(zr, @)ll3 = [ |[0(z1,22,0)|[3 < C6||dist(Vv, SO(3))[[2q,)-
D. D.

The above estimates lead to
/ [IV(0) + (Q(0) — I3)(z1e1 + 2€3) — V(w1, 22)] 5
D
<C6l|dist (Vv, SO(3))|[72(q,) + Celldist(Vo, SO3))|[72(5. )
which implies

1(Q(0) — Is) (z1€1 + m2€2) — (V(21,22) — Mp.(V))|]3
D.
< C9|dist(Vo, SO(3))|[72(0,) + Cclldist(Vo, SO(3))[| 725, -

(8.12)

35



We carry on by estimating V — Mp, (V) Let us set

1

Ro=Mp (R -T3)e,) = o1/,

(R(.ﬁ(fl, LUQ) — Ig)eadxldx2

and we consider the function ®(zy1, 22) = V(x1, 22) —Mp, (V) —2:R; —22Rs. Due to the
fourth estimate in (87) and the Poincaré-Wirtinger’s inequality (in order to estimate
|(R —I3)es — Ral|r2(p.;r3)) We obtain

1 e .
V9] < C (5 + 55 ) Idist (V. SO (5.13)

Noting that Mp_(¥) = 0, the above inequality and the Poincaré-Wirtinger’s inequality
in the disc D, lead to

g2 A )
Estimates (8I2]) gives

/ 1(Q(0) — Ts)(zser + 2ea)2 < C(I1] 2.
¥ e4||R1||2 R 3 + 6] Jdlist (Vo so<3>>||Lzm§> + [ dist(Vv, SO)) e )
which in turns with (89) and (814]) yield
(1(Q) - Ty)er 3 +11(Q(0) — Ty)esl 2)

52 27/2

and finally
ell1Q(0) - L[| ?
2 1 4y ||dist(Vv, SO(3))]|2, dist(Vv, SO(3))]|2. (8.15)
<C(5 %>H ( Gz ) +C€|| ( GIL (Bes)

2172 53 o3

Estimates (81 and (8I5) yield

||dist(Vv, SO(3))][2,
G, (u, B.5) < C|[dist(Vv, SO3))||r2(p. 5 + C 3 L(B. 5)
< ) (8.16)

52 o4 lldist(Vu, SOB)II72,
¢ L0 -
- €63

+Cle 4
52

Step 4. Final estimate on Gg(u, B. ).
The two estimates of G(u, Bes) given by (811]) and (8.I6) lead to
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o if £2 < § then

||dist(V, 50(3))||L2(B

G.(u, B ) < C||dist(Vv, SO3))| 12(5..,) + C 5

||dist(Vw, SO(3>>||L2 (2)

+C’[5+5] e

o if § < £? then

||dist(Vv, SOB3)1Z2 5. ;)

e3

G.(u, Bes) < C|dist(Vo, SO@))| 25,5 + C

||dist(Vv, SO(3))] |L2(95

+ Cel/?
c €03

We immediately deduce (5.14).
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