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Peculiar phenomena appear in the discretization of a system invariant under reparametrization. The
structure of the continuum limit is markedly different from the usual one, as in lattice QCD. First, the
continuum limit does not require tuning a parameter in the action to a critical value. Rather, there is a
regime where the system approaches a sort of asymptotic topological invariance (“Ditt-invariance”).
Second, in this regime the expansion in the number of discretization points provides a good approximation
to the transition amplitudes. These phenomena are relevant for understanding the continuum limit of
quantum gravity. I illustrate them here in the context of a simple system.
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I. INTRODUCTION

Discretization plays an important role in the analysis of
many physical system, and can even be used to define the
theory, as in the lattice definition of QCD (see [1]). A
number of characteristic phenomena appear when discretiz-
ing a continuum theory. For instance, (i) the continuum
theory is recovered taking suitable parameters to their
critical values; and (ii) energy conservation is broken by
the discretization, and recovered only in the limit.
Discretization plays an important role also in quantum

gravity, where loop-quantum-gravity spinfoam transition
amplitudes on fixed foams (see for instance [2,3]) have
been shown to be strictly related to a Regge-like discre-
tization of general relativity [4–9]. However, conventional
wisdom about discretization does not appear to apply in the
gravitational context, and the structure of the continuum
limit appears to be intriguingly different from the conven-
tional one.
To elucidate the situation and investigate the source of

the difference, I study here the discretization of a simple
system (discussed in [10]) that shares with general relativity
the property of being “Diff-invariant,” that is, invariant
reparametrization of its evolution parameter. I show that the
discretization of this system contradicts conventional
wisdom on discretization and displays the same peculiar
features that appear in loop gravity.
First, energy is conserved in the discretization. The

invariance of the system is gauge fixed in the discretization

[11,12], by an additional independent equation, absent in
the continuum (in the Appendix, I discuss the sense in
which this is a breaking of Diff-invariance). This equation
fixes the time steps in such a way to conserve energy.
Second, and most importantly, the continuum limit does

not require the system to go to a critical point, as is the case
for normal systems. The continuum limit is simply given by
taking the number of discretization points to infinity,
without tuning any parameter. This behavior is very
surprising at first, given the common behavior of systems
under discretization, but it is a simple consequence of the
scaling structure of the theory: the parameter in which the
discretization is taken is dimensionless.
Third, correlation functions in parameter time are mean-

ingless, because of the invariance. Physical quantities can
instead be derived from transition amplitudes, which are
functions of the boundary values of the path integral. The
values of the boundary values spans different regimes for
the system.
In particular, there exists a regime where the curvature of

the classical trajectory determined by the boundary values
is small. In such “flatness” regime, the classical trajectories
are nearly free and the system displays a very remarkable
behavior: the amplitudes become independent from the
number of discretization points [13]. In quantum gravity
parlance, the system approaches a “topological” phase.
Fourth, in approaching this regime, Diff-invariance

reappears in the discretized theory. In the vicinity of the
limit, the system displays an “almost invariance” [14–18].
This peculiar “almost Diff-invariance” and its importance
for quantum gravity has been studied by Bianca Dittrich
and collaborators [10,13,19–21], and I denote it here Ditt-
invariance (from “Dittrich”).
Finally, the consequence of Ditt-invariance on the

discretized path integral, combined with the absence of
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parameters to be tuned in the continuum limit, is remark-
able: in this regime, a very rough discretization yields near
exact results. I show this numerically, below. In this regime,
the number of discretization points provides a good
perturbation expansion for the amplitudes. In a sense,
for a parametrized system the flatness regime relates
discretization with perturbation theory.
These findings provide some ground for the hypothesis

that the same structure of the continuum limit might work
in quantum gravity. In particular, they suggests that: (i) The
continuum limit is recovered by refining the foam, without
taking any parameter to a critical value. (ii) There is a
regime, where the system approaches Ditt-invariance,
where a perturbation expansion in the number of discre-
tization cells is viable. (iii) In quantum gravity this regime
is near flatness. It is also tempting to speculate that the
underlying topological theory be BF theory. This will be
discussed more in detail in the conclusions.

