
HAL Id: hal-00611528
https://hal.science/hal-00611528

Submitted on 30 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MPQ-trees for the orthogonal packing problem
Cédric Joncour, Arnaud Pêcher, Petru Valicov

To cite this version:
Cédric Joncour, Arnaud Pêcher, Petru Valicov. MPQ-trees for the orthogonal packing problem.
Journal of Mathematical Modelling and Algorithms, 2012, 11 (1), pp.3-22. �10.1007/s10852-011-
9159-z�. �hal-00611528�

https://hal.science/hal-00611528
https://hal.archives-ouvertes.fr

JMMA manuscript No.
(will be inserted by the editor)

MPQ-trees for the orthogonal packing problem

Cédric Joncour, Arnaud Pêcher, Petru Valicov

July 26, 2011

Abstract Given a set of rectangular items of different sizes and a rectangular container, the aim of
the bi-dimensional Orthogonal Packing Problem (OPP-2 for short) is to decide whether there exists a
non-overlapping packing of the items in this container. The rotation of items is not allowed. In this paper
we present a new exact algorithm for solving OPP-2, based upon the characterization of solutions using
interval graphs proposed by Fekete and Schepers. The algorithm uses MPQ-trees, which were introduced
by Korte and Möhring to recognize interval graphs.

Keywords Orthogonal Packing Problem · MPQ-trees
Let V be a set ofD-dimensional rectangular shapes. For d∈{1, . . . ,D} and every v ∈V , let wd(v)∈Q+

(resp. wd(C)) be the length of v (resp. of the container C) with respect to the dimension d. For every

subset of items S ⊆ V , let wd(S) =
∑

v∈S

wd(v). Let W (v) =

D∏

d=1

wd(v) and W (C) =

D∏

d=1

wd(C) be the

volumes of the item v and of the container C respectively.
The D-dimensional orthogonal packing problem (OPP-D) is to decide if the set of items V fits into

the container C without overlapping (if true, V is said to be feasible). Formally speaking, we have to
find out whether ∀d ∈ {1, . . . ,D} there exists a function xd : V →Q+, such that:

∀v ∈ V,xd(v)+wd(v)≤ wd(C)

∀v1,v2 ∈ V,(v1 6= v2), [xd(v1),xd(v1)+wd(v1))∩ [xd(v2),xd(v2)+wd(v2)) = ∅

Let pv ∈Q+ be the value associated with an item v ∈ V . The d-dimensional knapsack problem (OKP-

d) consists in computing a feasible set V ′ ⊆ V such that
∑

v∈V ′

pv is maximal.

In this paper, we consider the bi-dimensional case, which has been the most studied so far [11, 9, 6,
12, 7, 3, 5, 8, 1]. This paper is organized as follows. In the first section we describe Fekete and Schepers’
model and point out some issues which motivated our work. In the second section we define the model
of MPQ-trees (introduced in [17]) and give an algorithm to check feasibility. In the third section, we
present the computational results compared with other algorithms on standard benchmarks. The fourth
section is a short conclusion.

This research was partially supported by the ANR Project GraTel ANR-09-blan-0373-01.

C. Joncour
IMB / INRIA Bordeaux - Sud-Ouest, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
E-mail: cedric.joncour@math.u-bordeaux1.fr

A. Pêcher
IRIT, University of Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
E-mail: pecher@irit.fr

P. Valicov
LaBRI, 351 Cours de la Libération, 33405 Talence Cedex, France
E-mail: valicov@labri.fr

1 Fekete and Schepers’ model

In this paper, all graphs are simple, undirected and finite. We denote by N(u) the set of neighbours
of the vertex u. Cn denotes a cycle on n vertices. A 2-chordless cycle is a cycle v0, . . . ,vn−1,v0 such that
there is no edge vivj for i, j ∈ {0, . . . ,n−1} and |i−j| mod n= 2. A stable or independent set of a graph
is a subset of pairwise non-adjacent vertices of this graph. A clique is a set of pairwise adjacent vertices.
An interval graph is a graph G = (V,E) such that there is an assignment of intervals Iv (v ∈ V) of the
real line to the vertices of G such that for every pair of vertices u and v, uv is an edge if and only if
Iu∩ Iv 6= ∅.

Given a feasible packing of a set of items V , for every dimension d, let Gd = (V,Ed) be the interval
graph with vertex set V and edge set Ed, such that ij is an edge if and only if the projections of the
packing of items i ∈ V and j ∈ V onto the dimension d intersect (see Fig. 1 for an illustration).

G1
1

2

34

5

d=2

︷ ︸︸ ︷

d= 1







4

1 3
5

2

G21

2

34

5

Fig. 1: Example of 2D packing and its associated interval graphs

Fekete and Schepers proved the following result, which is crucial for our algorithm:

Theorem 1 (Fekete and Schepers [10]) Given a D-dimensional container C, a set of items V is
feasible, if and only if there is a set of D graphs Gd = (V,Ed), with d ∈ {1, . . . ,D}, such that:

(P1) Every graph Gd is an interval graph
(P2) For every stable set S of Gd, wd(S)≤ wd(C)

(P3)

D⋂

d=1

Ed = ∅

The tuple of the D graphs Gd is called a packing class.
Fekete, Schepers and van der Veen gave an efficient algorithm for solving OKP-D by solving its

subproblem OPP-D [12]. Their algorithm is based upon the packing classes. To do so, they used the
following characterization of interval graphs:

Theorem 2 (Ghouilà-Houri [15], Gilmore and Hoffman [16]) A graph G is an interval graph if
and only if it does not contain an induced C4 and its complement does not contain a 2-chordless cycle
of odd length.

