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Abstract. Attribute-based cryptography is a natural solution for fine-grained access control with
respect to security policies. In the case of attribute-based signatures (ABS), users obtain from an
authority their secret keys as a function of the attributes they hold, with which they can later sign
messages for any predicate satisfied by their attributes. A verifier will be convinced of the fact that the
signer’s attributes satisfy the signing predicate while remaining completely ignorant of the identity of
the signer. In many scenarios where authentication and anonymity are required, like distributed access
control mechanisms in ad hoc networks, the bandwidth is a crucial and sensitive concern. The signature
size of all previous ABS schemes grows linearly in the number of attributes involved in the signing
predicate. We propose the first two attribute-based signature schemes with constant size signatures.
Their security is proven in the selective-predicate and adaptive-message setting, in the standard model,
under chosen message attacks, with respect to some algorithmic assumptions related to bilinear groups.
The described schemes are for the case of threshold predicates, but they can be extended to admit
some other (more expressive) kinds of monotone predicates.

Keywords. Attribute-based signatures, constant signature size, efficiency.

1 Introduction

Attribute-based cryptography offers a real alternative to public-key cryptography when the systems
to be protected also require anonymity among users following a security policy. In this setting, users
obtain their secret keys from an authority as a function of their attributes. The operation involving
the secret key proves somehow that the user holds a certain subset of attributes, without leaking
information on his identity or on his total set of attributes.

One of the major issues in attribute-based cryptography is to save bandwidth, and in particular
to get ciphertexts or signatures of constant size, i.e., not depending on the number of involved
attributes. Other important issues are the construction of systems achieving security in the strongest
possible model and being as expressive as possible, i.e., admitting a wide variety of policies. The
goal of this work is to address the first question in the context of signature design.

Attribute-based cryptography first appeared in [16] with an attribute-based encryption scheme,
as an extension of fuzzy identity-based cryptosystems [29]. Since then, the notion of attribute-based
encryption (ABE for short, conjugated into key policy or ciphertext policy) has received a lot of
attention (see for example [2, 18, 20]), with many attempts to reduce the length of the ciphertexts
(see [13, 18, 1]).

Attribute-based signatures (shortened as ABS in the sequel) have been introduced more re-
cently in [24] (see also [30, 21, 22]). They are related to the notion of (threshold) ring signatures [28,
7] or mesh signatures [6], but offer much more flexibility and versatility to design secure complex
systems, since the signatures are linked not to the users themselves, but to their attributes. As a
consequence, these signatures have a wide range of applications, like private access control, anony-
mous credentials, trust negotiations, distributed access control mechanisms for ad hoc networks,
attribute-based messaging... (see [24] for detailed descriptions of applications). In terms of secu-
rity, ABS must first satisfy unforgeability, which guarantees that a signature cannot be computed



by a user who does not have the right attributes, even if he colludes with other users by pooling
together their secret keys. The other required security feature is the privacy of user’s attributes, in
the sense that a signature should not leak any information about the actual attributes that have
been employed to produce it.

Related work. Among the schemes proposed up to now, those of Maji, Prabhakaran, Rosulek
proposed in [24] work for very expressive signing predicates, but their most practical scheme is only
proven secure in the generic group model. In [27], this scheme is claimed to be “almost optimally
efficient”, although its signatures’ length grows linearly in the size of the span program (which is
greater than the number of involved attributes in the signing predicate). Our result shows that this
claim is not true, at least for some families of predicates (e.g., threshold). Some other instantiations
in [24] are secure in the standard model, but are pretty inefficient (i.e., the signature size is linear in
the security parameter of the scheme), because they use Groth-Sahai proofs for relations between
the bits of elements in the group. Okamoto and Takashima designed in [27] a fully secure ABS
in the standard model which supports general non-monotone predicates. The scheme is not built
upon non-interactive zero-knowledge proof systems, but on dual pairing vector spaces [26] and uses
proof techniques from functional encryption [20]. Escala, Herranz and Morillo also proposed in [14]
a fully secure ABS in the standard model, with the additional property of revocability, meaning
that a third party can extract the identity of a signer in case of dispute (thanks to a secret that can
be computed by the master entity). None of the previous schemes achieves constant-size signatures.

Our contribution. In this paper we propose the first attribute-based signature schemes which pro-
duce such short signatures, and which are proven secure in the selective-predicate setting (i.e., not
fully secure), in the standard model. We design two constant-size ABS schemes, both built (non-
generically) on two different constant-size attribute-based encryption schemes. In both schemes, let
n denote the maximum size of the admitted signing predicates.

– Our first scheme supports (weighted) threshold predicates for small4 universes of attributes.
Its design is inspired by the constant-size ciphertext-policy ABE scheme from [18] by Herranz,
Laguillaumie and Ràfols, in the sense that the signer implicitly proves his ability to decrypt
a ciphertext by using the Groth-Sahai proof systems [17], and by binding the signed message
(and the corresponding predicate) to the signature using a technique suggested by Malkin,
Teranishi, Vahlis and Yung [23]. The signature consists of 15 group elements, and the secret
key of a user holding a set Ω of attributes is made up with |Ω| + n elements. Our scheme
is selective-predicate and adaptive-message unforgeable under chosen message attacks if the
augmented multi-sequence of exponents computational Diffie-Hellman assumption [18] and the
Decision Linear assumption [5] hold. The privacy of the attributes involved in the generation of
a signature is preserved, under the Decision Linear assumption.

– Our second scheme supports threshold predicates (as well as compartmented and hierarchi-
cal predicates) for large universes of attributes. It is built upon Attrapadung, Libert and de
Panafieu’s key-policy ABE scheme from [1] and has signatures consisting of only 3 group ele-
ments. The secret keys are longer than in the first scheme, since they include (2n+2)×(|Ω|+n)
group elements. The assumption underlying the selective-predicate and adaptive-message un-
forgeability under chosen message attacks is the more classical n-Diffie-Hellman exponent as-
sumption, and the scheme protects the privacy of the involved attributes unconditionally.

4 which means that the number of possible attributes is polynomial in the security parameter, which is highly
sufficient for most applications

2



Organization of the paper. We give the algorithmic setting and define the syntactics of attribute-
based signatures and the required security properties in Section 2. In Section 3 we describe our
first scheme, for threshold signing predicates, and prove its security. We do the same for our second
scheme in Section 4, and discuss possible extensions of both schemes to more general signing
predicates in Section 5. Concluding remarks are given in Section 6.

2 Background

2.1 Notation

We will treat a vector as a column vector, unless stated otherwise. For any vector ~α = (α1, . . . , αn)
⊤ ∈

Z
n
p , and any element g of a group G, g~α stands for the vector of group elements (gα1 , . . . , gαn)⊤ ∈ G

n.

For ~a, ~z ∈ Z
n
p , we denote their inner product as 〈~a, ~z〉 = ~a⊤~z =

∑n
i=1 aizi. Given g~a and ~z, (g~a)~z :=

g〈~a,~z〉 is computable without knowing ~a. For equal-dimension vectors ~A and ~B containing exponents
or group elements, ~A · ~B stands for their component-wise product. When ~C = (C1, C2, C3)

⊤ ∈ G
3

is a vector of group elements and if g ∈ G, we denote by E(g, ~C) the vector of pairing values
(

e(g, C1), e(g, C2), e(g, C3)
)⊤

. We denote by In the identity matrix of size n. For any set U , we
define 2U = {S | S ⊆ U}. Additionally, given a set S ⊂ Zp, and some i ∈ S, the ith Lagrange basis
polynomial is ∆S

i (X) =
∏

j∈S\{i}(X − j)/(i− j).

2.2 Complexity Assumptions

Our two schemes work in the setting of bilinear groups. That is, we use a pair of multiplicative
groups (G,GT ) of prime order p with an efficiently computable mapping e : G × G → GT s.t.
e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and e(g, h) 6= 1GT

whenever g, h 6= 1G.
The security of our first scheme is partially based on the hardness of the computational version

of a problem appeared in [18] under the name of augmented multi-sequence of exponents decisional
Diffie-Hellman problem. Its decisional version was proven to be hard in generic groups.

Definition 1 ((ℓ̃, m̃, t̃)-aMSE-CDH - [18]). The (ℓ̃, m̃, t̃)-augmented multi-sequence of exponents
computational Diffie-Hellman ((ℓ̃, m̃, t̃)-aMSE-CDH) problem related to the group pair (G,GT ) is to
compute T = e(g0, h0)

κ·f(γ) on input: the vector ~xℓ̃+m̃ = (x1, . . . , xℓ̃+m̃)⊤, whose components are
pairwise distinct elements of Zp which define the polynomials

f(X) =

ℓ̃
∏

i=1

(X + xi) and g(X) =

ℓ̃+m̃
∏

i=ℓ̃+1

(X + xi),

and the values










































g0, g
γ
0 , . . . , g

γ ℓ̃+t̃−2

0 , g
κ·γ·f(γ)
0 , (l.1)

gωγ0 , . . . , gωγ
ℓ̃+t̃−2

0 , (l.2)

gα0 , g
αγ
0 , . . . , gαγ

ℓ̃+t̃

0 , (l.3)

h0, h
γ
0 , . . . , h

γm̃−2

0 , h
κ·g(γ)
0 (l.4)

hω0 , h
ωγ
0 , . . . , hωγ

m̃−1

0 , (l.5)

hα0 , h
αγ
0 , . . . , hαγ

2(m̃−t̃)+3

0 (l.6)

where κ, α, γ, ω are unknown random elements of Zp and g0 and h0 are generators of G.
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The other (decisional) hard problem that we need for the security analysis of our first signature
scheme is the Decision Linear Problem.

Definition 2 (DLIN - [5]). In a group G of prime order p, the Decision Linear Problem (DLIN)
is to distinguish the distributions (g, ga, gb, ga·δ1 , gb·δ2 , gδ1+δ2) and (g, ga, gb, ga·δ1 , gb·δ2 , gδ3), with

a, b, δ1, δ2, δ3
R
← Zp.