II. DISCRETIZATION

Consider a harmonic oscillator with mass m and angular
frequency ω. The action is

S ¼ m
2

Z
dt

��
dq
dt

�
2

− ω2q2
�
: ð1Þ

Choose a fixed time interval t of interest and divide it into a
large number N of small steps of size a ¼ t=N. The
continuum theory will be recovered with N → ∞ and
a → 0, keeping the size t ¼ Na of the time interval fixed.
Discretize the system on the time steps tn ¼ an, with integer
n ¼ 1;…; N. The system is then described by the variables
qn ¼ qðtnÞ and the action can be discretized as follows:

SN ¼ m
2

X
n

a

��
qnþ1 − qn

a

�
2

− ω2q2n

�
: ð2Þ

A standard lattice procedure is then to define rescaled
dimensionless variables Qn ¼

ffiffiffiffi
m
aℏ

p
qn and Ω ¼ aω, so that

the dimensionless action becomes

SN
ℏ

¼ 1

2

X
n

ððQnþ1 −QnÞ2 −Ω2Q2
nÞ≡ SN;ΩðQnÞ; ð3Þ

where all quantities on the rhs are now dimensionless. This
action (or better, its analytical continuation in Euclidean
time) can be studied numerically to give an approximation of
the path integralZ

D½qðtÞ� ei
ℏS½qðtÞ� →

Z
dQn eiSN;ΩðQnÞ: ð4Þ

To take the continuum limitwe have to sendN → ∞, but this
is not sufficient: we must also send Ω to its critical value

Ω ¼ 0, sinceΩ ¼ aω andamustgo to zero in the limit.More
precisely, say we want to compute the propagator

Wðqf; tf; qi; tiÞ ¼ hqfje− i
ℏHðtf−tiÞjqii

¼
Z

qðtfÞ¼qf

qðtiÞ¼qi

D½qðtÞ� ei
ℏS½qðtÞ�: ð5Þ

Then this is given by

Wðqf; tf; qi; tiÞ ¼ lim
Ω→0
N→∞

N
Z

dQn eiSN;ΩðQnÞ; ð6Þ

where Q0 ¼
ffiffiffiffi
m
aℏ

p
qi and QN ¼ ffiffiffiffi

m
aℏ

p
qf and N is a suitable

normalization factor for the measure.
The fact that the limit is obtained not only by taking

N → ∞ but also sending Ω to its critical value is an
essential defining feature of the discretization. Near the
critical value the correlation lengths of the discretized
system diverge in the number of lattice steps, so that they
remain finite in physical separations. Taking the discretized
system to its critical point can implement universality and
wash away the effect of the details of the discretization.
This same behavior is present in field theory. It is natural to
think that this pattern is universal. But things are different
when discretizing reparametrization-invariant systems.

III. PARAMETRIZATION

Consider the system defined by the two variables qðτÞ
and tðτÞ, evolving in the evolution parameter τ, and
governed by the action

S ¼ m
2

Z
dτ

�
_q2

_t
− ω2_tq2

�
; ð7Þ

where the dots indicate the derivative with respect to τ. It is
immediate to see that this is physically fully equivalent to
the harmonic oscillator discussed in the previous section.
In fact, the equation of motion for q is

d
dτ

_q
_t
¼ −ω2_tq ð8Þ

which gives immediately the harmonic oscillator equation
d2q=dt2 ¼ −ω2q; while the equation for t is

d
dτ

�
_q2

_t2
þ ω2q2

�
¼ 0; ð9Þ

which is not an independent equation: it is simply the
conservation of energy that follows from (8). The system
has indeed a large gauge invariance, under arbitrary
reparametrization of its independent variable τ. In this, it
is very similar to general relativity, which is equally
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invariant under the reparametrization of its independent
coordinate variables (Diff-invariance).
Let us discretize this system. As before, fix an interval in

τ, split it into N steps of size a and define τn ¼ na, tn ¼
tðτnÞ and qn ¼ qðτnÞ. Consider the discretized action

SN ¼ m
2

X
n

a

�ðqnþ1−qn
a Þ2

tnþ1−tn
a

− ω2
tnþ1 − tn

a
q2n

�
: ð10Þ

Notice something important: the quantity a drops from this
expression. Indeed, the above reads

SN ¼ m
2

X
n

�ðqnþ1 − qnÞ2
tnþ1 − tn

− ω2ðtnþ1 − tnÞq2n
�
: ð11Þ

In words, the discretized action is fully independent from a.
This elementary observation is the main point of this
article. Let us study the consequences of this fact.
The main consequence is that the continuum limit of the

theory is not given by the double limit N → ∞; a → 0, but
rather from the single limit N → ∞. Let us see this more in
detail.
Define as before dimensionless variables Qn ¼

ffiffiffiffiffi
mω
ℏ

p
qn

and Tn ¼ ωtn. Notice that these are not defined using the
time step a, which would be useless in this context since a
is not in the action, but rather the natural units given by the
dynamics itself (in general relativity these natural units are
provided by the Planck length). This yields the dimension-
less action

