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Abstract

The Aharonov-Bohm effect1 is often called “topological.” But it seems no more
topological than electrostatics or Newtonian gravity (or just about any radiation,
propagation from a source).

1 The Aharonov-Bohm effect
A wavefunction is split into two, and these, having enclosed a (simply-connected) re-
gion ω containing a solenoid, are made to interfere on a screen. The enclosing wave-
function is sensitive to any enclosed electromagnetism inasmuch as the electromagnetic
four-potential A (a one-form) contributes a phase

exp i

∮
∂ω

A

to (the wavefunction along) the boundary ∂ω and hence to the interference pattern on
the screen. The electromagnetism on ω is related to the circulation around the boundary
by Stokes’ theorem

(1)
∮
∂ω

A =

∫∫
ω

dA.

The electromagnetic field2 F = dA produced by the solenoid is circumscribed to a
middle region λ ⊂ ω surrounded by an isolating region λ′ = ω − λ where F vanishes
but not A. The full Aharonov-Bohm effect can be considered the ‘differential’ or ‘in-
cremental’ sensitivity of the interference pattern to variations in the current through the
solenoid.

1Ehrenberg & Siday (1949), Aharonov & Bohm (1959)
2It is perhaps easiest to think of F as a magnetic field B = dA produced by a three-current J = d∗B

in the solenoid, where B is a two-form, ∗B the one-form Hodge-dual to it (in three dimensions), and the
three-potential A is three-quarters of the four-potential A↔ (ϕ,A).
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2 The topological interpretation
The topological interpretation3 of the effect can be formulated as follows: If A were
closed throughout a simply-connected region ω it would also be exact, and hence ex-
pressible as the gradient A = dµ of a zero-form µ (a real-valued function); the flux∮

∂ω

dµ =

∫∫
ω

d2µ

through the boundary ∂ω would then vanish, since d2 = 0. But here A is closed on
λ′; from dA = 0|λ′ it does not follow that A is exact, nor that the flux through the
enclosing loop vanishes: it may or may not.

The existence of the source responsible for the effect is therefore ruled out by one
topology (A closed throughout a simply-connected region) but not another.

The same applies to a simply-connected three-dimensional region Ω enclosed by a
two-dimensional boundary ∂Ω. If the two-form E were closed throughout Ω it would
also be exact, and hence expressible as the curl E = dζ of a one-form ζ; the flux∫∫

∂Ω

dζ =

∫∫∫
Ω

d2ζ

through the boundary would then vanish. But if the region on which E is closed has a
hole in it, the flux through the enclosing surface may or may not vanish.

This is precisely what we have in electrostatics, where the electric fieldE = ∗dϕ is
(Hodge-dual to) the gradient dϕ of the scalar potential ϕ. The vanishing divergence dE
expresses the conservation of electricity where none is created, away from the charges

3Aharonov & Bohm (1959, p. 490): “in a field-free multiply-connected region of space, the physical
properties of the system still depend on the potentials.” Wu & Yang (1975b, p. 3845): “The famous Bohm-
Aharonov experiment [ . . . ] showed that in a multiply connected region where fµν = 0 everywhere there
are physical experiments for which the outcome depends on the loop integral [ . . . ] around an unshrinkable
loop.” And p. 3856: “fµν underdescribes electromagnetism because of the Bohm-Aharonov experiment
which involves a doubly connected space region.” Nash & Sen (1983, p. 301): “We [ . . . ] consider the
consequence of assuming the field F to be identically zero in some region Ω. At first one may think that
there will be no physically measurable electromagnetic effects in such a region Ω. This is not so, effects may
arise if the topology of Ω is non-trivial, e.g. if Ω is not simply connected. [ . . . ] In terms of parallel transport
one says that zero curvature does not imply trivial parallel transport if the region in which the curvature
is zero is not simply connected. This underlies the fact that there is a sense in which the connection is a
more fundamental object than the curvature, even though a connection is gauge dependent and not directly
measurable.” Ryder (1996, p. 101-4): “the Bohm-Aharonov effect owes its existence to the non-trivial
topology of the vacuum [ . . . ]. The Bohm-Aharonov effect is the simplest illustration of the importance of
topology in this branch of physics. [ . . . ] The relevant space in this problem is the space of the vacuum, i.e.
the space outside the solenoid, and that space is not simply connected. [ . . . ] It is thus an essential condition
for the Bohm-Aharonov effect to occur that the configuration space of the vacuum is not simply connected.
[ . . . ] in other words, it is because the gauge group of electromagnetism, U1, is not simply connected that the
Bohm-Aharonov effect is possible. [ . . . ] The configuration space of the Bohm-Aharonov experiment is the
plane R2 [ . . . ] with a hole in, and this is, topologically, the direct product of the line R1 and the circle [ . . . ].
There is, nevertheless, a positive effect on the interference fringes. The mathematical reason for this is that
the configuration space of the null field (vacuum) is the plane with a hole in [ . . . ].” Martin (2003, p. 48): “in
the case of non-trivial spatial topologies, the gauge-invariant interpretation runs into potential complications.
[ . . . ] So-called holonomies [ . . . ] encode physically significant information about the global features of the
gauge field.” Agricola & Friedrich (2010, p. 275): “so ist das verbleibende Gebiet Ω − S der Ebene aus
Sicht des Elektrons nicht mehr einfach zusammenhangend.” See also Nounou (2003).
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that produce E according to the Maxwell-Poisson equation dE = d∗dϕ = ρ (the
three-form ρ being the charge density). If the divergence dE vanished throughout the
volume Ω, there would be no electricity produced and hence none radiated through the
enclosing surface.4 But a charge in Ω—say in a region Λ ⊂ Ω isolated by Λ′ = Ω−Λ—
would prevent electricity from being conserved throughout Ω.