This problem is to decide if vectors ~g1 = (ga, 1, g)⊤, ~g2 = (1, gb, g)⊤ and ~g3 = (gaδ1 , gbδ2 , gδ3)⊤ are
linearly dependent in the Zp-module G

3 formed by entry-wise multiplication.
Finally, the security of our second attribute-based signature scheme is based on the hardness of

the n-Diffie-Hellman Exponent problem.

Definition 3 (n-DHE - [8]). In a group G of prime order p, the n-Diffie-Hellman Exponent

(n-DHE) problem is, given a tuple (g, gγ , gγ
2
, . . . , gγ

n
, gγ

n+2
, . . . , gγ

2n
) where γ

R
← Zp, g

R
← G, to

compute gγ
n+1

.

The generic hardness of this problem is a consequence of a general result given in [4]. In addition,
the assumption that this problem is hard is non-interactive and thus falsifiable [25].

2.3 Groth-Sahai Proof Systems

To simplify the description, our first scheme uses Groth-Sahai proofs based on the DLIN as-
sumption, although instantiations based on the symmetric external Diffie-Hellman assumption
are also possible. In the DLIN setting, the Groth-Sahai proof systems [17] use a common refer-
ence string comprising vectors ~g1, ~g2, ~g3 ∈ G

3, where ~g1 = (g1, 1, g)
⊤, ~g2 = (1, g2, g)

⊤ for some

g1, g2, g ∈ G. To commit to X ∈ G, one sets ~C = (1, 1, X)⊤ · ~g1
r · ~g2

s · ~g3
t with r, s, t

R
← Zp. When

proofs should be perfectly sound, ~g3 is set as ~g3 = ~g1
ξ1 · ~g2

ξ2 with ξ1, ξ2
R
← Z

∗
p. Commitments

~C = (gr+ξ1t
1 , gs+ξ2t

2 , X · gr+s+t(ξ1+ξ2))⊤ are then Boneh-Boyen-Shacham (BBS) ciphertexts [5] that
can be decrypted using a = logg(g1), b = logg(g2).

In the witness indistinguishability (WI) setting, defining ~g3 = ~g1
ξ1 · ~g2

ξ2 ·(1, 1, g−1)⊤ gives linearly

independent {~g1, ~g2, ~g3} and ~C is a perfectly hiding commitment. Under the DLIN assumption, the
two settings are indistinguishable.

To prove that committed group elements satisfy certain relations, the Groth-Sahai techniques
require one commitment per variable and one proof element (made of a constant number of group
elements) per relation. Such proofs are available for pairing-product relations, which are of the type

n
∏

i=1

e(Ai,Xi) ·
n
∏

i=1

·
n
∏

j=1

e(Xi,Xj)
aij = tT ,

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for i, j ∈ {1, . . . , n}.
At some additional cost (typically, auxiliary variables have to be introduced), pairing-product

equations admit non-interactive zero-knowledge (NIZK) proofs (this is the case when the target
element tT has the special form tT =

∏t
i=1 e(Si, Ti), for constants {(Si, Ti)}

t
i=1 and some t ∈ N):

on a simulated common reference string (CRS), prepared for the WI setting, a trapdoor makes it
possible to simulate proofs without knowing the witnesses.

As far as efficiency goes, linear pairing product equations (where aij = 0 for all i, j) consist of
only 3 group elements and we only need linear equations here.
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2.4 Syntax of Threshold Attribute-Based Signatures

Since we will focus on threshold signing predicates, we describe the syntax and security model of
attribute-based signatures with respect to these threshold predicates Γ = (t, S): the sender chooses
a subset S of the universe of attributes and a threshold t such that 1 ≤ t ≤ |S|, and signs a message
Msg for the pair (t, S). A verifier will be convinced that the signature comes from a user who holds
t or more attributes in S. The algorithms and security model for ABS schemes supporting more
general signing predicates can be described in a very similar way.

An attribute-based signature scheme ABS = (ABS.TSetup,ABS.MSetup,ABS.Keygen,ABS.Sign,
ABS.Verify) consists of five probabilistic polynomial-time (PPT, for short) algorithms. In the context
of threshold predicates, their specification is the following:

– TSetup(λ,P, n): is the randomized trusted setup algorithm taking as input a security parameter
λ, an attribute universe P and an integer n ∈ poly(λ) which is an upper bound on the size of
threshold policies. It outputs a set of public parameters pms (which contains λ, P and n). An
execution of this algorithm is denoted as pms← ABS.TSetup(1λ,P, n).

– MSetup(pms): is the randomized master setup algorithm, that takes as input pms and outputs
a master secret key msk and the corresponding master public key mpk. We write (mpk,msk)←
ABS.MSetup(pms) to denote an execution of this algorithm.

– Keygen(pms,mpk,msk, Ω): is a (possibly randomized) key extraction algorithm which takes as
input the public parameters pms, the master keys mpk and msk, and a set of attributes Ω ⊂ P
held by the requesting user. The output is a private key SKΩ. We refer to an execution of this
protocol as SKΩ ← ABS.Keygen(pms,mpk,msk, Ω).

– Sign(pms,mpk, SKΩ,Msg, Γ ): is a randomized signing algorithm which takes as input the public
parameters pms, the master public key mpk, a secret key SKΩ, a message Msg and a threshold
signing policy Γ = (t, S) where S ⊂ P and 1 ≤ t ≤ |S| ≤ n. It outputs a signature σ. We denote
the action taken by the signing algorithm as σ ← ABS.Sign(pms,mpk, SKΩ,Msg, Γ ).

– Verify(pms,mpk,Msg, σ, Γ ): is a deterministic verification algorithm taking as input the pub-
lic parameters pms, a master public key mpk, a message Msg, a signature σ and a threshold
predicate Γ = (t, S). It outputs 1 if the signature is deemed valid and 0 otherwise. We write
b← ABS.Verify(pms,mpk,Msg, σ, Γ ) to refer to an execution of the verification protocol.

For correctness, if Γ = (t, S), it is required that

ABS.Verify(pms,mpk,Msg,ABS.Sign(pms,mpk, SKΩ,Msg, Γ ), Γ ) = 1,

whenever |Ω∩S| ≥ t and the values pms,mpk,msk, SKΩ have been obtained by properly executing
the algorithms ABS.TSetup, ABS.MSetup and ABS.Keygen.

2.5 Security of Threshold Attribute-Based Signatures

Unforgeability and privacy are the typical requirements for attribute-based signature schemes.

Unforgeability. An attribute-based signature scheme must satisfy the usual property of unforge-
ability, even against a group of colluding users that put their secret keys together. In this work
we consider a relaxed notion where the attacker selects the signing policy Γ ⋆ = (t⋆, S⋆) that he
wants to attack at the beginning of the game. Note however that the message Msg⋆ whose signature
is eventually forged is not selected in advance. The attacker can ask for valid signatures for mes-
sages and signing policies of his adaptive choice. The resulting property of selective-predicate and
adaptive-message unforgeability under chosen message attacks (sP-UF-CMA, for short) is defined
by considering the following game that an attacker F plays against a challenger:
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Definition 4. Let λ be an integer. Consider the following game between a probabilistic polynomial
time (PPT) adversary F and its challenger.

Initialization. The challenger begins by specifying a universe of attributes P as well as an integer
n ∈ poly(λ), which are sent to F . Then, F selects a subset S⋆ ⊂ P of attributes such that
|S⋆| ≤ n and a threshold t⋆ ∈ {1, . . . , |S⋆|}. These define a threshold predicate Γ ⋆ = (t⋆, S⋆).

Setup. After receiving Γ ⋆ from F , the challenger runs pms← ABS.TSetup(1λ,P, n) and (mpk,msk)←
ABS.MSetup(pms), and sends pms,mpk to the forger F .

Queries. F can interleave private key and signature queries.

Private key queries. F adaptively chooses a subset of attributes Ω ⊂ P under the restriction
that |Ω ∩ S⋆| < t⋆ and must receive SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) as the answer.

Signature queries. F adaptively chooses a pair (Msg, Γ ) consisting of a message Msg and a
threshold predicate Γ = (t, S) such that 1 ≤ t ≤ |S| ≤ n. The challenger chooses an arbitrary
attribute set Ω ⊂ P such that |Ω ∩S| ≥ t, runs SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) and
computes a signature σ ← ABS.Sign(pms,mpk, SKΩ,Msg, Γ ) which is returned to F .

Forgery. At the end of the game, F outputs a pair (Msg⋆, σ⋆). We say that F is successful if:

– ABS.Verify(pms,mpk,Msg⋆, σ⋆, Γ ⋆) = 1, and
– F has not made any signature query for the pair (Msg⋆, Γ ⋆).

The forger’ success in breaking the sP-UF-CMA security of the ABS scheme is defined as

SuccsP-UF-CMA
F ,ABS (λ) = Pr[F wins].

A threshold attribute-based signature scheme ABS is selective-predicate adaptive-message un-
forgeable (sP-UF-CMA unforgeable) if SuccsP-UF-CMA

F ,ABS (λ) is negligible with respect to the security
parameter λ, for any polynomial time adversary F .

Privacy (of Involved Attributes). This property ensures that the only information that an attribute-
based signature leaks about the actual attributes that have been used to produce it is the fact that
they satisfy the specified signing predicate. Privacy must hold even against attackers that control
the master entity and is defined via the following game between an adversary D and its challenger.
Depending on the computational resources allowed to D and on its success probability, we can
define computational privacy and perfect (unconditional) privacy.

Definition 5. Let λ be an integer, and consider the following game between a distinguisher D and
its challenger.

Setup. The adversary D specifies a universe of attributes P and an integer n ∈ poly(λ), that are
sent to the challenger. The challenger runs pms ← ABS.TSetup(1λ,P, n) and sends pms to D.
The adversary D runs (mpk,msk)← ABS.MSetup(pms) and sends (mpk,msk) to the challenger
(who must verify consistency of this master key pair).