SN
ℏ

¼ 1

2

X
n

�ðQnþ1 −QnÞ2
Tnþ1 − Tn

− ðTnþ1 − TnÞQ2
n

�

≡ SNðQn; TnÞ: ð12Þ

Notice that the frequency has been absorbed in the
normalization of the dimensionless variables. Suppose
now we want to compute the same transition amplitude
as before:

Wðqf; tf; qi; tiÞ ¼
Z qð1Þ¼qf

tð1Þ¼tf

qð0Þ¼qi
tð0Þ¼ti

D½qðτÞ�D½tðτÞ� ei
ℏS½qðτÞ;tðτÞ�: ð13Þ

Then this is given by

Wðqf; tf; qi; tiÞ ¼ lim
N→∞

Z
dQn dTn eiSNðQn;TnÞ; ð14Þ

where Q0 ¼
ffiffiffiffiffi
ωm
ℏ

p
qi and QN ¼ ffiffiffiffiffi

ωm
ℏ

p
qf, T0 ¼ ωti and

TN ¼ ωtf. There is no other limit to take than N → ∞.
When N is large, the average time steps are automati-
cally small.

Below I study whether the classical and the quantum
dynamics given by such discretization of the parametrized
theory are well defined and sensible.

IV. CLASSICAL DYNAMICS

The standard discretization (2) of the system breaks the
interval of the physical time t intoN steps of equal size. The
discrete equation of motion, obtained minimizing (2) with
respect to qn is

vnþ1 ¼ vn − aω2qn; ð15Þ

where I have defined the discrete velocity

vnþ1 ≡ qnþ1 − qn
a

: ð16Þ

Equation (15) gives the velocity at the next time step in
terms of the velocity at the previous step and of the discrete
impulse (the impulse is the force −ω2qn times the time step
a). As is well known, because of the approximation
involved in the discretization, the energy

En ¼
m
2
ðv2nþ1 þ ω2q2nÞ ð17Þ

is not conserved in general.
Consider now the discretization of the parametrized

system. The key observation is that while the two con-
tinuous equations of motion [(8) and (9)] are degenerate
(the second follows from the first), their discretizations are
independent equations. The first discretized equation is as
before:

vnþ1 ¼ vn − ðtnþ1 − tnÞω2qn; ð18Þ

where the discrete velocity is now

vnþ1 ≡ qnþ1 − qn
tnþ1 − tn

ð19Þ

and the fixed size time step a is replaced by the variable size
time step ðtnþ1 − tnÞ. What about the second equation? The
variation of the action with respect to tn gives easily

Enþ1 ¼ En: ð20Þ

That is, energy is now conserved. How is it possible? It is
possible because the additional degree of freedom, which is
the position of the time steps, is now adjusted by the
dynamics in order for the energy to be conserved. In other
words, the continuous parametrized system adds a degree
of freedom which is fully gauge. The discrete nonparame-
trized dynamics breaks energy conservation. But the
discrete parametrized dynamics breaks the gauge freedom
added by the parametrizations and exploits it by fixing it so
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that energy is conserved. Concretely, the “positions” of the
intermediate time steps tn are not gauge in the discrete
theory: they are determined in order to adjust the con-
servation of energy.
The integration of the discrete equations of motion of

the parametrized systems can be performed numerically,
showing that they give the correct dynamics. See
Figs. 1–3. Notice the irregular evolution of qn (Fig. 1)
and tn (Fig. 2) as functions of n: This reflects the arbitrary
dependence on τ of the parametrized system, gauge fixed
in the discretization (and determined by the initial data).
But then qn and tn combine into the well-known solution of
the harmonic oscillator equation, in their relative evolu-
tion (Fig. 3).
The difference between the discretization of a standard

system and that of a parametrized system can be directly
seen in the equations of motion. In the first case, the
equations of motion (15) contain explicitly the discretiza-
tion size a. Therefore we are in fact dealing with a one-
parameter family of equations, which converge to the
continuum theory when the limit a → 0 is appropriately
taken. Specifically, if qnðq0; v0; aÞ is the solution of the
equations with initial values q0 and q1 ¼ q0 þ av0, then
the solution of the continuum theory is recovered as