We have the same formalism in Newton-Poisson gravity, where ϕ is the gravita-
tional potential, dϕ and E both represent gravitational force, and ρ is the mass density.
Gravity would therefore be another topological effect.

Again, the topology of the region where the ‘potential’5 (A or E or whatever)
is closed tells us relatively little: if the region were simply-connected, conservation
would be general within the enclosing surface since there could be no holes containing
sources; and if nothing were created inside the enclosing surface, the total radiation
through it would vanish. But if the topology does not allow the presence of holes to be
ruled out, the presence of sources in them cannot either; and sources would produce a
flux through the enclosing surface.

A non-trivial topology cannot, on its own at any rate, rule out the absence of a
source either. Nor does it provide the ‘amount’ or ‘intensity’ of the possible source
(which would tell us the intensity of the effect—the flux through the enclosing surface).
So the full Aharonov-Bohm effect, which can be considered ‘differential,’ is hardly
accounted for by topology.

3 Gauge freedom
Since the electromagnetic field F = dA = dA′ is easier to measure than A, it is
customary to say that the freedom expressed by the substitution

(2) A 7→ A′ = A+ dξ

(ξ being a zero-form) is unobservable—and that hence one doesn’t know quite what to
make of A. But even if the freedom (2) to bend and twist the level surfaces of A’s local
potential6 γ can make one wonder about the physical meaning of A, all loops going
around the solenoid once puncture the same number (1) of level surfaces.

It is natural to be troubled by the ontological ambiguities of A and implications of
(2). Encouraged by the more reassuring properties of loops, Belot (2003)7 and Healey
(2007) have given them8 much ontological legitimacy, even centrality.

4Over and above any divergence-free electrical background that may or may not be present.
5I am taking “potential” to mean little more than “primitive”; just as A is the potential of F = dA, E

can be viewed as the potential of ρ = dE.
6For wherever A is closed it can be written locally as the gradient A = dγ of a scalar potential γ—just

as E can be written locally, wherever it is closed, as the curl E = dζ of a one-form ζ.
7P. 216: “holonomies [ . . . ] are well-defined quantities on the spaces of states of the standard formula-

tions of Yang-Mills theories. If it is accepted that these theories describe reality, does not it follow that the
quantities in question are as real as any others?”

8Or classes of (homotopically) equivalent loops, perhaps with appropriate fields on them, or maybe inte-
grals.
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In three dimensions (2) would correspond to a freedomE 7→ E′ = E+dβ invisible
to the divergence dE = dE′—but again, any membrane containing the source9 is
punctured by the same number of field-lines of E, radiated by the source. The trouble
is that in the two theories mentioned in §2, electrostatics and Newton-Poisson gravity,
the curl dβ vanishes since E = ∗dϕ is derived from a potential ϕ. And no theory with
just a source ρ and its potentialE (but without the scalar potential ϕ) comes to mind. If
such a theory existed, it would attribute reality to membranes in much the same way as
the Aharonov-Bohm effect, according to Belot and Healey, attributes reality to loops.

It could be argued that the real role of topology and loops appears most clearly in
the non-Abelian case,10 with SU(N ); that here it is subtly concealed by the triviality
of the structure group, U(1). The possibility of such non-Abelian ‘emergence’ goes
beyond the scope of this paper. Moreover one can—claiming an appropriate ‘Abelian
autonomy’—wonder whether the indispensability or centrality of topology would nec-
essarily be inherited by the Abelian case: topology and loops can have one role with
non-Abelian structure groups, quite another here.

My thanks to Dennis Dieks, Éric Gourgoulhon, Marc Lachièze-Rey and Jean-Philippe
Nicolas for valuable clarifications and corrections.
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