1

2
3 4

5

1

2
3 4

5

1

2
3 4

5

Fig. 2: Symmetrical solutions in Fekete and Schepers’ model

2

Despite its efficiency, their algorithm may enumerate symmetrical solutions. An example is given
in Figure 2 where "almost" similar packing configurations are modeled by different couples of interval
graphs. Moreover, there are some degeneracy issues of Fekete and Schepers’ algorithm pointed out in [13],
implying the generation of some unnecessary couples of interval graphs.

2 Our approach

Our aim is to handle those symmetry issues more efficiently, by taking advantage of the nice al-
gorithmic properties of the MPQ-tree data structure. Fekete and Schepers’ model considers only the
intersection of the projections of the items onto each dimension. In our approach we maintain some extra
information that enables the early detection of some symmetrical solutions or some infeasible packing
configurations. This was the motivation to use a different representation of interval graphs and we chose
MPQ-trees for this purpose. In this section we recall the definition of an MPQ-tree by presenting the
idea of the algorithm of recognition of interval graphs using this data structure introduced in [17] and
give a new characterization of feasible items. We give an algorithm to solve OPP-2 using MPQ-trees and
provide some optimizations by exploiting some properties of feasible sets of items.

2.1 MPQ-trees

To mention the relationship between MPQ-trees and interval graphs we need the following definition:

Definition 3 Let G= (V,E) be a graph and Q1, . . . ,Qm its maximal cliques. A consecutive arrangement
of the maximal cliques of G is an order ≺ over the maximal cliques such that Qi ≺Qj if:
∀v ∈ V , if v ∈Qi and v ∈Qj , then v ∈Qk for all k s.t. Qi ≺Qk ≺Qj .

Theorem 4 (Fulkerson and Gross [14]) A graph G is an interval graph if and only if the maximal
cliques of G can be linearly ordered to obtain a consecutive arrangement.

Let M be a set of elements and M a collection of subsets of M . A PQ-tree is a data-structure
representing all permutations of M that are consistent with constraints of consecutiveness given by M
with the convention that the elements of each M ′ ∈M must occur consecutively in a permutation. In
the case of interval graphs, M is the set of maximal cliques, andM is the set of all C (v), v ∈ V , where
C (v) denotes the set of all maximal cliques containing v.

A PQ-tree is a planar drawing of a rooted tree with two types of internal vertices: P and Q, represented
by circles and rectangles respectively. The leaves of a PQ-tree are labelled 1-1 with the maximal cliques
of an interval graph G. To avoid ambiguity, we will call nodes, the vertices of a PQ-tree.

The frontier F (T) of a PQ-tree T , represents the permutation of the maximal cliques obtained by
the ordering of the leaves of T from left to right. A PQ-tree T ′ is equivalent to T , if one can be obtained
from the other by applying the following rules a finite number of times:

1. Arbitrarily permute the children of a P-node
2. Reverse the order of children of a Q-node

c1 c2 c3

c4 c5

c6 c7 c8 c8 c7 c6

c5 c4

c2 c3 c1

Fig. 3: Equivalent PQ-trees

3

Figure 3 shows an example of two equivalent PQ-trees.
A proper PQ-tree is one for which the P-nodes have at least two children and the Q-nodes have at

least three children. From now on, by the term PQ-tree we will consider a proper PQ-tree.

Theorem 5 (Booth and Lueker [4]) A graph G is an interval graph if and only if there exists a
PQ-trees T such that F (T) is a consecutive arrangement of the maximal cliques of G.

A modified PQ-tree (MPQ-tree, introduced by Korte and Möhring in [17])) associated with a graph
G is an extension of a PQ-tree where the nodes of the tree are labelled with some subsets of vertices of
G, such that each branch of the MPQ-tree represents a maximal clique. A P-node is assigned only one
set, while a Q-node is assigned a set for each of its children. Here are the rules of the labelling:

– A P-node is labelled by the set of vertices of G which are only contained in all cliques represented
by the subtree of T rooted in this node.

– A leaf is labelled by the set of vertices of G contained only in the clique represented by this leaf.
– A Q-node, with m children F1, . . . ,Fm, is labelled by a list of sets Sk, for k ∈ {1, . . . ,m}, each of them

being called a section such that a section Sk corresponds to the child Fk in the left-to-right order.
Each section Sk (k ∈ {1, . . . ,m}) contains the vertices of G contained in all cliques represented by
the subtree rooted in Fk and also in all cliques represented by the subtree rooted in another child Fl
(l ∈ {1, . . . ,m} and l 6= k).

We will say that a node N of an MPQ-tree associated with a graph G contains a vertex v of G if
v ∈ VN , where VN is the vertex set or section (in case of a Q-node) of the label of N . Notice that from
the definition of an MPQ-tree, a vertex v of G is contained in exactly one MPQ-tree node. However, v
can be contained in more than one section of a Q-node.

2

3

54

6

7

8
1

{2} {2,5} {5,7} {7}

{1} ∅

{3,4} {6}

∅ {8}

Maximal cliques: {1,2}, {2,3,4,5}, {2,5,6}, {5,7}, {7,8}

2 7

1

5

8

3

6

4

Fig. 4: An interval graph, an associated MPQ-tree and the packing configuration

Figure 4 shows an example of an MPQ-tree associated with an interval graph G, where both repre-
sentations modelize the intersections in dimension 1 of a feasible packing in terms of maximal cliques
(the intersections are given by the strips in the picture).