qðtÞ ¼ lim
a→0

qt
a
ðq0; v0; aÞ: ð21Þ

In the parametrized case, instead, the discrete equations of
motion [(18) and (20)] do not contain a. The continuum
theory is not recovered by tuning a parameter in the
equation, but rather by choosing initial (or boundary)
data appropriately. Specifically, if qnðq0; t0; v0;Δt0Þ and
tnðq0; t0; v0;Δt0Þ give the solution with initial data
ðq0; t0; q1 ¼ q0 þ Δt0v0; t1 ¼ t0 þ Δt0Þ, then we can
define nðtÞ ¼ ntðq0; t0; v0;Δt0Þ as the inverse of t ¼ tn
(defined for appropriate values of t) and the continuum
limit is given by

qðtÞ ¼ lim
Δt→0

qntðq0;t0;v0;Δt0Þðq0; t0; v0;Δt0Þ: ð22Þ

That is, the limit is not taken by tuning a constant, but rather
by sending the initial data to an appropriate limit.
This difference becomes far more clear, and physically

more interesting, if instead of fixing a solution by means of
initial data (initial position q0 and velocity v0 at some time
t0), we fix it by giving boundary data [initial and final
positions (qi, qf) at some time given interval ½ti; tf�]. Say
we fix the number of discretization steps to be N. Let
qnðqi; ti; qf; tf; aÞ be the solution of the (15) with boundary
data q0 ¼ qi, t0 ¼ ti, qNþ1 ¼ qf, tNþ1 ¼ tf. Then the
continuous solution is recovered as the limit

qðtÞ ¼ lim
a→0N→∞

qt
a
ðqi; ti; qf; tf; aÞ; ð23Þ

while in the parametrized case we have just

qðtÞ ¼ lim
N→0

qntðqi;ti;qf;tf ;Þðqi; ti;qf; tf; Þ; ð24Þ

because increasing the number of steps at fixed boundary
times reduces automatically the time steps to zero.
Before concluding this section, we remark that, as

noticed by Dittrich and Bahr in [20], all this does not
happen if instead of discretizing the action as in (10), we
choose a very special discretization. This special choice is

FIG. 1. xn as a function of n from the numerical integration of
Eqs. (18) and (20).

FIG. 2. The size of the time step ðtnþ1 − tnÞ as a function of n
during the integration of Fig. 1.

FIG. 3. A two-dimensional plot of xn, tn, from the numerical
integration of Eqs. (18) and (20).
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called the “perfect action” by Dittrich and Bahr, and is
obtained by choosing the action of each time step to be the
Hamilton function of the theory, namely the value of the
action on the physical trajectory, expressed as a function of
the initial and final values of the variables. For the harmonic
oscillator the Hamilton function is

Sðq; t; q0; t0Þ ¼ ωm
ðq02 þ q2Þ cosωðt0 − tÞ − 2q0q

2 sinωðt0 − tÞ ð25Þ

which has the property

Sðq; t; q0; t0Þ þ Sðq0; t0; q00; t00Þ ¼ Sðq; t; q0; t0Þ ð26Þ

when q0; t0 is the solution of the equations of motion with
initial and final values q; t; q00; t00. The perfect discretization
is therefore

S ¼
X
n

Sðqnþ1; tnþ1; qn; tnÞ: ð27Þ

This has the property of being independent from N, once
initial and final values are specified, and to conserve the full
reparametrization invariance of the continuous theory. The
possibility of using the perfect action or approximations of
the same in quantum gravity have been investigated by
Dittrich. Here instead I focus on the possibility of using a
simple discretization, and exploiting precisely the fact that
it fixes the reparametrization invariance gauge.

V. QUANTUM DYNAMICS

Consider the quantum theory. The first important obser-
vation is that quantities that make sense in the discretization
of the unparametrized theory do not make sense in the
parametrized one. For instance, in the unparametrized
theory we can consider the two point function

WðkÞ ¼ hqkq0i ¼
Z

dqn qkq0 e
i
ℏSðqnÞ: ð28Þ

The physical quantity

WðtÞ ¼ h0jqðtÞqð0Þj0i ¼ h0jqe−iHtqj0i ð29Þ

can be obtained from WðkÞ by taking the limit k → ∞;
Ω → 0 with t ¼ ka. In the parametrized case, the corre-
sponding quantity WðτÞ would make no sense, since τ has
no physical meaning. The quantity