Challenge. D outputs a tuple (Γ,Ω0, Ω1,Msg), where Γ = (t, S) is a threshold predicate such that
1 ≤ t ≤ |S| ≤ n and Ω0, Ω1 are attribute sets satisfying |Ωb ∩ S| ≥ t for each b ∈ {0, 1}. The

challenger picks a random bit β
R
← {0, 1}, runs SKΩβ

← ABS.Keygen(pms,mpk,msk, Ωβ) and
computes σ⋆ ← ABS.Sign(pms,mpk, SKΩβ

,Msg, Γ ), which is sent as a challenge to A.
Guess. D outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The advantage of D is measured in the usual way, as the distance AdvPrivD,ABS(λ) := |Pr[β
′ = β]− 1

2 |.
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A threshold attribute-based signature scheme ABS is said to be computationally private if
AdvPrivD,ABS(λ) is negligible with respect to the security parameter λ, for any distinguisher D run-

ning in polynomial time and is said to be perfectly / unconditionally private if AdvPrivD,ABS(λ) = 0,
for any distinguisher D (with possibly unbounded computational power).

3 A First Short Attribute-Based Signature Scheme for Threshold Predicates

We present here our first scheme to produce attribute-based signatures with constant size, for
threshold predicates. The secret key skΩ for a user holding a set of attributes Ω contains |Ω| + n
elements, where n is the maximum size of the attribute set for any signing policy. This construction is
for “small” universes of attributes P = {at1, . . . , atη}, for some integer η ∈ N, as public parameters
have linear size in η; therefore, η must be polynomial in the security parameter of the scheme.
Attributes {ati}

η
i=1 are arbitrary strings which some encoding function ς maps to Z

∗
p. Since the

scheme is a small universe construction, we may set n = η in the description hereafter.
The construction builds on the ABE scheme put forth by Herranz et al. [18]. The intuition

is to have the signer implicitly prove his ability to decrypt a ciphertext corresponding to that
ABE scheme. This non-interactive proof is generated using the Groth-Sahai proof systems [17], by
binding the signed message (and the corresponding predicate) to the non-interactive proof using
a technique suggested by Malkin et al. [23]. In some sense, this technique can be seen as realizing
signatures of knowledge in the standard model: it consists in embedding the message to be signed
in the Groth-Sahai CRS by calculating part of the latter as a “hash value” of the message. As
noted in [23], Waters’ hash function [32] is well-suited to this purpose since, in the security proof,
it makes it possible to answer signing queries using simulated NIZK proofs. At the same time, with
non-negligible probability, adversarially-generated signatures are produced using a perfectly sound
Groth-Sahai CRS and they thus constitute real proofs, from which witnesses can be extracted.

In [23], the above technique was applied to an instantiation of Groth-Sahai proofs based on the
Symmetric eXternal Diffie-Hellman assumption (and thus asymmetric pairings). In this section, we
adapt this technique so as to get it to work with symmetric pairings and the linear assumption.

◮ TSetup(λ,P, n): the trusted setup algorithm conducts the following steps.

1. Choose groups (G,GT ) of prime order p > 2λ with an efficiently computable bilinear map

e : G×G→ GT . Select generators g, h
R
← G and also choose a collision-resistant hash function

H : {0, 1}∗ → {0, 1}k, for some k ∈ poly(λ).
2. Define a suitable injective encoding ς sending each of the n attributes at ∈ P onto an element
ς(at) = x ∈ Z

⋆
p. Choose a set D = {d1, . . . , dn−1} consisting of n− 1 pairwise different elements

of Z∗
p, which must also be different from the encoding of any attribute in P. For any integer i

lower or equal to n− 1, we denote as Di the set {d1, . . . , di}.

3. Generate Groth-Sahai reference strings by choosing random generators g1, g2
R
← G and defining

vectors ~g1 = (g1, 1, g)
⊤ ∈ G

3 and ~g2 = (1, g2, g)
⊤ ∈ G

3. Then, for each i ∈ {0, . . . , k}, pick

ξi,1, ξi,2
R
← Zp at random and define a vector ~g3,i = ~g1

ξi,1 · ~g2
ξi,2 =

(

g
ξi,1
1 , g

ξi,2
2 , gξi,1+ξi,2

)⊤
.

Exponents {(ξi,1, ξi,2)}
k
i=0 can then be discarded as they are no longer needed.

The resulting public parameters are

pms =
(

P, n, λ, G, GT , g, h, ~g1, ~g2, { ~g3,i}
k
i=0, H, ς, D

)

.

◮ MSetup(pms): the master setup algorithm picks at random α, γ ∈ Z
∗
p and sets u = gαγ and

v = e(gα, h).
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The master secret key is msk = (α, γ) and the master public key is

mpk =
(

u, v, gα,
{

hαγ
i
}

i=0,...,2n−1

)

.

◮ Keygen(pms,mpk,msk, Ω): to generate a key for the attribute set Ω, pick r
R
← Z

∗
p and compute

the private key

SKΩ =
({

g
r

γ+ς(at)

}

at∈Ω
,
{

hrγ
i
}

i=0,...,n−2
, h

r−1
γ

)

.

◮ Sign(pms,mpk, SKΩ,Msg, Γ ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ = (t, S), where S ⊂ P is
an attribute set of size s = |S| ≤ n and 1 ≤ t ≤ s ≤ n, the algorithm returns ⊥ if |Ω ∩ S| < t.
Otherwise, it first parses SKΩ as

SKΩ =
({

g
r

γ+ς(at)

}

at∈Ω
,
{

hrγ
i
}

i=0,...,n−2
, h

r−1
γ

)

and conducts the following steps.

1. Let ΩS be any subset of Ω ∩ S with |ΩS | = t. From all at ∈ ΩS , compute the value

A1 = Aggregate({g
r

γ+ς(at) , ς(at)}at∈ΩS
) = g

r∏
at∈ΩS

(γ+ς(at))

using the algorithm Aggregate of [12]. From A1, compute T1 = A

1∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)

1 .

2. Define the value P(ΩS ,S)(γ) as

P(ΩS ,S)(γ) =
1

γ





∏

at∈(S∪Dn+t−1−s)\ΩS

(γ + ς(at))−
∏

at∈(S∪Dn+t−1−s)\ΩS

ς(at)



.

Since |ΩS | = t, the degree of the polynomial P(ΩS ,S)(X) is n−2. Therefore, from SKΩ, one can

compute h
r·P(ΩS,S)(γ)/(

∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at))
and multiply this value with the last element in

SKΩ, which is h
r−1
γ , to obtain

T2 = h
r−1
γ · h

r
P(ΩS,S)(γ)

∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)
.

Note that the obtained values T1, T2 ∈ G satisfy the equality

e(T2, u
−1) · e

(

T1, h
α·

∏

at∈(S∪Dn+t−1−s)

(γ+ς(at)))

= e(gα, h) (1)

and that, in the terms in the left-hand-side of equality (1), the second argument of each pairing
is publicly computable using pms and mpk.

3. Compute M = m1 . . .mk = H(Msg, Γ ) ∈ {0, 1}k and use M to form a message-specific Groth-
Sahai CRS gM = (~g1, ~g2, ~g3,M ). Namely, for i = 0 to k, parse ~g3,i as (gX,i, gY,i, gZ,i)

⊤ ∈ G
3.

Then, define the vector ~g3,M =
(

gX,0 ·
∏k

i=1 g
mi

X,i, gY,0 ·
∏k

i=1 g
mi

Y,i , gZ,0 ·
∏k

i=1 g
mi

Z,i

)⊤
.
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4. Using the newly defined gM = (~g1, ~g2, ~g3,M ), generate Groth-Sahai commitments to T1 and

T2. Namely, pick r1, s1, t1, r2, s2, t2
R
← Zp and compute ~CTj

= (1, 1, Tj)
⊤ · ~g1

rj · ~g2
sj · ~g

tj
3,M for

j ∈ {1, 2}. Then, generate a NIZK proof that committed variables (T1, T2) satisfy the pairing-
product equation (1). To this end, we introduce an auxiliary variable Θ ∈ G (with its own

commitment ~CΘ = (1, 1, Θ)⊤ · ~g1
rθ · ~g2

sθ · ~g tθ
3,M , for rθ, sθ, tθ

R
← Zp), which takes on the value

Θ = h, and actually prove that

e(T1, HS) = e(gα, Θ) · e(T2, u) (2)

e(g,Θ) = e(g, h), (3)

where HS = h
α·

∏

at∈(S∪Dn+t−1−s)

(γ+ς(at))

. The proofs for relations (2) and (3) are called ~π1 and ~π2,
respectively, and they are given by

~π1 = (π1,1, π1,2, π1,3)
⊤ =

(

Hr1
S · (g

α)−rθ · u−r2 , Hs1
S · (g

α)−sθ · u−s2 , Ht1
S · (g

α)−tθ · u−t2
)⊤

~π2 = (π2,1, π2,2, π2,3)
⊤ =

(

grθ , gsθ , gtθ
)⊤
.

Finally, output the signature σ =
(

~CT1 ,
~CT2 ,

~Cθ, ~π1, ~π2
)

∈ G
15.

◮ Verify(pms,mpk,Msg, σ, Γ ): it first parses Γ as a pair (t, S) and σ as
(

~CT1 ,
~CT2 ,

~Cθ, ~π1, ~π2
)

. It

computes M = m1 . . .mk = H(Msg, Γ ) ∈ {0, 1}k and forms the corresponding vector

~g3,M =
(

gX,0 ·
k
∏

i=1

gmi

X,i, gY,0 ·
k
∏

i=1

gmi

Y,i , gZ,0 ·
k
∏

i=1

gmi

Z,i

)⊤
∈ G

3.

Then, parse the proofs ~π1 and ~π2 as vectors (π1,1, π1,2, π1,3)
⊤ and (π2,1, π2,2, π2,3)

⊤, respectively.

Define HS = h
α·

∏

at∈(S∪Dn+t−1−s)

(γ+ς(at))

and return 1 if the relations

E(HS , ~CT1) = E(gα, ~Cθ) · E(u, ~CT2) · E(π1,1, ~g1) · E(π1,2, ~g2) · E(π1,3, ~g3,M ) (4)

E(g, ~Cθ) = E
(

g, (1, 1, h)
)

· E(π2,1, ~g1) · E(π2,2, ~g2) · E(π2,3, ~g3,M ) (5)

are both satisfied. Otherwise, return 0.