We have the following characterization of interval graphs, which is the basis of our algorithm:

Theorem 6 (Korte and Möhring [17]) A graph G is an interval graph if and only if there exists an
MPQ-tree associated with G.

Hence we may consider MPQ-trees instead of interval graphs since Theorem 6 gives an equivalence
between the two structures.

Lemma 7 (Korte and Möhring [17]) Let G be an interval graph and T its associated MPQ-tree.
Then G+u (where u is a vertex added to G) is an interval graph if and only if the following holds:

1. All vertices adjacent to u are contained in a unique path of T .
2. For each Q-node N , labelled with sections S1, . . . ,Sm, let S = S1 ∪ . . .∪Sm. Then S ∩N(u) ∈ S1 or
S∩N(u) ∈ Sm

4

In other words, Lemma 7 says that while building an MPQ-tree incrementally from an interval graph
(i.e. adding vertices of the graph one by one) only one path of this tree must be updated and due to the
properties of the reading orders of children of nodes of an MPQ-tree, this path can be chosen to be the
leftmost one. This restricts considerably the number of cases to consider while updating the MPQ-tree.
This result is crucial for our algorithm.

Using Theorem 6, Korte and Möhring gave an algorithm recognizing if a graph G is an interval graph,
by constructing an associated MPQ-tree. It uses a LexBFS-ordering (introduced in [18]) λ= [v1, . . . ,vn]
of the vertices of G to iteratively build the MPQ-tree.

Let G= (V,E) be an interval graph with an associated MPQ-tree TG and u the vertex to be inserted
in TG to obtain the MPQ-tree TG+u associated with the graph G+ u. Since vertices are inserted in
LexBFS-order, N(u) must induce a clique. Let N be a node of TG. If N is of type P or a leaf, let VN be
its associated vertex set and if N is a Q-node let VN be the vertex set corresponding to the first section.
The principle of Korte and Möhring’s algorithm is the following:

– Find the unique path P of the current MPQ-tree having a node N such that VN ∩N(u) 6= ∅. This
path can be either leftmost or rightmost.

– Find the first node N∗ in the bottom-up traversal such that ∃j ∈ VN∗ , j ∈N(u).
– Select the corresponding pattern and apply the suitable replacement: let VN∗ =A∪B be the partition

of VN∗ such that A = VN∗ ∩N(u) and B = VN∗ \A. Let N∗ be the highest node in P such that
VN∗ \N(u) 6= ∅ if it exists and let N∗ = N∗ otherwise. Due to Lemma 7, the patterns which can
be applied are described in Figures 5, 6 and 7. In the case when N∗ 6=N

∗ the patterns are applied
recursively by rewriting the current tree starting from N∗ up to N∗, to obtain a valid MPQ-tree.
We omit details which are rather technical. For an elaborate explanation, see the original paper [17].
Notice that the process is deterministic e.g. at each step only one pattern can apply. If no pattern
can be applied to the current configuration, then G+u is not an interval graph.

[A∪B]

B = ∅ [A∪u]

B 6= ∅ A

u B

[A∪B]
N∗ 6=N∗

A A

u B

Fig. 5: Templates of a leaf (VN∗ =A∪B)

Definition 8 For every nodeN of an MPQ-tree associated with a dimension d of a packing configuration,
we define the width λN of N as described below.

– If N is a leaf L labelled with the set VL, λL = max
i∈VL
{wd(i)} if VL 6= ∅ and λL = 0 otherwise.

– If N is a P-node P labelled with the set VP , and λf1 , . . . ,λfm are the widths of each of its children,

λP = max







m∑

j=1

λfj ,max
i∈VP
{wd(i)}







– If N is a Q-node Q, let S1, . . . ,Sm be its sections and λf1 , . . . ,λfm the widths of each of the children
of the node. In order to define the width λQ, we first define, recursively from m to 1, the widths of
its sections: λSj ,∀1≤ j ≤m:

λSm = λfm

Suppose λSk+1
, . . . ,λSm are defined, then

λSk = max






λfk , max

i∈Sk,i/∈Sk−1






wd(i)−

∑

h>k,i∈Sh

λSh













5

A∪B

T1 · · · Tm

B
=
∅

A

u T1 · · · Tm

B
6=
∅ A

u B

T1 · · · Tm

A∪B

T1 · · · Tm

N∗ 6=N∗

A A

u B

T1 · · · Tm

A∪B

S0 S1 · · · Sm′

u T ′
1
· · · T ′

m′

T1 · · · Tm

A∪S0 A∪B∪S1 · · · A∪B∪Sm′ A∪B

T ′
1

· · · T ′
m′

u ∅

T1 · · · Tm

Fig. 6: Templates of a P-node

The width of N is given by the following formula

λQ =

m∑

k=1

λSk

It follows from definition that for every node N with children f1, . . . ,fm, λN ≥
m∑

k=1

λfk .

Lemma 9 Let Gd = (V,Ed) be an interval graph of a packing class and Td an associated MPQ-tree. Let
v be an item of V . For every P-node or leaf N such that v belongs to the label of N , we have wd(v)≤ λN .

For every Q-node N containing v in the labels of some of its sections, we have wd(v)≤
l∑

h=k

λSh , where

Sk, . . . ,Sl are the sections of N containing v.