WðτÞ ¼ h0jqðτÞqð0Þj0i ¼ h0jqe−iHτqj0i; ð30Þ

where here H is the generator of the evolution in τ, is
indeed independent from τ (because of the reparametriza-
tion invariance, which givesH ¼ 0) and carries no physical

information. The corresponding difficulties in quantum
gravity are well known and widely discussed.
To extract information from the theory we must use

instead the propagator (5), namely place the physical inputs
of the calculation on the boundary of a finite region.1 From
(5), we have

Wðqf; tf;qi; tiÞ ¼ W̃

� ffiffiffiffiffiffiffi
ωm
ℏ

r
qf;ωtf;

ffiffiffiffiffiffiffi
ωm
ℏ

r
qi;ωti

�
; ð32Þ

where the propagator of the dimensionless quantities is

W̃ðQf;Tf;Qi;TiÞ¼ lim
N→∞

N
Z

dμðQn;TnÞeiSNðQn;TnÞ; ð33Þ

where QNþ1 ¼ Qf, Q0 ¼ Qi, TNþ1 ¼ T, and T0 ¼ Ti. To
fully define this quantity, we need to fix the domain of the
integration and the integration measure.
The domain of integration for Qn variables is clearly

the entire real line. For the Tn variables, let us consider
the restriction Ti < Tn < Tnþ1 < Tf. This is reasonable in
order to have only “forward” propagation in time.2 The
integration measure can be obtained in various ways [see
[10])]. The simplest is to study the free case ω ¼ 0, where
the integration can be performed explicitly. A straightfor-
ward calculation sketched in the next section shows that
taking

N ¼ N!

ðTf − TiÞN
ð34Þ

and

dμðQn; TnÞ ¼
Q

N
n;1 dQndTnQ

N
n;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðTnþ1 − TnÞ

p ð35Þ

we obtain the correct free particle propagator

1The relation between WðtÞ and Wðq; t; q0; t0Þ is then easily
obtained from the explicit expression of the vacuum ψ0ðqÞ ¼hqj0i which can be used to transform the two quantities into each
other:

WðtÞ ¼ h0jqðtÞqð0Þj0i ¼ h0jq̂e−iHtq̂j0i

¼
Z

dqdq0 h0jqiqhqje−iHtjq0iq0hq0j0i

¼
Z

dqdq0 Wðq; t; q0; t0Þq0qψ0ðqÞψ0ðqÞ: ð31Þ

In field theory, this technique is used to transform the field
propagator into a particle propagator. The last line of this
equation is the definition of the boundary technique used in
loop quantum gravity to compute the particle’s n-point functions
[22–28].

2Is there a relation between this condition and cell orientation
in spinfoams?
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W0ðqf; qi; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2πiℏt

r
e−i

mðqf−qiÞ2
2ℏt ð36Þ

whenω ¼ 0. It is therefore natural to try the ansatz of fixing
the integration measure by (34) and (35). With this, the
discretized path integral is fully defined.
I have computed the discretized path integral numeri-

cally in the Euclidean regime, for ω ≠ 0. The result
converges nicely to the (Euclidean continuation of the)
well-known exact result:

Wðqf; qi; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωm
2πℏ sinh ωt

r
e−ωm

ðq2
f
þq2

i
Þ coshωt−2qfqi
2ℏ sinhωt : ð37Þ

See Fig. 4 for an example of the result of the numerical
integration.

VI. DITT-INVARIANCE

When the potential is negligible with respect to the
kinetic term, the discretized equations of motion [(18) and
(20)] become

vnþ1 ≃ vn ð38Þ

and

v2nþ1

2
≃
v2n
2
: ð39Þ

That is, the second equation is again dependent on the first,
as in the continuum parametrized theory. Therefore the
invariance under diffeomorphisms on the parameter time τ
(Diff-invariance), broken by the discretization, is recovered
within the discretized theory in this regime. In terms of
boundary values, this regime is approached when

ωðtf − tiÞ ≪
���� qf − qi

qi

����: ð40Þ

In this regime the classical trajectory is well approximated
by a straight line, namely a trajectory with no curvature.
Such approximate recovery of Diff-invariance near the
“flat” trajectories strongly recalls the recovery of Diff-
invariance of Regge calculus near flat space studied by
Bianca Dittrich. It seems to be a general phenomenon for
the discretization of reparametrization-invariant systems.
Let us see what are its consequences on the discretized path
integral.
In the limit in which the potential term of the action can

be disregarded, the discretized path integral can be per-
formed explicitly. Repeated use of