Correctness. The correctness of the scheme immediately follows from the correctness of Groth-
Sahai proofs.
An alternative scheme in the ROM. Steps 3 and 4 in the previous signing protocol can be
replaced with a Σ-protocol, using the well-known Fiat-Shamir technique [15]. The result is a non-
interactive zero-knowledge signature of knowledge for the message Msg, related to the knowledge
of secret values T1, T2 satisfying equality (1). The resulting signatures would consist of 4 group
elements, but the security of the scheme would rely on the assumption that the underlying hash
function behaves as a random oracle.

3.1 Security Analysis

This first scheme is selective-predicate and adaptive-message unforgeable under chosen-message
attacks, assuming the hardness of both the DLIN problem and the (n− s⋆, n+ t⋆− 1, t⋆+1)-aMSE-

CDH problem, where s⋆ and t⋆ are the size of the attribute set and the threshold of the challenge
signing policy. Computational privacy can be proven based on the hardness of the DLIN problem.
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Theorem 1. The scheme is selective-predicate and adaptive-message unforgeable under chosen-
message attacks assuming that (1) H is a collision-resistant hash function; (2) the DLIN assumption
holds in G; (3) the (n − s⋆, n + t⋆ − 1, t⋆ + 1)-aMSE-CDH assumption holds in (G,GT ), where n
is the maximal number of attributes in the attribute set S and where s⋆ and t⋆ are the size of the
attribute set and the threshold of the challenge signing policy.

The proof of this theorem can be found in Appendix A.1.

Theorem 2. This first ABS scheme enjoys computational privacy, assuming that the DLIN as-
sumption holds in G.

Proof. (Sketch.) The proof consists in considering two games: Game0 and Game1. The first game,
Game0, is the real privacy game as described in Definition 5. In particular, when executing the
trusted setup algorithm ABS.TSetup, the challenger chooses the vectors (~g1, ~g2, { ~g3,i}

k
i=0) such that

~g3,i is linearly dependent with (~g1, ~g2), for all i = 0, . . . , k. The only difference between Game1 and
Game0 is that, in Game1, the vector ~g3,i is chosen at random so that it is linearly independent
with (~g1, ~g2), for all i = 0, . . . , k. Groth-Sahai [17] proved that this change is indistinguishable,
under the DLIN assumption. Finally, in Game1, the only values that could leak any information
about the subset of attributes held by the signer are ~CT1 ,

~CT2 , ~π1. But in the setting of Game1,
these commitments and proofs are perfectly hiding: they do not reveal any information about the
committed values T1, T2. Therefore, privacy of the attributes holds unconditionally in Game1. ⊓⊔

4 A Second Short Attribute-Based Signature Scheme for Threshold Predicates

The main advantage of our second ABS scheme over the previous one is that signatures are much
shorter, since they have only three group elements. This comes at the cost of longer secret keys skΩ,
containing (2n+2)× (|Ω|+n) group elements. Another advantage is that the size of the considered
universe of attributes may be much larger, even exponential in the security parameter λ; we only
need that all attributes in the universe P are encoded as different elements of Z∗

p.

◮ TSetup(λ,P, n): chooses a collision-resistant hash function H : {0, 1}∗ → {0, 1}k, for some integer

k ∈ poly(λ), as well as bilinear groups (G,GT ) of prime order p > 2λ with g
R
← G. It also picks

u0, u1, . . . , uk
R
← G and sets ~U = (u0, u1, . . . , uk)

⊤. It finally chooses a set D = {d1, . . . , dn} of n
distinct elements of Zp that will serve as dummy attributes.

The resulting public parameters are pms =
(

P, n, λ, G, GT , g, ~U, D, H
)

.

◮ MSetup(pms): randomly chooses α, α0
R
← Zp, ~α = (α1, . . . , αN )⊤

R
← Z

N
p , where N = 2n + 1. It

then computes e(g, g)α, h0 = gα0 , ~H = (h1, . . . , hN )⊤ = g~α.

The master secret key is defined to bemsk = gα and the master public key ismpk =
(

e(g, g)α, h0, ~H
)

.

◮ Keygen(pms,mpk,msk, Ω): to generate a key for the attribute set Ω, the algorithm first chooses an

implicit polynomial QΩ[X] = α+β1X+ · · ·+βn−1X
n−1 for random coefficients β1, . . . , βn−1

R
← Zp.

Then, it proceeds as follows.

1. For each attribute ω ∈ Ω, choose a random exponent rω
R
← Zp and generate a key component

SKω = (Dω,1, Dω,2,Kω,1, . . . ,Kω,N−1) where

Dω,1 = gQΩ(ω) · hrω0 , Dω,2 = grω ,
{

Kω,i =
(

h−ωi

1 · hi+1

)rω
}

i=1,...,N−1
. (6)
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2. For each d ∈ D, generate a private key component SKd = (Dd,1, Dd,2,Kd,1, . . . ,Kd,N−1) in the
same way as in (6), by choosing a fresh random value rd ∈ Zp and computing

Dd,1 = gQΩ(d) · hrd0 , Dd,2 = grd ,
{

Kd,i =
(

h−wi

1 · hi+1

)rd
}

i=1,...,N−1
. (7)

The private key finally consists of SKΩ =
(

{SKω}ω∈Ω, {SKd}d∈D
)

.

◮ Sign(pms,mpk, SKΩ,Msg, Γ ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ = (t, S), where S is an
attribute set of size s = |S| ≤ n and t ∈ {1, . . . , s}, the algorithm first computes M = H(Msg, Γ ) ∈
{0, 1}k and parses the private key SKΩ as

(

{SKω}ω∈Ω, {SKd}d∈D
)

.

1. It considers the subset Dn−t ⊂ D containing the n − t first attributes of D (chosen in some
pre-specified lexicographical order). It also chooses an arbitrary subset St ⊂ Ω ∩ S such that

|St| = t and defines ~Y = (y1, . . . , yN )⊤ as the vector containing the coefficients of the polynomial

PS(Z) =
n−t+s+1
∑

i=1

yiZ
i−1 =

∏

ω∈S

(Z − ω) ·
∏

d∈Dn−t

(Z − d). (8)

Since n− t+ s+ 1 ≤ 2n+ 1 = N , the coordinates yn−t+s+2, . . . , yN are all set to 0.

2. For each ω ∈ St, use SKω = (Dω,1, Dω,2, {Kω,i}
N−1
i=1 ) to compute

D′
ω,1 = Dω,1 ·

N−1
∏

i=1

K
yi+1

ω,i = gQΩ(ω) ·
(

h0 ·
N
∏

i=1

hyii
)rω . (9)

The last equality comes from the fact that PS(ω) = 0 for all ω ∈ S.
3. Likewise, for each dummy attribute d ∈ Dn−t, use SKd = (Dd,1, Dd,2, {Kd,i}

N−1
i=1 ) to compute

D′
d,1 = Dd,1 ·

N−1
∏

i=1

K
yi+1

d,i = gQΩ(d) ·
(

h0 ·
N
∏

i=1

hyii
)rd . (10)

4. Using the values {D′
ω,1}ω∈St and {D′

d,1}d∈Dn−t
and the corresponding Dω,2 = grw , Dd,2 = grd ,

compute

D1 =
∏

ω∈St

D′
ω,1

∆
St∪Dn−t
ω (0)

·
∏

d∈Dn−t

D′
d,1

∆
St∪Dn−t
d

(0)
= gα · (h0 ·

N
∏

i=1

hyii )r (11)

D2 =
∏

ω∈St

Dω,2
∆

St∪Dn−t
ω (0) ·

∏

d∈Dn−t

Dd,2
∆

St∪Dn−t
d

(0) = gr, (12)

where r =
∑

ω∈St
∆

St∪Dn−t
ω (0) · rω +

∑

d∈Dn−t
∆

St∪Dn−t

d (0) · rd.

5. Parse M ∈ {0, 1}k as a string m1 . . .mk where mj ∈ {0, 1} for j = 1, . . . , k. Then, choose

z, w
R
← Zp and compute

σ1 = D1 ·
(

h0 ·
N
∏

i=1

hyii
)w
·
(

u0 ·
k
∏

j=1

u
mj

j

)z
, σ2 = D2 · g

w, σ3 = gz.

Return the signature σ = (σ1, σ2, σ3) ∈ G
3.
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◮ Verify(pms,mpk,Msg, σ, Γ ): it first parses Γ as a pair (t, S). It computes M = H(Msg, Γ ) ∈
{0, 1}k and considers the subset Dn−t ⊂ D containing the n− t first dummy attributes of D. Then,

it defines the vector ~Y = (y1, . . . , yN )⊤ from the polynomial PS(Z) as per (8). The protocol accepts
the signature σ = (σ1, σ2, σ3) as valid and thus outputs 1 if

e(g, g)α =
e(σ1, g)

e(σ2, h0 ·
∏N

i=1 h
yi
i ) · e(σ3, u0 ·

∏k
j=1 u

mj

j )
. (13)

Otherwise, it outputs 0.

Correctness. The correctness of the scheme follows from the property that for each attribute
ω ∈ St ⊂ S ∩Ω, the vector ~XN

ω = (1, ω, ω2, . . . , ωN−1) is orthogonal to ~Y , so that we have

D′
ω,1 = Dω,1 ·

N−1
∏

i=1

K
yi+1

ω,i = gQΩ(ω) ·
(

h0 · h
−(〈 ~XN

ω ,~Y 〉−y1)
1

N
∏

i=2

hyii

)rω
= gQΩ(ω) ·

(

h0 ·
N
∏

i=1

hyii

)rω
,

which explains the second equality of (9) and the same holds for (10). In addition, the values
(D1, D2) obtained as per (11)-(12) satisfy e(D1, g) = e(g, g)α · e(h0 ·

∏N
i=1 h

yi
i , D2), which easily

leads to the verification equation (13).

4.1 Security Analysis

Our second scheme is selective-predicate and adaptive-message unforgeable under chosen-message
attacks, by reduction to the hardness of the n-Diffie-Hellman Exponent (n-DHE) problem ([8]).
This scheme also enjoys unconditional privacy, which is another advantage over our first scheme.

Theorem 3. The scheme is selective-predicate and adaptive-message unforgeable under chosen-
message attacks if H is a collision-resistant hash function and if the (2n + 1)-DHE assumption
holds in G, where n is the maximal number of attributes in the attribute set S.