Proof The cases of a P-node and of a leaf are obvious. SupposeN is a Q-node with sections S1, . . . ,Sm and
children f1, . . . ,fm. Since branches associated with sections Sk, . . . ,Sl of N are all the cliques containing v,

we have λSk ≥ wd(v)−
l∑

h=k+1

λSh . Hence, wd(v)≤
l∑

h=k

λSh . ⊓⊔

The following proposition translates property (P2) of Theorem 1.

Proposition 10 Let G be an interval graph. G satisfies property P2 if and only if for every associated
MPQ-tree T of G, the width λR of the root of T verifies λR ≤ wd(C).

Proof
Suppose G satisfies property P2 and consider an MPQ-tree T of G with root R. We will prove that
λR ≤ wd(C).

The proof is by induction on the distance between R and the nodes of T . Let H(k) be the assertion:
”If N is a node of T at distance k from R then there is a stable set S of G[N] such that λN ≤ wd(S),
where G[N] is the subgraph of G induced by the set of vertices of G contained in the labels of the subtree
of T rooted in N .”

6

A∪B1 · · · A∪Bm

T1 · · · Tm

N∗
=
N
∗

A

u B1 · · · Bm

T1 · · · Tm

N
∗ 6=N ∗

A A

u B1 · · · Bm

T1 · · · Tm

(a) Q1

A∪B S1 · · · Sm

T0 T1 · · · Tm

B
= ∅

A S1 · · · Sm

∅

u T0

T1 · · · Tm

B 6= ∅ or N
∗ 6=N ∗ A A∪B S1 · · · Sm

u T0 T1 · · · Tm

(b) Q2

A∪B S′
1

· · · S′
m′

S0 S1 · · · Sm

u T1 · · · Tm

T ′
1

· · · T ′
m′

A∪S0 A∪B∪S1 · · · A∪B∪Sm S′ · · · S′
m′

u T1 · · · Tm T ′
1

· · · T ′
m′

(c) Q3

Fig. 7: Templates of a Q-node

– Let M be the maximal distance from R in T . Let N be any node of T at distance M from R. Hence
N is a leaf. Due to the definition of a leaf, there is i in VN such that wd(i) = λN . Hence, S = {i} and
H(M) is true.

– Assume that H(k) is true for k≤M (induction hypothesis). Let N be any node of T at distance k−1
from R.
– If N is a leaf then the above argument applies again.

7

– If N is a P-node with m sons, then we distinguish two cases. If max
j∈VN
{wd(j)} ≤

m∑

k=1

λfk , then let

S =

m⋃

k=1

Zk, where Zk is the stable set associated to son fk such that, due to induction hypothesis,

λfk ≤ wd(Zk). Since in the graph Gd there are no edges between two vertices contained in two
different children of N , S is clearly an independent set of G[N]. Applying the induction hypothesis,

λN ≤
m∑

k=1

λfk ≤wd(S) and we are done. If max
j∈VN
{wd(j)}>

m∑

k=1

λfk then let S = {i} where i is such

that wd(i) = max
j∈VN
{wd(j)}. Thus λN = wd(S) and we are done.

– If N is a Q-node with sections S1, . . . ,Sm then let Zk be the stable set of G built by iteration of
k from 1 to m:
• k = 1. If the width of S1 is equal to the width of its child f1, then due to the induction

hypothesis, Z1 is a stable set of G[N] such that λS1
≤ wd(Z1); otherwise there is a vertex

b ∈ S1 such that λS1
= wd(b)−

∑

h>1,b∈Sh

λSh , in which case define Z1 = {b}.

• k ≥ 2. If there is a vertex b ∈ Sk, b ∈ Sk−1 and Zk−1 = {b}, define Zk = {b}; otherwise, if

there is a vertex b ∈ Sk, b /∈ Sk−1 and λSk = wd(b)−
∑

h>k,b∈Sh

λSh , then Zk = {b}; otherwise,

necessarily λSk = λfk , in which case, due to the induction hypothesis, Zk can be chosen to
be the stable set of G[fk] such that λfk ≤ wd(Zk).

Let S =
m⋃

k=1

Zk. Clearly, S is a stable set of GN such that λN =

m∑

k=1

λSk ≤
∑

s∈S

wd(s) = wd(S).

Hence H(k−1) is true.

Due to the induction, H(0) is true, and since wd(S) ≤ wd(C) (property P2 of Theorem 1), we have
λR ≤ wd(C).

Conversely, suppose λR ≤wd(C). Consider an independent set S of Gd. By definition of an MPQ-tree,
∀u ∈ S, in Td there exist exactly two distinct cases for the node N of Td containing u:

1. N is a Q-node. Let Sk, . . . ,Sl be the sections of N containing u. In this case, let Λu =

l∑

h=k

λSh .

2. N is a P-node or a leaf. In this case, let Λu = λNu .

Since S is an independent set, no two vertices of S are contained in the same branch of Td. Hence, by

definition of λR, we have
∑

s∈S

Λs ≤ λRd . By Lemma 9, we have ∀x ∈ V, wd(x)≤Λx. Hence, wd(S)≤ λRd .

Applying the hypothesis, wd(S)≤ wd(C) which is exactly the property (P2) of Theorem 1. ⊓⊔

Notice that property (P3) of Theorem 1 may be easily translated with respect to MPQ-trees, since
the branches of an MPQ-tree represent the maximal cliques of the interval graphs.

2.2 The core of the algorithm to check feasibility

For a given dimension and a given order on the items (which are the vertices of the associated interval
graph), the (pseudo) Algorithm 1 constructs all the MPQ-trees to get the one representing this dimension.
Thus, it may have to be executed for all possible orders σ (in the next subsection, we explain that we
have in fact to consider only a subset of orders). The items are added one by one in the MPQ-tree such
that for every node N , λN ≤ wd(C).