Z
dq e−

ða−qÞ2
2t1

−ðb−qÞ2
2t2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πt1t2
t1 þ t2

s
e−

ða−bÞ2
2ðt1þt2Þ ð41Þ

gives

Z
dqn e

−
P

n

ðqnþ1−qnÞ2
2tn ¼ ð2πÞN2

ffiffiffiffiffiffiffiffiffiffiffiQ
ktkP
ktk

s
e
−ðqnþ1−qnÞ2

2

P
k
tk ; ð42Þ

where the sums in n go from 1 to N while the sums in k go
from 1 to N þ 1. Fixing

P
k tk ¼ t and using

Z
TNþ1

0

dtN

Z
tN

0

dtN−1…

Z
t2

0

dt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
k

ðtk − tk−1Þ
r

¼ ðTNþ1 − T0ÞN
N!

: ð43Þ

We obtain that the discretized path integral in the limit of
vanishing ω with N steps,

N
Z

dμðQn; TnÞ e−
1
2

P
n

ðQnþ1−QnÞ2
Tnþ1−Tn ; ð44Þ

is actually independent from N. This is the Ditt-invariance
of the functional integral.
A key consequence of this is that the expansion for small

number N of steps is very good in the flat regime (40). This
can be checked numerically. See for instance Fig. 4, where
the exact transition amplitude is obtained with an approxi-
mation of a few % simply with N ¼ 3. Even N ¼ 1 gives a
very good approximation of the exact transition amplitude
when sufficiently near flatness.
In other words, the discretization of the parametrized

systems behaves like perturbation theory. The expansion
in the number of steps N is a good expansion in the
regime (40).

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 4. Numerical integration of the discretized path integral of
the parametrized oscillator. The graph gives the Euclidean
evaluation of Wðqf; tf; qi; tiÞ as a function of qf , with ωt ∼ 1,
ti ¼ 0 and qi ¼ 0, compared with the exact result (37). The
number of integration points is N ¼ 2.
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VII. CONCLUSION

The system studied here is too simple to allow deriving
general conclusions from it. Nevertheless, the analysis
appears definitely to suggest that the classical and quantum
discretization of Diff-invariant systems behaves quite dif-
ferently from that of standard systems.
The most remarkable feature of these systems is that the

continuum limit is obtained directly taking the number of
steps to infinity, without tuning a parameter in the action
to a critical value. This changes drastically the structure
of the continuum limit from well-studied cases such as
lattice QCD.3

Furthermore, the system admits a regime where the
approximation of the transition amplitudes is very good
already for a very small number of integration steps. For the
system studied in this paper, this is the regime (40), where
the classical trajectories approach flatness.
These same two phenomena have appeared in quantum

gravity. First, the continuous amplitudes appear to be given
simply by taking the number of cells, or the two-complex,
to infinity, without the need of tuning a parameter to its
critical value [3,29]. Second, the “vertex expansion” of the
transition amplitudes appears to give excellent agreement
with the expected value, even at N ¼ 1 [6,7,30,31]. These
unexpected phenomena appeared difficult to understand in
quantum gravity. In particular the implicit expansion
around flat space appeared to be problematic because a
gauge freedom is there for the linearized theory, but is
broken to higher order [32]. The example shown clarifies
what happens, makes the origin of these phenomena
transparent, and shows that Ditt-invariance, far from caus-
ing problems, is in fact the source of the magic that makes
the expansion viable.
To be sure, the analogy does not need to hold necessarily.

Field theoretical aspects of the problem, and in particular
radiative corrections, might significantly change the sit-
uation in quantum gravity [33–35]. However, as recalled in
Sec. II, notice that the continuum limit of a conventional
discretized system is obtained tuning a parameter also for
finite dimensional systems: therefore, the tuning of the
parameter is not a field theoretical effect. The fact that the
tuning is not required for a parametrized system, even in a
one-dimensional case, is therefore significative for quan-
tum gravity.