The proof of this theorem can be found in Appendix A.2.

Theorem 4. This second ABS scheme enjoys perfect privacy.

Proof. A valid signature for the threshold policy (t, S) which was produced using the subset of
attributes St ⊂ S, |St| = t and with randomness w can also be produced for any other set S′

t ⊂ S,

|S′
t| = t with randomness w′. More specifically, if r =

∑

ω∈St
∆

St∪Dn−t
ω (0)·rω+

∑

d∈Dn−t
∆

St∪Dn−t

d (0)·

rd and r′ =
∑

ω∈S′
t
∆

St∪Dn−t
ω (0) · rω +

∑

d∈Dn−t
∆

St∪Dn−t

d (0) · rd, any pair (w,w′) satisfying r+w =

r′ + w′ will result in the same signature for St and S
′
t. ⊓⊔

5 More General Signing Predicates

Our schemes admit some extensions to deal with more general monotone predicates. In general, a
predicate is a pair (S, Γ ), where S = {at1, . . . , ats} is a set of attributes and Γ ⊂ 2S is a monotone
increasing family of subsets of S. An attribute-based signature for a pair (S, Γ ) convinces the verifier
that the signer holds some subset of attributes A ∈ Γ , without revealing any information on A.
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5.1 Extensions for the First Scheme

Similarly to what is suggested in [18], our first signature scheme can be extended to admit weighted
threshold predicates. A pair (S, Γ ) is a weighted threshold predicate if there exist a threshold
t and an assignment of weights ω : S → Z

+ such that Ω ∈ Γ ⇐⇒
∑

at∈Ω ω(at) ≥ t. If K is
an upper bound for ω(at), for all attributes at ∈ P and all possible assignments of weights that
realize weighted threshold predicates, the idea is to consider an augmented universe of attributes
P ′ = {at1||1, at1||2, . . . , at1||K, . . . , atm||1, . . . , atm||K}. The size of each user’s secret key is just
increased by a factor of K. To sign a message for the weighted threshold predicate (S, Γ ), where Γ
is defined by ω and t, the signer can use the threshold signature routine of our first scheme with
the threshold t and attribute set S′ = {at1||1, . . . , at1||ω(at1), . . . , ats||1, . . . , ats||ω(ats)}. If the user
holds a subset of attributes Ω ∈ Γ , he will have ω(at) valid elements in his secret key, for each
attribute at ∈ Ω; and since

∑

at∈Ω ω(at) ≥ t, he will be able to run the threshold signing protocol.

Furthermore, since the final form of the signatures in our first threshold scheme is that of a
Groth-Sahai non-interactive proof, one could consider signing predicates which are described by
a monotone formula (OR / AND gates) over threshold clauses. The Groth-Sahai proof would be
then a proof of knowledge of some values that satisfy a monotone formula of equations. The size of
such a proof (and therefore, the size of the resulting attribute-based signatures) would be linear in
the number of threshold clauses in the formula. We stress that this is still better than having size
linear in the number of involved attributes, as in all previous constructions.

5.2 Extensions for the Second Scheme

The idea of our second scheme is that a (threshold) attribute-based signature can be computed
only if the signer holds t attributes in S which, combined with n − t dummy attributes, lead to
n attributes at such that PS(at) = 0. This makes it possible to interpolate a polynomial QΩ(X)
with degree n− 1, recover in some way the value gα and produce a valid signature. To admit any
possible value of the threshold t in {1, . . . , n}, the number of dummy attributes must be n. The
key generation protocol for a subset of attributes Ω already restricts the usability of the signature
protocol to threshold predicates. But this can be extended to admit some more general families
of predicates, specifically for those that can be realized with a secret sharing scheme with similar
properties to Shamir’s threshold secret sharing scheme. We give here two examples of such families
of predicates. The ideas underlying this extension are somehow related to those in [11], where
dummy attributes were used to design attribute-based encryption schemes for general decryption
predicates.

Hierarchical Threshold Predicates. We follow the definitions and notations of hierarchical
threshold families that appear in [31]. The set of involved attributes is divided in c disjoint levels,
S = S1 ∪ S2 ∪ . . . ∪ Sc, where c ≥ 1 is an integer. A predicate Γ ⊂ 2S is hierarchical threshold if
there exists a strictly increasing sequence of integers 0 < k1 < k2 < . . . < kc such that

Γ = {Ω ⊂ S :

∣

∣

∣

∣

∣

Ω ∩

(

ℓ
⋃

i=1

Si

)∣

∣

∣

∣

∣

≥ kℓ, ∀ℓ ∈ {1, 2, . . . , c}}

That is, a subset is authorized if it contains at least k1 attributes from the first level, and at least
k2 players from the two first levels, and so on. Tassa constructed in [31] a secret sharing scheme
realizing this kind of predicates, using Birkhoff interpolation: the dealer chooses a polynomial f(X)
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with degree kc − 1, the secret is α = f(0) and the share of an attribute ati,j ∈ Si from level i is
αi,j = f (ki−1)(j), the ki−1 derivative of f evaluated in j.

To extend our second attribute-based signature scheme so that the admitted signing predicates
are exactly those hierarchical threshold predicates with c levels, let n be the size of the universe
of attributes P = {at1, . . . , atn}. In the Setup phase, n dummy attributes must be placed in each
level i = 1, . . . , c. Therefore, there will be cn dummy attributes in total. In the Key Generation
phase, for a subset of attributes Ω, the master entity will use Tassa’s secret sharing scheme for a
hierarchical threshold predicate Γ ′ defined by the sequence 0 < n < 2n < . . . < cn. That is, the
master entity chooses a fresh polynomial QΩ(X) of degree cn−1 such that QΩ(0) = α. The master
entity will compute the shares for the attributes in Ω and for the cn dummy attributes (placed
in different levels) to derive the values Dω,1, Dd,1 that appear in SKΩ. Finally, if a user wants to
sign for a hierarchical threshold predicate (S, Γ ) defined by the sequence 0 < k1 < k2 < . . . < kc,
where kc ≤ n, the polynomial PS(Z) is defined from the set S and from n− ki dummy attributes
in level i, for i = 1, . . . , c. The user can combine his attributes (in S) with n−ki dummy attributes
in level i, for i = 1, . . . , c, to interpolate from SKΩ the polynomial QΩ(X), in the exponent, and
recover the value product containing factor gα that is needed to sign. The form of the signatures,
the Verification phase and the security analysis are almost identical as in our threshold scheme in
Section 4.

The extension is limited in the sense that the number of levels c in the admitted hierarchical
threshold policies is set at the beginning. If more flexibility is desired, both the Setup and the Key
Generation processes should be repeated in parallel for any desired number of levels, at the cost of
an increase in the length of the public parameters and the secret keys.

Compartmented Access Structures. Compartmented families were introduced in [10]. Again,
the set of involved attributes is partitioned: S = S1∪S2∪ . . .∪Sc, with Si1 ∩Si2 = ∅ for all i1 6= i2.
A predicate Γ ⊂ 2S is compartmented if there exists a sequence of thresholds t; t1, t2, . . . , tc such
that

Γ = {Ω ⊂ S : |Ω| ≥ t and |Ω ∩ Sℓ| ≥ tℓ, ∀ℓ ∈ {1, 2, . . . , c}}

Such a predicate makes sense only when t ≤ |S| and tℓ ≤ |Sℓ|, for ℓ = 1, . . . , c. We can assume
t ≥ t1 + . . .+ tc; otherwise, replacing t with t

′ = t1 + . . .+ tc and obtain the same predicate.
Brickell constructed in [10] a vector space secret sharing scheme to realize a compartmented

predicate (S, Γ ) defined by a sequence of thresholds t; t1, t2, . . . , tc. The dealer is associated to the
vector ~v0 = (1, 0, . . . , 0) and then each attribute ati,j ∈ Sj in compartment j is associated to a
vector ~vi,j in such a way that Ω ∈ Γ if and only if ~v0 ∈ 〈{~vi,j}ati,j∈Ω〉 (in other words, if the vectors
associated to the attributes in Ω span the vector ~v0). To distribute a secret α, the dealer chooses
a random vector ~a such that ~a · ~v0 = α, and assigns to each attribute ati,j the share αi,j = ~a · ~vi,j .
The secret α can be easily obtained from the shares of any subset of attributes Ω ∈ Γ .

Similarly, our second attribute-based signature scheme can be extended to admit compart-
mented predicates with a fixed number, c, of compartments. If n is the size of the universe of
attributes, n dummy attributes must be placed in each of the compartments during the Setup.
This means we need cn dummy attributes in total, again. In the Key Generation for a subset of
attributes Ω, the master entity will use Brickell’s secret sharing scheme for the compartmented
predicate Γ ′ defined by sequence of thresholds cn;n, n, . . . , n. The shares corresponding to the at-
tributes in Ω and to the cn dummy attributes, according to the compartment where they belong,
will be computed and used to get the values Dω,1, Dd,1 in SKΩ. When a user wants to sign for such
a predicate (S, Γ ) defined by the sequence of thresholds t; t1, t2, . . . , tc, where t ≤ n, he combines his
real attributes (satisfying Γ ) with n− ti dummy attributes in the compartment i, for i = 1, . . . , c.
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The resulting subset of attributes will be authorized for the predicate Γ ′, and so the distributed
secret α (or a product containing the factor gα, as it is needed in our signature scheme) can be
recovered from the shares of the user. The polynomial PS(Z) (see equation (8) in Section 4) is again
defined from the set S and from n− ti dummy attributes in compartment i, for i = 1, . . . , c.

6 Concluding Remarks

We have proposed the first two threshold ABS schemes which produce constant-size signatures.
The signatures consist respectively of 15 and 3 group elements, whereas the secret keys skΩ contain
respectively |Ω| + n and (2n + 2) × (|Ω| + n) group elements. The security of both schemes is
proven in the standard model with respect to assumptions related to bilinear groups. Note that the
considered unforgeability model is not the strongest possible, since the attacker has to choose the
signing policy he wants to attack at the beginning of the unforgeability game.
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A Unforgeability Proofs

In this appendix we detail the unforgeability proofs of the two ABS schemes proposed in this work.