2.3 Optimizations

The structure of an MPQ-tree provides some partial information about the position of the items which
can be easily exploited. For instance, its frontier gives the order of appearance of items in the packing

8

Require: order σ, (int) n, MPQ-tree T
Ensure: TRUE if there exists a feasible packing, FALSE otherwise

recurse(MPQ-node currentNode, int nrVertex)
if nrVertex > n then

return TRUE
end if

repeat

for all corresponding patterns do

apply the modification with the vertex σ(nrVertex)
currentNode ← new created leaf L

for all N in leftmost branch of T do

update λN
end for

if λR ≤ wd(C) then

if recurse(currentNode,nrVertex+1) then

return TRUE
end if

end if

for all N in leftmost branch of T do

backup λN
end for

undo the modification
end for

currentNode ← currentNode.getFather()

until currentNode 6= NULL

return FALSE

Algorithm 1: recursive enumeration of MPQ-trees to check feasibility

configuration. In addition, the higher an item is contained in the tree associated with a dimension d, the
more items it "covers" in d (i.e. the more are the intersections of its projection on d with the projections
of the other items on d). Being able to compute at each step the widths of each node, we provide some
optimizations of the algorithm by adding some valid constraints, breaking some symmetries and early
detecting some infeasible configurations.

2.3.1 Bi-dimensional case: remaining areas, widths and branches heights

In the bi-dimensional case, a few basic valid constraints may be applied when enumerating MPQ-trees
in dimension 1:

1. Assume that at the step i of the algorithm, an MPQ-tree T1 containing σ(1), . . . ,σ(i) was constructed
with the root having m children f1, . . . ,fm. After the step i, the widths of the children f2, . . . ,fm
cannot be modified (since only the leftmost branch can be modified), therefore by Proposition 10,

the remaining items σ(i+ 1), . . . ,σ(n) have to be packed in the area W (C)−w2(C)∗
m∑

h=2

λfh . Hence

the following constraint is valid:

n∑

h=i+1

W (σ(h))+w2(C)∗
m∑

h=2

λfh ≤W (C)

2. The width of any item among σ(i+ 1), . . . ,σ(n) cannot exceed the remaining width of the container
after removing λf2 , . . . ,λfm :

m∑

h=2

λfh +max{w1(σ(i+1)), . . . ,w1(σ(n))} ≤ w1(C)

3. Let B be a branch of T1. Since all the items contained in this branch overlap in the dimension 2, the
sum of the size of these items in dimension 2 cannot exceed w2(C):

∑

i∈B

w2(i)≤ w2(C)

9

2.3.2 Positive widths

The left part of the Figure 8 is an example of packing which could be avoided by considering only
the right part. Next lemma establishes a sufficient condition for avoiding the enumeration of this type of
equivalent packing configurations. Hence, our algorithm will consider only the right packing of Figure 8.

VN

Vf1
· · · Vfl · · · Vfm

i

VN

Vf1
· · · Vfl · · · Vfm

i

Fig. 8: Example of "similar" packing configurations

Lemma 11 Let Gd be an interval graph of a packing class. There is an associated MPQ-tree of Gd such
that for every internal node N with m sons f1, . . . ,fm, the following holds:

– If N is a P-node, ∀i ∈ VN , wd(i)−
m∑

k=2

λfk > 0

– If N is a Q-node with sections S1, . . . ,Sm, ∀k ∈ {1, . . . ,m}, ∀i ∈ Sk, wd(i)−
∑

h>k,i∈Sh

λSh > 0

Proof Recall that, from Definition 8, for every node or section X, λX ≥ 0.
Let T ′ be an MPQ-tree associated with Gd and let N ′ be an internal node of T ′ not satisfying the

statement.

– Suppose N ′ is a P-node. Then there is i ∈ VN ′ , such that wd(i)−
m∑

k=2

λfk ≤ 0.

We choose i such that wd(i) = min
j∈VN′

{wd(j)}. Let l = max{h ≥ 2 | wd(i) ≤
m∑

k=h

λfk}. We distinguish

two cases for the value of l.

VN′

f1 fl fm· · · · · ·

VN

f1 fl−1 {i}

fl fm· · ·

· · ·

Fig. 9: P-node replacement

• Suppose l < m. Let T be the MPQ-tree obtained from T ′ by replacing N ′ as shown in Figure 9.
Observe that the MPQ-trees associated to dimension 1 of the packing configurations of Figure 8
are the MPQ-trees of Figure 9 when f1, . . . ,fm are leaves. In T , N is the P-node replacing N ′ of
T ′ and having VN = VN ′ \ {i} as a labelling set, {i} is the labelling set of a new P-node, say A,

10

having fl, . . . ,fm as children. In T , λA =

m∑

k=l

λfk and, therefore,

m∑

k=1

λfk =

l−1∑

k=1

λfk +λA. Hence,

λN = λN ′ . Finally, we note that wd(i)−
m∑

k=l+1

λfk > 0.

• Suppose l =m. Let T be the MPQ-tree obtained from T ′ by removing i from the set VN ′ and
modifing fm as follows. If fm is a leaf or a P-node, then insert i in the labelling set of fm. If fm
is a Q-node insert i in every section of fm. Now, if fm is a leaf we are done. Otherwise, if i does
not satisfy the statement for fm, then apply the proof on fm.