In the Appendix below I discuss in which sense the
discretized theory preserves Diff-invariance, and in which
sense Diff-invariance is broken. The breaking of diff-
invariance of the discretized theory has been pointed out
repeatedly [10,13,36]. Such breaking of Diff-invariance,
however, is not a problem for the theory, because the exact
transition amplitudes are the ones in the limit, not the ones
for fixedN (or fixed foam), and these are ok, as the example
in this paper shows. In the Appendix, I argue in detail why
it is not a difficulty in quantum gravity either.
Finally, an intriguing aspect of the issue is the appear-

ance of the topological flat phase, where the amplitudes are
independent from the number of points of the discretiza-
tion. It is tempting to speculate that the same phenomenon
happens in general relativity, with the topological flat phase
being given by BF theory. The suggestion that quantum
gravity transition amplitudes could approach BF theory
(where the connection is flat) in some regime has been
made repeatedly, and Ditt-invariance provides a concrete
mechanism for this to happen.
Intuitively, when increasing the number of discretization

points N keeping the time interval Tf − Ti fixed, each time
step in the path integral becomes very small in average. But
having very small time steps means being deep into the
regime of Ditt-invariance, and in this regime any further
increase of N does not change the amplitude. This is what
leads to the convergence in N → ∞. Does the same happen
in quantum gravity?
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APPENDIX: DOES DISCRETIZATION BREAK
Diff INVARIANCE?

I have stated in the main text that the discretization
breaks Diff-invariance of the parametrized system. This
statement appears to contradict the idea that a discretized
theory is still Diff-invariant, an idea that has been repeat-
edly defended, for instance by Tullio Regge himself in his
introduction of the Regge discretization of general relativity
[37]. Here I show that the two points of view are not in
contradiction with one another. They only use a different
language.
Let me explain in which sense discretization does not

break Diff-invariance. Fix the initial and final times and
positions ðqi; ti; qf; tfÞ. The continuous equations of
motion are defined for a curve q∶½ti; tf� → R. Call Q the
space of these curves (say, to be more definite: continuous
and almost everywhere twice differentiable). The solution

3To avoid possible misunderstanding, let me observe that the
relevant distinction here is not gravity versus strong interactions:
it is whether the action being discretized is invariant under change
of independent variables (that is, reparametrization invariant, or
diff-invariant, or invariant under general coordinate transforma-
tions) or not. This should be clear from the example studied,
where the two actions contrasted refer to the same physics. The
relation with gravity is that when we neglect gravity the simplest
form of the action describing the real would is background
dependent; while when we include gravity, it is reparametrization
invariant.
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of the equation, generically, will be a curve q ∈ Q. If we
discretize the interval with N steps, the solution of (15)
determines a piecewise linear curve qN ∈ Q, which generi-
cally converges pointwise to q as N → ∞.
Consider next the continuous parametrized system. The

equations of motions are now for the two functions
q∶½τi; τf� → R and t∶½τi; τf� → R (with dt=dτ > 0). Let
G be the space of such curves. Given ðτi; qi; ti; ; τf; qf; tfÞ
the equations of motion [(8) and (9)] do not determine a
unique solution, because of Diff-invariance. There is a
projection from G to Q, given (in physicists’ notation) by
ðqðτÞ; tðτÞÞ ↦ qðtÞ ¼ qðτðtÞÞ which sends gauge equiva-
lent solutions into the same physical trajectory. Up to this
gauge, the solution is unique. Furthermore, the initial and
final values ðτi; τfÞ become irrelevant under such gauge
invariance. That is, solutions with different τ boundary
values are gauge equivalent.
Finally, let us come to the system of interest, which is

the discretization of the parametrized system. Choose as
before the number N of steps of the discretization. Given
ðτi; τf; qi; ti; qf; tfÞ the equations of motion [(18) and (20)]
do determine now a unique solution, since they are
not anymore independent. This is the breaking of Diff-
invariance. However, it is still true that the solution does not
depend on the boundary values ðτi; τfÞ, in the sense that the
projection of the solution in Q is independent from τi and
τf. Therefore there is still only one physical distinct
solution for each boundary set ðqi; ti; qf; tfÞ. The number
of physical solutions (that is, the dimension of the phase
space) has not increased.
More importantly, the solution is now given by the

sequence ðqn; tnÞ; n ¼ 1;…; N. At first sight, this much
resembles the continuum expression ðqðτÞ; tðτÞÞ, but there
is a crucial difference: ðqðτÞ; tðτÞÞ identifies a curve in Q
only with a large redundancy, that is, different couple of
functions ðqðτÞ; tðτÞÞ determines the same curve qðtÞ. But
not so for ðqn; tnÞ. The map from the sequences ðqn; tnÞ to
Q is injective. This follows from the fact that, generically,
given the image of ðqn; tnÞ in Q, we can easily reconstruct
the sequence ðqn; tnÞ: this is given by the times tn where the
curve fails to be straight, and the corresponding values
qn ¼ qðtnÞ of the position. This inversion can only fail if
there is an n where there is no curvature, that is,
qnþ1−qn
tnþ1−tn