A.1 Proof of Theorem 1

We prove the theorem by considering a modified distribution of vectors (~g1, ~g2, { ~g3,i}
k
i=0) that are

used to generate Groth-Sahai reference strings.

Namely, to prepare ~g1, ~g2 and { ~g3,i}
k
i=0, we randomly pick ν

R
← {0, . . . , k}, ξ0,1, ξ1,1, . . . , ξk,1

R
←

Zp, ξ0,2, ξ1,2, . . . , ξk,2
R
← Zp and ρ0, ρ1, . . . , ρk

R
← {0, . . . , τ−1}, where τ = 2q (where q is the number

of signing queries). We first set ~g1 = (g1, 1, g)
⊤ and ~g2 = (1, g2, g)

⊤, where g1 = ga and g2 = gb for

randomly chosen a, b
R
← Zp. We then defines { ~g3,i}

k
i=0 by setting ~g3,0 = ~g1

ξ0,1 · ~g2
ξ0,2 ·((1, 1, g)⊤)ν·τ−ρ0

as well as ~g3,i = ~g1
ξi,1 · ~g2

ξi,2 · ((1, 1, g)⊤)−ρi for i = 1, . . . , k.
The distribution of { ~g3,i}

k
i=0 is obviously different from its distribution in the real scheme.

However, we argue that, if this modification in the distribution of public parameters noticeably
affects the adversary’s probability of success, the DLIN assumption can be broken. This statement
if proved by lemma 1.

In a second step, lemma 2 proves that, with the above way of generating
(

~g1, ~g2, {g3,i}
k
i=0

)

, a
successful forger F implies either a PPT algorithm to find collisions on H, a distinguisher for the
DLIN problem or an algorithm B that solves the (n− s⋆, n+ t⋆ − 1, t⋆ + 1)-aMSE-CDH problem.

Lemma 1. Under the above distribution of
(

~g1, ~g2, { ~g3,i}
k
i=0

)

, F ’s advantage is negligibly close to
its advantage in the real scheme if the DLIN assumption holds in G.

Proof. The proof uses a sequence of 2k + 2 games Gamereal, Game0, Game′0, Game1, Game′1, . . . ,
Gamek, Game′k which proceed as follows.

Gamereal: is a game where the adversary is given vectors (~g1, ~g2, {~g3,i}
k
i=0) as in the real scheme.

Game0: is a game where the vectors ~g1 = (g1, 1, g)
⊤ and ~g2 = (1, g2, g)

⊤ are chosen as in Gamereal

but ~g3,0 is chosen as ~g3,0 = ~g1
ξ0,1 · ~g2

ξ0,2 · ((1, 1, g)⊤)ξ0,3 for random ξ0,1, ξ0,2, ξ0,3
R
← Zp. Vectors

{~g3,i}
k
i=1 are still chosen as in Gamereal.
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Game′0: is identical to Game0 with a modification in the distribution of the vector ~g3,0 which is now

given by ~g3,0 = ~g1
ξ0,1 · ~g2

ξ0,2 · ((1, 1, g)⊤)ν·τ−ρ0 , for some ν
R
← {0, . . . , k} and ρ0

R
← {0, . . . , τ − 1},

while the distribution of {~g3,i}
k
i=1 remains the same as in Gamereal.

Gamej (1 ≤ j ≤ k): is identical to Game′j−1 but the distribution of the vector ~g3,j is changed into

~g3,j = ~g1
ξj,1 · ~g2

ξj,2 · ((1, 1, g)⊤)ξj,3 for random ξj,1, ξj,2, ξj,3
R
← Zp. As for vectors {~g3,i}

k
i=j+1, they

still live in the span of ~g1 and ~g2 as in Gamereal.
Game′j (1 ≤ j ≤ k): is like Gamej but, instead of being a truly random vector of G3, ~g3,j is now

obtained as ~g3,j = ~g1
ξj,1 · ~g2

ξj,2 · ((1, 1, g)⊤)−ρi for some ρi
R
← {0, . . . , τ − 1}.

In Game′k, the distribution of
(

~g1, ~g2, {g3,i}
k
i=0

)

is clearly identical to the one suggested in the proof
of theorem 1 and we just have to argue that all these games are computationally indistinguishable
under the DLIN assumption. We first explain how the indistinguishability of Game1, Game′1, . . . ,
Gamek, Game′k can be proved.

Claim 1. Under DLIN, no PPT adversary can distinguish Gamej from Game′j−1 for all 1 ≤ j ≤ k.

Proof. We construct a distinguisher BDLIN that takes as input (g, g1, g2, g
δ1
1 , g

δ2
2 , χ), for some δ1, δ2

R
←

Zp, with the goal of deciding if χ = gδ1+δ2 or χ ∈R G. To this end, BDLIN first defines ~g1 = (g1, 1, g)
⊤,

~g2 = (1, g2, g)
⊤. It generates ~g3,0, . . . , ~g3,j−1 as Game′j−1 and ~g3,j+1, . . . , ~g3,k as in Gamereal. As for

~g3,j , algorithm B
DLIN defines it as ~g3,j = (gδ11 , g

δ2
2 , χ)

⊤. It is clear that, if χ = gδ1+δ2 , the adversary
is playing Game′j−1 whereas, if χ ∈R G, it is playing Gamej . At the end of the attack game, the

distinguisher BDLIN outputs 1 if the forger F manages to create a valid forgery and 0 otherwise.

Claim 2. Under DLIN, Game′j is computationally indistinguishable from Gamej for all 1 ≤ j ≤ k.

Proof. We show a distinguisher BDLIN that takes as input a tuple (g, g1, g2, g
δ1
1 , g

δ2
2 , χ) and decides

if χ = gδ1+δ2 or χ ∈R G. To this end, BDLIN first defines ~g1 = (g1, 1, g)
⊤, ~g2 = (1, g2, g)

⊤. Vectors
~g3,0, ~g3,1, . . . , ~g3,j−1 are then chosen as in Game′j−1 while vectors ~g3,j+1, . . . , ~g3,k are selected

as in the real game Gamereal. To prepare the vector ~g3,j , the distinguisher BDLIN randomly picks

ρi
R
← {0, . . . , τ − 1} and computes ~g3,j = (gδ11 , g

δ2
2 , χ · g

−ρi)⊤. It is easy to see that, if χ ∈R G,
algorithm BDLIN is playing Gamej with the forger F since ~g3,j has the same distribution no matter
if χ is multiplied by g−ρi or not. If χ = gδ1+δ2 , BDLIN is rather playing Game′j with F . At the end

of its interaction with F , BDLIN outputs 1 if F outputs a successful forgery and 0 otherwise.

The computational indistinguishability of Game0, Game′0 and Game1 is proved in the same way.
The only change is that, during the transition from Game0 to Game′0, χ is multiplied by gν·τ−ρ0 .
Finally, the indistinguishability of Gamereal and Game0 is established exactly in the same way as
that of Game′j−1 and Gamej , for j ∈ {1, . . . , k}, in the proof of Claim 1. ⊓⊔

Lemma 2. Under the modified distribution of
(

~g1, ~g2, {g3,i}
k
i=0

)

, F ’s advantage is negligible if the
(n− s⋆, n+ t⋆− 1, t⋆ +1)-aMSE-CDH assumption holds in (G,GT ) and if H is a collision-resistant
hash function.

Proof. We denote by I(−→x 2n+t∗−s∗−1, κ, α, γ, ω, T ) the input of the algorithm B that we design to
solve the aMSE-CDH problem (recall Definition 1 in Section 2.2). At the outset of the game, the
adversary F declares its chosen challenge policy Γ ⋆ = (t⋆, S⋆), with s⋆ = |S⋆|. Using this informa-
tion, B chooses

(

~g1, ~g2, {g3,i}
k
i=0

)

as specified in the second paragraph of the proof of Theorem 1. It
then generates the rest of pms and mpk as follows. The algorithm B defines an arbitrary encoding

17



ς of the attributes with the restriction that the encodings of the attributes in P\S⋆ correspond
to the opposite of the roots of f(X), while the encodings of the elements in S⋆ correspond to the
opposite of some of the roots of g(X).

The values {d1, . . . , dn+t⋆−1−s⋆} corresponding to the first n + t⋆ − 1 − s⋆ dummy attributes
are defined as the opposite of the rest of the roots of g(X) (in some arbitrary order). For j =
n + t⋆ − s⋆, . . . , n − 1, the dj ’s can be chosen at random in Zp until they are distinct from
{x1, . . . , x2n+t⋆−1−s⋆ , dn+t⋆−s⋆ , . . . , dj−1}.

The algorithm B defines g := g
f(γ)
0 . Note that B can compute g with the elements of line (l.1) of

its input, since f is a polynomial of degree ℓ̃ = n− s⋆. To complete the setup phase, B sets h = h0
and computes

– u = gαγ = g
α·γ·f(γ)
0 with line (l.3) of its input, which is possible since Xf(X) is a polynomial of

degree ℓ̃+ 1. Indeed, α · γ · f(γ) is a linear combination of {αγ, . . . , αγ ℓ̃+1} and the coefficients
of this linear combination are known to B, so the value u can be computed from line (l.3).

– v = e(g, h)α = e(g
f(γ)α
0 , h0) with line (l.3) for g

f(γ)α
0 .

– {hαγ
i
}i=0,...,2n−1 from line (l.6) of its input.

Private key queries: Whenever the adversary F makes a key extraction query for a subset of
attributes Ω ⊂ P satisfying that 0 ≤ |ΩS = Ω∩S⋆| ≤ t⋆−1, the algorithm B must produce a tuple
of the form

skΩ =
({

g
r

γ+ς(at)

}

at∈Ω
,
{

hrγ
i
}

i=0,...,n−2
, h

r−1
γ

)

,

for some random value r ∈ Zp. To do so, B implicitly defines r = (ωyΩγ + 1)QΩ(γ), where yΩ is
randomly picked in Zp, and the polynomial Qω(X) is defined as QΩ(γ) = 1 when |ΩS | = 0, or
QΩ(X) = λΩ ·

∏

at∈ΩS

(X + ς(at)) otherwise, in which case λΩ = (
∏

at∈ΩS
ς(at))−1.