– Suppose N ′ is a Q-node with sections S′1, . . . ,S
′
m. Then there are i and a section S′k with i ∈ S′k, such

that wd(i)−
∑

h>k,i∈S′
h

λS′
h
≤ 0. We choose k such that k = min{h | i ∈ Sh}. Let l = min{h | wd(i) >

∑

h′>h,i∈S′
h′

λS′
h′
}. We have wd(i)−

∑

h≥l,i∈S′
h

λSh ≤ 0. We distinguish two cases for the value of l.

S′
1

· · · S′
k · · · S′

l · · · S′m

f1 · · · fk · · · fl · · · fm

∀h,
k ≤
h <
l,

S
′

k
\{
i} 6=
∅

S′
1

· · · S′k−1 Sk · · · Sl−1 S′
l · · · S′m

f1 · · · fk−1 fk · · · fl−1 fl · · · fm

∃h, k ≤
h <
l,

S ′
h \{i}= ∅

∅

S′
1

· · · S′k−1 Sk · · · Sh−1

f1 · · · fk−1 fk · · · fh−1

Sh+1 · · · Sl−1 S′
l · · · S′m

fh

fh+1 · · · fl−1 fl · · · fm

Fig. 10: Q-node replacement

• Suppose l < m. Intuitively, one has to remove i from every section of N ′ which does not satisfy
the statement of the lemma in case of a Q-node. Apply the replacement of Figure 10 to construct
from T ′ an MPQ-tree T , in which ∀h ∈ {k, . . . , l−1}, Sh = S′h \{i} and the other sections do not

change. To distinguish the widths of T and T ′, let λTM (resp. λT
′

M) denote the width of any node
(or section) M of T (resp. of T ′).

Consider the upper case of the replacement of Figure 10. We have ∀h∈ {l, . . . ,m}, λT
′

S′
h

= λT
S′
h

. Since

wd(i)−
∑

h≥l,i∈Sh

λT
′

Sh
≤ 0, we have ∀h ∈ {k, . . . , l−1}, λTSh = λT

′

S′
h

and, therefore, ∀h ∈ {1, . . . ,k−1},

λT
S′
h

= λT
′

S′
h

. Hence λTN = λT
′

N .

Consider the bottom case. We suppose that there exists only one section Sh containing only
item i. If there are more than one section of this type, one can easily use the same technique
of replacement. Let N be the new created P-node and N1 and N2 be the two created Q-nodes.

Obviously, ∀h′ ∈ {l, . . . ,m}, λT
′

S′
h′

= λT
S′
h′

. By the same arguments as in the upper case of the figure,

we have ∀h′ ∈ {h+ 1, . . . , l− 1}, λT
′

S′
h′

= λTSh′
. Now, since Sh−1 ∩Sh+1 = ∅, ∀h′ ∈ {k, . . . ,h− 1},

λT
′

S′
h′

= λTSh′
and, therefore, ∀h′ ∈ {1, . . . ,k− 1}, λT

′

S′
h′

= λT
S′
h′

. In T ′, S′h = {i} and the subtree

11

rooted in fh is not empty, because otherwise the branch of T ′ containing S′h and fh would not

represent a maximal clique. Thus λT
′

S′
h

= λTfh > 0 and λTfh = λT
′

fh
. We have λN1

=

h−1∑

h′=1

λT
′

Sh′
and

λN2
=

m∑

h′=h+1

λT
′

Sh′
. Hence, λN = λN1

+λTfh +λN2
= λT

′

N ′ .

Notice that in both cases of the replacement, every item satisfying the condition of the lemma in
T ′, satisfies it also in T .
• Suppose l =m. Similarly to the case when l =m and N ′ is a P-node, build an MPQ-tree T from
T ′. For this purpose, remove i from every section of N ′ containing i and modify fm by inserting
i as in the case when N ′ is a P-node. Now, if S′m = {i}, then apply the replacement of Figure 11.
The case when m> 3 (the upper case of the Figure) is straightforward. Consider the case when
m = 3. Recall that by definition of a Q-node, every item of any section must be contained in
at least two sections of the same Q-node. Hence, S′1 ⊂ S

′
2, S′3 ⊂ S

′
2 and S′2 = S′1∪S

′
3. Therefore,

S′1 = S′2 \{i}=A and N ′ is replaced by a P-node as shown in the bottom case of the replacement
of Figure 11.
Finally, if fm is a leaf we are done. Otherwise, if i does not satisfy the statement of the lemma
for fm, apply the proof for the new node fm.

S′
1
· · · S′

k · · · S′m

f1 · · · fk · · · fm

m
> 3

∅

S′
1
· · · S′

k
\{i} · · · S′m−1

\{i}

f1 · · · fk · · · fm−1

fm∪{i}

m= 3

A

f1 f2 f3∪{i}

Fig. 11: Q-node replacement when S′m = {i}

By applying the replacement of Figures 9, 10, 11 for all internal nodes (P-type or Q-type) of T ′, for
every item i not satisfying the statement of the lemma, we can construct another MPQ-tree associated
with a feasible packing in which every item satisfies this statement. ⊓⊔

2.3.3 Order on the children of a node

Using the general properties of PQ-trees, we impose an order on the children of a node during the
generation. We define for any subtree Ts of an MPQ-tree T a variable mT = min{i | i ∈ Ts}. We say that
T is lexicographically ordered if:

– For any two subtrees T1 and T2 children of the same P-node such that T1 is the first in the right to
left reading order, we have mT1

>mT2
.