¼ qn−qn−1
tn−tn−1

, but this is generically not allowed by
the equations of motion, except in the large N limit itself,
which is where Ditt-invariance manifests itself.
In other words, the space of the solutions of the discrete

parametrized equation is formed generically by curves
that are genuinely distinct when projected toQ. In this sense,
the discretized system does not deal with trajectories defined
up to gauge, but directly with gauge invariant trajectories.
In the context of general relativity, this translates into the

fact that Regge metrics can be interpreted as genuine
geometries (that is, equivalent classes of metrics under
diffeomorphisms). Indeed, let Q be the space of the 4d

Riemannian geometries (say continuous and twice differ-
entiable almost everywhere). Let G be the space of the 4d
metric tensors. A projection from G to Q is obtained
identifying any two metrics related by a diffeomorphism.
Now, the space R of the Regge geometries can be
identified as the subspace of G formed by the continuous
geometries that are flat almost everywhere, except on the
two-skeleton of a triangulation immersed in the space. In
general, we do not know how to coordinatize the space of
the geometries G, but Regge has found a remarkable way to
cohordinatize its subspaceR: a point inR is determined by
the physical length le of the edges e of the cellular decom-
position. The quantities le are the Regge variables. They
cohordinatize physical geometries, and are fully coordinate
independent. They are invariant under diffeomorphisms. In
other words, the Regge lengths le are not distances between
arbitrary coordinate points: they are thephysical lengthsof the
sides of the triangles where the geometry fails to be flat. As
such they are coordinate independent quantities.
This is the sense in which Tullio Regge asserted

(correctly) that Regge calculus is a Diff-invariant way of
treating general relativity. This is the sense in which the
discretized equations [(18) and (20)], or the spinfoam
amplitudes on a given foam, are gauge invariant.
On the other hand, the discretized theory is not Diff-

invariant in the following sense. Fix an N and a discretiza-
tion scale. Let ðqðτÞ; tðτÞÞ be a solution of the continuous
equation of motion and ðq̃ðτÞ ¼ qðfðτÞÞ; t̃ðτÞ ¼ tðfðτÞÞÞ a
gauge equivalent solution. Then generically ðqn ¼ qðτnÞ;
tn ¼ tðτnÞÞ and ðq̃n ¼ q̃ðτnÞ; t̃n ¼ t̃ðτnÞÞ are not gauge
equivalent in the discretized theory. Such breaking of
diff-invariance has been pointed out repeatedly [10,13,36].
Such “breaking of Diff invariance,” however, is not a

problem for the theory, because the exact transition ampli-
tudes are the ones in the limit, not the ones for fixed N
(or fixed foam), and these are ok, as the example in this
paper shows.
One might object that in quantum gravity the discrete-

ness is physical, because physical space is discrete, and the
theory must be discrete as well as diff-invariant. But this
objection is based on a misunderstanding, because it
confuses “Planck scale discreteness of space” with the
triangulation discretization. The physical “discreteness of
space” is not given by the fact that we use discretization in
the theory. It is given by the fact that the areas and volumes
of these simplices take only discrete values. The Planck-
scale discreteness is in the size of the simplices, which takes
only discrete values.
To clarify with an analogy: an electromagnetic field in a

box can be expanded in discrete modes. This is not quantum
discreteness, of course. Quantum discreteness is that the
energy of each mode is a multiple of hν. If we truncate the
theory by only taking a finite set of modes, then this is a
truncation of degrees of freedom, nothing to dowith quantum
discreteness. Here: Fourier modes→ variables on simplices;
truncation to a finite number ofmodes→ finite triangulation;
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quantization of the energy→ quantization of the size of each
simplex (=Planck discreteness of space). A space-time
described by few large simplices is analog to an electro-
magnetic wave formed by few large-wavelength modes with
large amplitude; therefore large space-times do not require
fine triangulations to be effectively described, as suspected
early [38,39].

So, the use of simplices in the theory is a discretiza-
tion like the one in QCD, it is a truncation of the
degrees of freedom. It can equally be done in the
classical theory, and is not related to Planck scale
discreteness. Therefore the fact that diff-invariance is
broken in this sense on a finite truncation is not a
difficulty for the theory.
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