The elements which form skΩ are then computed as follows:

– For any attribute at ∈ ΩS , B defines

Qat(γ) = QΩ(γ)/(γ + ς(at)) = λΩ ·
∏

ãt∈ΩS , ãt 6=at

(γ + ς(ãt))

and then g
r

γ+ς(at) = g
f(γ)ωyΩγQat(γ)
0 ·g

f(γ)Qat(γ)
0 . The first factor of the product (whose exponent is

a polynomial in γ of degree at most (n−s⋆)+1+t⋆−2) can be computed from line (l.2), whereas
the second factor (whose exponent is a polynomial in γ of degree at most (n− s⋆) + t⋆− 2) can
be computed from line (l.1).

– For any attribute at ∈ Ω \ ΩS , B defines the polynomial fat(X) = f(X)/(X + ς(at)) and then

g
r

γ+ς(at) = g
fat(γ)ωyΩγQΩ(γ)
0 · g

fat(γ)QΩ(γ)
0 . Again, the first factor of this product can be computed

from line (l.2), and the second factor can be computed from line (l.1).

– The values
{

hrγ
i
}

i=0,...,n−2
can be computed from line (l.4) and (l.5), since hrγ

i
= hQΩ(γ)ωyΩγi+1

·

hQΩ(γ)γi
.

– Finally, B has to compute h
r−1
γ = hQΩ(γ)ωyΩ · h

QΩ(γ)−1

γ . The first factor of the product can
be computed from line (l.5) and the second factor can be computed from line (l.4), since by

definition of λΩ, QΩ(X) is a polynomial with independent term equal to 1 and thus QΩ(γ)−1
γ is

a linear combination of {1, γ, . . . , γt−2}.
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Note that QΩ(γ) 6= 0 (otherwise γ = ς(at) for some at ∈ ΩS and γ is public), in which case it
is not hard to see that r is uniformly distributed in Zp. If the choice of yΩ leads to r = 0 (which
occurs only with negligible probability anyhow), it suffices to pick a different value for yΩ. That is,
in the simulation r is uniformly distributed in Zp.

Signing queries: At each signing query, F chooses a message Msg and a threshold access policy
Γ = (t, S), where S is an attribute set of size s ≤ n and t ∈ {1, . . . , s}. To answer such a query,
B computes M = H(Msg, Γ ) ∈ {0, 1}k and parses it as a k-bit string M = m1 . . .mk ∈ {0, 1}

k. It
evaluates the functions

J(M) = −ν · τ + ρ0 +

k
∑

j=1

ρj ·mj , (14)

K1(M) = ξ0,1 +

k
∑

j=1

ξj,1 ·mj , K2(M) = ξ0,2 +

k
∑

j=1

ξj,2 ·mj , (15)

for which the message-dependent vector ~g3,M equals ~g3,M = ~g1
K1(M) · ~g2

K2(M) · (1, 1, g)−J(M) and

aborts in the event that J(M) = 0. Otherwise, B can generate a signature σ =
(

~CT1 ,
~CT2 ,

~Cθ, ~π1, ~π2
)

by simulating NIZK proofs for relations (2)-(3) as follows. First, B computes the query-dependent

vector ~g3,M = ~g3,0 ·
∏k

i=1 ~g3,i
mi = ~g1

K1(M) · ~g2
K2(M) · (1, 1, g)−J(M). Observe that, as long as

J(M) 6= 0, gM = (~g1, ~g2, ~g3,M ) forms a Groth-Sahai CRS for the WI setting (meaning that
commitments generated using it are always perfectly hiding) and using the trapdoor information
(K1(M),K2(M), J(M)), B can simulate proofs without knowing witnesses.

To this end, B generates ~CT1 ,
~CT2 and ~Cθ as commitments to the identity element 1G and uses

the variable assignment T1 = T2 = Θ = 1G to honestly generate a proof for equation (2). As for
relation (3), B uses the trapdoor (K1(M),K2(M), J(M)) of the simulated reference string gM to

generate a fake proof that Θ = h. Namely, with ~Cθ = ~g1
rθ · ~g2

sθ · ~gtθ3,M being a commitment to 1G,
the proof elements

π2,1 = grθ · h−K1(M)/J(M), π2,2 = gsθ · h−K2(M)/J(M), π2,3 = gtθ · h1/J(M),

are easily seen to satisfy the verification equation (5). To make sure that ~π2 = (π2,1, π2,2, π2,3) is
uniformly distributed in the space of valid proofs, B then performs a proof re-randomization as
explained in [17].

Forgery: at the end of the game, the adversary F outputs σ⋆ =
(

~C⋆
T1
, ~C⋆

T2
, ~C⋆

θ , ~π
⋆
1, ~π2

⋆
)

for some
message Msg⋆ and the expected target access policy Γ ⋆ = (t⋆, S⋆). At this step, B computes
M⋆ = m⋆

1 . . .m
⋆
k = H(Msg⋆, Γ ⋆) and evaluates the functions J(M⋆), K1(M

⋆) and K2(M
⋆) as per

(14)-(15). It aborts if it holds that either:

1. The hash value M⋆ = H(Msg⋆, Γ ⋆) is such that J(M⋆) 6= 0.
2. F made a signing query (Msg, Γ ) for which (Msg, Γ ) 6= (Msg⋆, Γ ⋆) andH(Msg, Γ ) = H(Msg⋆, Γ ⋆).

Situation 2 obviously breaks the collision-resistance of H and we will only have to bound the
probability of situation 1 occurring. If neither situation occurs (which implies J(M⋆) = 0), the
proofs ~π⋆1, ~π2

⋆ must be valid w.r.t. the Groth-Sahai CRS gM⋆ = (~g1, ~g2, ~g3,M⋆), for which the third
vector is given by

~g3,M⋆ = ~g3,0 ·
k
∏

i=1

~g
m⋆

i

3,i = ~g1
K1(M⋆) · ~g2

K2(M⋆) =
(

g
K1(M⋆)
1 , g

K2(M⋆)
2 , gK1(M⋆)+K2(M⋆)

)

,
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so that gM⋆ forms a perfectly sound Groth-Sahai CRS. The latter perfect soundness property
guarantees that, with respect to gM⋆ , ~C⋆

T1
and ~C⋆

T2
are extractable Groth-Sahai commitments and

that, by BBS-decrypting them using a, b ∈ Zp, B obtains values T1, T2 that satisfy relation (1).
From the values T1, T2, B can easily find the solution to the (n− s⋆, n+ t⋆ − 1, t⋆ + 1)-aMSE-CDH

problem. Indeed, from h
κ·g(γ)
0 (line (l.4)) and

(

g
κ·γf(γ)
0

)−1
(and line (l.1)), algorithm B simply

computes

e(T1, h
κ·g(γ)
0 )e(T2,

(

g
κ·γf(γ)
0

)−1
) = e(g0, h0)

κf(γ).

Using a similar analysis to the probabilistic analysis of the simulator in Waters’ identity-based
encryption scheme [32] (but without the artificial abort step), we find that, with probability 1/(8 ·
q · (k + 1)), B has J(M⋆) = 0 in the forgery stage whereas J(M) 6= 0 in all signing queries. Hence,
if F ’s advantage is ε, B’s probability of success is ε/(8 · q · (k + 1)), which is non-negligible. ⊓⊔

A.2 Proof of Theorem 3

We show that a forger F allows constructing either a collision-finder for H or an algorithm B
that computes gγ

N+1
from (g, gγ , . . . , gγ

N
, gγ

N+2
, . . . , gγ

2N
), where N = 2n + 1. In the follow-

ing notations, we denote by ~γ the vector ~γ = (γ, γ2, . . . , γN ) and also define zi = gγ
i
, for each

i ∈ {1, . . . , 2N}\{N + 1}.
At the very beginning of the attack game, the forger F declares which policy Γ ⋆ = (t⋆, S⋆) it

wants to be challenged upon, where t⋆ ∈ {1, . . . , |S⋆|}. Armed with this information, B prepares the
trusted public parameters pms and the master public key mpk as follows. It first selects a set D of
n dummy attributes, then B computes the vector ~Y associated to the polynomial PS⋆(Z) according
to equation (8) using a set Dn−t⋆ containing the first n − t⋆ dummy attributes. More precisely, B

chooses θ0, δ0 as well as a random vector ~θ
R
← Z

N
p and computes ~H = (h1, . . . , hN )⊤ = g~γ ·g

~θ (which

implicitly sets ~α = ~γ + ~θ), h0 = gθ0 · g−〈~γ,~Y 〉 and e(g, g)α = e(z1, zN )δ0 , so that the corresponding
(unknown) master secret is gα = zδ0N+1.

In addition, B prepares a vector ~U = (u0, . . . , uk)
⊤ ∈ G

k+1 that will serve as a key for a
programmable hash function [19], as in Waters’ identity-based encryption scheme [32]. Namely, B

randomly picks ν
R
← {0, . . . , k}, φ0, φ1, . . . , φk

R
← Zp and ρ0, ρ1, . . . , ρk

R
← {0, . . . , τ − 1}, where

τ = 2q (here q is an upper bound on the number of signing queries) and defines ui = zρi1 · g
φi for

i = 1, . . . , k and u0 = z−ν·τ+ρ0
1 · gφ0 . Finally, B selects a collision-resistant hash function H. The

master public key mpk =
(

g, e(g, g)α, h0, ~H, ~U,D, H
)

is given to F .

In the following, for any ω ∈ Zp, we define the vector ~Xn
ω = (1, ω, . . . , ωn−1)⊤. We note that

given any set S ⊂ Zp of cardinality less than n, the vectors { ~Xn
ω}ω∈S are linearly independent.

Private key queries: During the game, F can obtain private keys for any attribute set Ω such
that |Ω ∩ S⋆| < t⋆.

Since |S⋆∩Ω| < t⋆, the cardinality of (S⋆∩Ω)∪Dn−t⋆ is strictly less than n. Consequently, the

vector ~Xn
0 = (1, 0, . . . , 0)⊤ cannot be in the span of the vectors { ~Xn

ω}ω∈(S⋆∩Ω)∪Dn−t⋆
. Hence, there

must exist an efficiently computable vector ~τ such that 〈 ~Xn
ω , ~τ〉 = 0 for any ω ∈ (S⋆ ∩ Ω) ∪ Dn−t⋆

and such that 〈 ~Xn
0 , ~τ〉 6= 0 (according to Proposition 1 in [16]). Let µ denote this value 〈 ~Xn

0 , ~τ〉.