– For two subtrees T1 and T2 children of the same Q-node where T1 is the rightmost and T2 is the
leftmost, we have mT1

>mT2
.

An example of lexicographically ordered MPQ-trees is depicted in Figure 12. Notice that due to the
definition of PQ-trees, for every MPQ-tree, there is an equivalent lexicographically ordered MPQ-tree.
Therefore, our algorithm to check feasibility generates all lexicographically ordered possible MPQ-trees.

12

A

f1 · · · fm {1} {2}

>

A

f1 · · · fm {2} {1}

S1 S2 · · · Sm−1 Sm

{1} f2 · · · fm−1 {2}

> Sm Sm−1 · · · S2 S1

{2} fm−1 · · · f2 {1}

Fig. 12: Lexicographic order between equivalent MPQ-trees

3 Computational Results

We report the performance of our algorithm on 37 classical benchmarks for OKP-2 from [3, 2, 7, 12]
(Tables 1a) and on 42 benchmarks for OPP-2 defined in [8] (Table 1b). For OKP-2 instances, we used a
basic branch-and-bound procedure to select the items to be checked for feasibility.

The program was implemented in Java 6 and was tested on a PC (Pentium IV, 3GHz). These
conditions of experimentation are quite similar to the ones used by Fekete and Schepers [12] (PC with
Pentium IV processor, 2,8 GHz, using C++). In contrary to Fekete and Schepers, we do not use some
heuristics prior to launching the main algorithm to check feasibility.

Table 1a shows the running times of our algorithm along with the ones existing in the literature,
as reported in [12]. The first column (JPV) gives our runtimes. The column FS gives the runtimes of
the algorithm from [12]. The column BB corresponds to the algorithm of Baldacci and Boschetti [1],
implemented in Visual Digital Fortran 6.0 and run on a Laptop equipped with an Intel Pentium IV, 2.5
GHz. The columns A0, A1, A2 and A3 correspond to the algorithms of Caprara and Monaci, as depicted
in [5] and which were implemented in ANSI C and run on a Pentium III 800 MHz. We also report the
number of unsolved benchmarks (within the time limit of 1800 seconds) and the average time (computed
on the set of instances cgcut, gcut and okp), with the convention that an unsolved benchmark counts
for 1800 seconds.

The running times of our algorithm are of interest since it is one of the two algorithms to solve all,
but one, of the benchmarks within the time limit of 1800 seconds (gcut13 is still open, the optimal value
being unknown). Compared to Fekete and Schepers’, on an average, our running times turned out to be
smaller and were significantly better for 6 instances (cgcut2, gcut3, gcut8, gcut11, gcut12 and okp1),
though Fekete and Schepers’ algorithm outperforms ours for the 2 instances okp2 and okp5. Additionally,
compared to other authors’, our running times are considerably better. Note that considering the big
difference between our processors and the ones used by Caprara and Monaci for their experiments, one
can see that algorithms A1 and A3 are also competitive.

Table 1b shows the running times on benchmarks defined in [8]. The third column corresponds to the
algorithm of Clautiaux, Carlier and Moukrim [8] implemented in C on a PC (Pentium IV, 2.6 GHz). The
size of the containers is (20,20) and there are 10 to 23 items to be packed. These benchmarks are designed
to check feasibility (OPP-2) and therefore relevant to the approach described in this paper. However, the
size of containers being small, our approach as well as Fekete and Schepers’ is less appropriate compared
to the methods using a space discretization. The F (resp. N) character in the name of the instance stand
for "feasible" (resp. "non feasible") and X character is used when there exists another instance being of the
same type (feasible or infeasible) and with the same number of items to be packed. In the case of feasible
instances the algorithm has a good performance, giving better execution times than other algorithms for
four of them and being significantly worse for only two instances. For unfeasible instances, the running
times of about half of them are equivalent to those of the other authors. However, for six instances the
running times are less competitive, while only one instance is not solved. In average, our algorithm is
thrice faster than Fekete and Schepers’, but significantly slower than Clautiaux, Carlier and Moukrim’s.

13

Benchmark JPV1 FS2 BB3 A04 A14 A24 A34

ngcut1 . . . ngcut11 0 0 0

hccut2 . . . hccut5 0 0 0

wang20 0 0 - 6 6 17 2

cgcut1 0 0 0 0 1 1 1
cgcut2 96 >1800 >1800 >1800 >1800 533 531
cgcut3 1 0 95 23 23 4 4

gcut1 0 0 0 0 0 0 0
gcut2 0 0 0 0 0 25 0
gcut3 0 4 2 >1800 2 276 3
gcut4 137 195 46 >1800 346 >1800 376
gcut5 0 0 0 0 0 0 0
gcut6 0 0 1 0 0 9 0
gcut7 0 2 3 1 0 354 1
gcut8 60 253 186 1202 136 >1800 168
gcut9 0 0 0 0 0 0 0
gcut10 0 0 0 0 0 6 0
gcut11 2 8 3 16 14 >1800 16
gcut12 6 109 12 63 16 >1800 25
gcut13 >1800 >1800 >1800 >1800 >1800 >1800 >1800

okp1 1 10 779 24 25 72 35
okp2 49 20 288 >1800 >1800 1535 1559
okp3 1 5 0 21 1 465 10
okp4 1 2 14 40 2 0 4
okp5 210 11 190 40 >1800 513 488

unsolved 1 2 2 5 4 5 1
Average time 64 114 248 474 353 582 228

(a) OKP-2 benchmarks

Benchmark JPV1 FS2 CCM5

E02F17 30 7 12
E02F20 2 > 1800 12
E02F22 2 167 4
E04F15 60 0 1
E04F17 9 13 26
E04F19 14 560 7
E04F20 0 22 3
E05F15 0 0 3
E05F18 0 0 126
E05F20 6 491 2
E07F15 0 0 1
E08F15 0 0 117
E20F15 1 0 1
E00X23 > 1800 > 1800 289
E03X18 24 0 22
E05X15 110 2 0
E07X15 79 0 1
E10X15 50 0 1
E13X15 2 0 0
E20X15 8 0 44

E00N10 0 0 0
E00N15 2 0 2
E00N23 87 > 1800 86
E02N20 0 0 1
E03N10 0 0 0
E03N15 21 0 1
E03N16 51 2 32
E03N17 45 0 4
E04N15 7 0 1
E04N17 3 0 1
E04N18 7 10 7
E05N15 4 0 0
E05N17 1 0 1
E07N10 0 0 0
E07N15 0 0 0
E08N15 3 0 1
E10N10 0 0 0
E10N15 0 0 0
E13N10 0 0 0
E13N15 0 0 0
E15N10 0 0 0
E15N15 0 0 0

unsolved 1 3 0
Average time 57 158 19

(b) OPP-2 benchmarks

Table 1: Running times in seconds

1 Java, Pentium IV, 3GHz
2 C++, Pentium IV, 2.8GHz
3 Visual Digital Fortran 6.0, Pentium IV, 2.5 GHz
4 ANSI C, Pentium III, 800 MHz
5 C, Pentium IV, 2.6 GHz

14

Solving the instance gcut13 is still a challenging issue. The particularity of this benchmark is that
the size of the container is big (3000 by 3000) while there are many items (32) to be packed, which are
of relatively small sizes.

4 Conclusion

In this paper we presented a new algorithm for solving the OPP-2 problem by introducing new
characterization of feasible packings based on the properties of MPQ-trees. Our approach is of interest
since the computational results are competitive and as well as in Fekete and Schepers’ case it can be
easily extended to the multidimensional case.

References

1. Baldacci R, Boschetti M (2007) A cutting plane approach for the two-dimensional orthogonal non-
guillotine cutting stock problem. European Journal of Operational Research 183(3):1136–1149

2. Beasley J (1985) Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the
Operational Research Society 36(4):297–306

3. Beasley J (1985) An exact two-dimensional non-guillotine cutting tree search procedure. Operations
Research 33(1):49–64

4. Booth K, Lueker G (1975) Linear algorithms to recognize interval graphs and test for the consecutive
ones property. In: Proceedings of the seventh Annual ACM Symposium on Theory of Computing
(STOC’75), pp 255–265

5. Caprara A, Monaci M (2004) On the two-dimensional knapsack problem. Operations Research Letters
32(1):5–14

6. Carlier J, Clautiaux F, Moukrim A (2007) New reduction procedures and lower bounds for the
two-dimensional bin packing problem with fixed orientation. Computers and Operations Research
34(8):2223–2250

7. Christofides N, Hadjiconstantinou E (1995) An exact algorithm for orthogonal 2-d cutting problems
using guillotine cuts. European Journal of Operational Research 83(1):21–38

8. Clautiaux F, Carlier J, Moukrim A (2007) A new exact method for the orthogonal packing problem.
European Journal of Operational Research 183(3):1196–1211

9. Clautiaux F, Jouglet A, Carlier J, Moukrim A (2008) A new constraint programming approach for
the orthogonal packing problem. Computers and Operations Research 35(3):944–959

10. Fekete S, Schepers J (1997) On more-dimensional packing i: Modeling. Tech. rep., University of Köln,
Germany

11. Fekete S, Schepers J (1997) On more-dimensional packing iii: Exact algorithms. Tech. rep., University
of Köln, Germany

12. Fekete SP, Schepers J, van der Veen J (2007) An exact algorithm for higher-dimensional orthogonal
packing. Operations Research 55:569–587

13. Ferreira E, Oliveira J (2005) A note on fekete and schepers’ algorithm for the non-guillotinable two-
dimensional packing problem. Technical Report http://paginas.fe.up.pt/~jfo/techreports/

Fekete%20and%20Schepers%20OPP%20degeneracy.pdf

14. Fulkerson D, Gross O (1965) Incidence matrices and interval graphs. Pacific Journal of Mathematics
15(3):835–855

15. Ghouila-Houri A (1962) Caractérisation des graphes non orientes dont on peut orienter les aretes de
maniere à obtenir le graphe d’une rélation d’ordre. Comptes Rendus Mathématique Académie des
Sciences Paris 254:1370–1371

16. Gilmore P, Hoffman A (1964) A characterization of comparability graphs and of interval graphs.
Canadian Journal of Mathematics 16:539–548

17. Korte N, Möhring R (1989) An incremental linear-time algorithm for recognizing interval graphs.
SIAM Journal on Computing 18(1):68–81

18. Rose D, Tarjan R, Lueker G (1976) Algorithmic aspects of vertex eliminationon graphs. SIAM
Journal on Computing 5:266–283

15

http://paginas.fe.up.pt/~jfo/techreports/Fekete%20and%20Schepers%20OPP%20degeneracy.pdf
http://paginas.fe.up.pt/~jfo/techreports/Fekete%20and%20Schepers%20OPP%20degeneracy.pdf

	1 Fekete and Schepers' model
	2 Our approach
	3 Computational Results
	4 Conclusion