To construct a private key, B has to define a vector ~u = α · ~β ∈ Z
n
p satisfying the constraint

〈 ~Xn
0 , ~u〉 = α, for some random constrained vector ~β = (1, β̃1, . . . , β̃n−1)

⊤ that implicitly defines the
coefficients of QΩ[X] as βi = α · β̃i for i = 1, . . . , n − 1. To this end, B proceeds as in the proof
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of Theorem 3 in [16], by implicitly setting ~u as ~u = ~v + ψ · ~τ , where ~v = (v1, . . . , vn)
⊤ ∈ Z

n
p is a

randomly chosen vector and ψ = (α− v1)/µ, so that 〈 ~Xn
0 , ~u〉 = α.

The task of B is thus to simulate (without knowing ~u) the private key components for any
ω ∈ Ω ∪ D, which are:

SKω =
(

Dω,1, Dω,2, {Kω,i}
N−1
i=1

)

=
(

gQΩ(ω) · hrω0 , g
rω , {h−ωi

1 hi+1}
N−1
i=1

)

,

where QΩ(ω) = 〈 ~X
n
ω , ~u〉.

Let us divide the set Ω ∪ D into two subsets: Υ1 = (Ω ∪ D) ∩ ((S⋆ ∩ Ω) ∪ Dn−t⋆) and Υ2, its
complement.

1. For each ω ∈ Υ1, we have QΩ(ω) = 〈 ~Xn
ω , ~u〉 = 〈 ~X

n
ω , ~v〉 which is efficiently computable by B.

Hence, B can simply pick rω
R
← Z

∗
p and define

Dω =
(

Dω,1, Dω,2, {Kω,i}
N−1
i=1

)

=
(

gQΩ(ω) · hrω0 , g
rω , {(h−ωi

1 hi+1)
rω}N−1

i=1

)

.

2. For each ω ∈ Υ2, B can construct a valid key component SKω =
(

Dω,1, Dω,2, {Kω,i}
N−1
i=1

)

in two
steps. The first step consists in building a tuple of the form

(

D∗
ω,1, D

∗
ω,2, {K

∗
ω,i}

N−1
i=1

)

=
(

gα · hr̃ω0 , g
r̃ω , {(h−ωi

1 hi+1)
r̃ω}N−1

i=1

)

using that attribute ω is not in the set (S⋆ ∪Dn−t⋆). To this end, B proceeds as in [9]. Let Mω

be the N × (N − 1) matrix

Mω =

(

−ω − ω2 · · · − ωN−1

IN−1

)

.

Pick ξ1
R
← Z

∗
p. Note that the vector ~ξ = ξ1 · (1, ω, . . . , ω

N−1)⊤ satisfies that ~ξ ⊤Mω = ~0 while

〈~Y , ~ξ〉 = ξ1 · PS⋆(ω) 6= 0.
The simulator B computes

(

D∗
ω,1, D

∗
ω,2

)

=
(

gα · hr̃ω0 , g
r̃ω
)

(16)

and

(

K∗
ω,1, . . . ,K

∗
ω,N−1

)⊤
= gr̃ωM

⊤
ω ~α, (17)

with ~α = (α1, . . . , αN )⊤ and where the exponent r̃ω is defined as

r̃ω = r + δ0〈(γ
N , γN−1, . . . , γ)⊤, ~ξ〉/〈~Y , ~ξ〉

for some r
R
← Zp chosen by B. Since gM

⊤
ω ~α = (h−ω

1 h2, . . . , h
−ωN−1

1 hN )⊤, if we can argue that
both expressions (16) and (17) are computable by B, we will have concluded the first step of
the key generation process.

Observe that for any vector ~f ∈ Z
N
p the coefficient of γN+1 in the product r̃ω〈~f,~γ〉 is δ0〈~f, ~ξ〉/〈~Y , ~ξ〉.

The reason why B can compute the second factor of side of D∗
ω,1 in expression (16) is that the

coefficient of gγ
N+1

in D∗
ω,1 is 0. Indeed, D∗

ω,1 = gα · hr̃ω0 = zδ0N+1 ·
(

gθ0 · g−〈~γ,~Y 〉
)r̃ω and the
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coefficient of γN+1 is −δ0 in the product −r̃j〈~γ, ~Y 〉, as we can see applying the observation

above in the case ~f = ~Y .

Since M ⊤
ω
~ξ = ~0, applying again the observation above, now to the case where ~f⊤ is succes-

sively set as the rows of M⊤
ω , we have that the unknown term zN+1 = gγ

N+1
does not appear

in gr̃jM
⊤
ω ~α, which is thus computable.

This concludes the first step of the key generation process. In the second step, we just have to
turn

(

D∗
ω,1, D

∗
ω,2, {K

∗
ω,i}

N−1
i=1

)

into a suitable key component SKω. Note that

〈 ~Xn
ω , ~u〉 = 〈 ~X

n
ω , ~v〉+ ψ · 〈 ~Xn

ω , ~τ〉 =
n
∑

j=1

ωj−1
(

vj +
(α− v1)

µ
· τj
)

= κ1 · α+ κ2,

where the coefficients κ1 = (
∑n

j=1 ω
j−1τj) · µ

−1 and κ2 = µ−1 ·
∑n

j=1 ω
j−1
(

µvj − v1τj
)

are both

computable, so that B can obtain a well-formed tuple SKω = (Dω,1, Dω,2, {Kω,i}
N−1
i=1 ) by setting

SKω = (Dω,1, Dω,2, {Kω,i}
N−1
i=1 ) =

(

D∗
ω,1

κ1 · gκ2 · h
r′ω
0 , D

∗
ω,2

κ1 · gr
′
ω , {K∗

ω,i
κ1 · (h−ωi

1 · hi+1)
r′ω}N−1

i=1

)

,

for a randomly chosen r′j
R
← Zp.

Signing queries: At any time, F is also allowed to obtain signatures on arbitrary messages. At
each signing query, F supplies a message Msg and a threshold access policy Γ = (t, S), where
S is an attribute set of size s ≤ n and t ∈ {1, . . . , s}. To answer such a query, B computes
M = H(Msg, Γ ) ∈ {0, 1}k and parses it as a k-bit string m1 . . .mk. It evaluates the functions

J(M) = −ν · τ + ρ0 +
k
∑

j=1

ρj ·mj and K(M) = φ0 +
k
∑

j=1

φj ·mj , (18)

for which the programmable hash function implemented by the vector ~U = (u0, . . . , uk)
⊤ ∈ G

k+1 is

such that u0 ·
∏k

j=1 u
mj

j = z
J(M)
1 ·gK(M), and aborts in the event that J(M) = 0. Then, B constructs

the vector ~Y = (y1, . . . , yN )⊤ whose coordinates are the coefficients of the polynomial PS(Z) which
is obtained following relation (8), by augmenting S with n− t dummy attributes. Recall that B has
to generate a signature of the form

σ1 = gα ·
(

h0 ·
N
∏

i=1

hyii
)r
·
(

u0 ·
k
∏

j=1

u
mj

j

)z̃
, σ2 = gr, σ3 = gz̃, (19)

for some r, z̃ ∈R Zp. To this end, B uses the usual technique (which dates back to [3]) consisting in

implicitly defining z̃ = z − γN ·δ0
J(M) , for a randomly chosen z

R
← Zp, and computing

σ1 =
(

u0 ·
k
∏

j=1

u
mj

j

)z
· z

−K(M)·δ0/J(M)
N ·

(

h0 ·
n
∏

i=1

hyii
)r
, σ2 = gr, σ3 = gz · z

−δ0/J(M)
N ,

for a random r
R
← Zp. Since z̃ = z − γN ·δ0

J(M) and α is implicitly defined as α = γN+1 · δ0, the above

triple is easily seen to have the required distribution (19).
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Forgery: The game ends with the adversary outputting a forgery σ⋆ = (σ⋆1, σ
⋆
2, σ

⋆
3) for some message

Msg⋆ and the target access policy Γ ⋆ = (t⋆, S⋆) without having made any illegal query. At this
step, B computes m⋆

1 . . .m
⋆
k = M⋆ = H(Msg⋆, Γ ⋆) and evaluates the functions J(M⋆) and K(M⋆)

as per (18). It aborts if it holds that either:

1. The hash value M⋆ = H(Msg⋆, Γ ⋆) is such that J(M⋆) 6= 0.
2. F made a signing query (Msg, Γ ) such that (Msg, Γ ) 6= (Msg⋆, Γ ⋆) andH(Msg, Γ ) = H(Msg⋆, Γ ⋆).

We will see that situation 1 is avoided with noticeable probability and case 2 obviously breaks
the collision-resistance of H. If neither of the above situation occurs (and thus J(M⋆) = 0), B can

obtain the searched value zN+1 = gγ
N+1

as follows. Since the vector ~Y = (y1, . . . , yN )⊤ derived from

Γ ⋆ is such that h0 ·
∏N

i=1 h
yi
i = gθ0+〈~θ,~Y 〉 and given that J(M⋆) = 0 and σ⋆ satisfies the verification

equation (13), we must have

e(g, g)(γ
N+1)·δ0 =

e(σ⋆1, g)

e(σ⋆2, g
θ0+〈~θ,~Y 〉) · e(σ⋆3, g

K(M⋆))
,

which implies that zN+1 =
(

σ⋆
1

σ⋆
2
θ0+〈~θ,~Y 〉·σ⋆

3
K(M⋆)

)1/δ0
is computable by B.

The same analysis as in Waters’ identity-based encryption scheme [32] shows that, with proba-
bility 1/(8 · q · (k + 1)), B gets lucky and has J(M⋆) = 0 in the forgery stage whereas J(M) 6= 0 in
all signing queries. It comes that, if F ’s advantage is ε, B’s success probability is ε/(8 · q · (k + 1)),
which is non-negligible. ⊓⊔
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