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Abstract 
Imputation is an extremely valuable tool in conducting and synthesising genome-wide 

association studies (GWAS). Directly-typed SNP quality control is thought to affect 

imputation quality. It is therefore common practice to use quality-controlled (QCed) data 

as input for imputing genotypes. This study aims to determine the effect of commonly-

applied QC steps on imputation outcomes. We performed several iterations of imputing 

SNPs across chromosome 22 in a dataset consisting of 3,177 samples with Illumina 610k 

GWAS data, applying different QC steps each time. The imputed genotypes were 

compared to the directly-typed genotypes. In addition, we investigated the correlation 

between alternatively QCed data. We also applied a series of post-imputation QC steps 



balancing elimination of poorly-imputed SNPs and information loss. We found that the 

difference between the unQCed data and the fully-QCed data on imputation outcome was 

minimal. Our study shows that imputation of common variants is generally very accurate 

and robust to GWAS QC, which is not a major factor affecting imputation outcome. A 

minority of common-frequency SNPs with particular properties cannot be accurately 

imputed regardless of QC stringency.  These findings may not generalize to the imputation 

of low frequency and rare variants. 
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Introduction 
Genome-wide association scans (GWAS) have proven to be a successful strategy for 

detecting common variants exerting modest effects on complex disease risk. Currently 

available commercial platforms focus on common variants and capture the majority of 

HapMap (1) SNPs with minor allele frequency (MAF) >0.05 in European populations (2). 

Several large-scale consortia have been formed in order to carry out GWAS meta-analyses 

for various phenotypes, with successful outcome (for example 3, 4, 5, 6, 7). To enable the 

combination of data across studies carried out on different platforms, and to enable in 

silico fine mapping of association signals, imputation approaches were proposed a few 

years ago (8) as a means of statistically inferring genotypes at untyped loci using a 

reference set, for example the HapMap (~2,500,000 SNPs). 

An important aspect of any GWAS analysis is the implementation of a series of rigorous 

quality control (QC) steps prior to testing for association. These QC procedures help guard 

against genotyping error, population stratification, sample duplication and other 

confounders that can affect the analysis results. QC steps are typically applied at the 

sample- and SNP-specific level. Sample-level QC  includes filtering out samples with low 

call rates, evidence for different ethnic origin, high heterozygosity, relatedness/ 

duplication, gender discrepancies and genotyping batch effects. SNP-level QC includes 

filtering out SNPs with low call rates and deviation from Hardy-Weinberg equilibrium 



(HWE) at pre-determined thresholds. It is generally believed that datasets should be 

stringently QCed at the marker level before applying imputation approaches. For this 

reason, lower MAF SNPs tend to also be excluded, as their accuracy can be hampered by 

poor clustering properties and incorrect automated genotype calling (at least with 

currently widely-used algorithms). Even though such weight is placed on pre-imputation 

SNP QC, the effects of applying different criteria and thresholds to the starting dataset 

have not been investigated thus far. In this report, we evaluate the effect of GWAS QC on 

imputation outcome, and find that imputation works very well for common variants 

irrespective of QC and that a minority of some common-frequency SNPs with particular 

properties cannot be accurately imputed regardless of QC stringency. 

 
Materials and Methods 
We used an empirical GWAS dataset to assess the effect of QC on imputation outcome. 

We focused on chromosome 22, (n=9,038 directly-typed SNPs) from 3,177 osteoarthritis 

(OA) cases from the UK, typed on the Illumina 610k quad chip as part of the arcOGEN 

consortium GWAS (manuscript submitted). Chromosome 22 is representative of the 

genome in terms of the proportion of directly-typed to imputed SNPs. All samples 

included in our analysis had passed standard sample-level QC (based on call rate, 

heterozygosity, relatedness, ethnicity and gender discrepancies). We imputed genotypes 

at variants on the basis of HapMap phase II release 22 CEU data (n=33,815 SNPs on chr22) 

using IMPUTE v1 (8). We performed each imputation in duplicate, with and without the 

IMPUTE v1 -pgs (predict genotyped SNPs) flag, which resulted in one set of imputed data 



containing the original genotypes and in the other imputed genotypes. To assess the 

effect of varying levels of QC, we carried out several rounds of imputation, using 

differently QCed OA SNP data as the starting point.  

Initially, we imputed on the basis of no SNP-level QC, including all directly-typed SNPs, 

regardless of MAF, call rate and HWE. We also imputed on the basis of only those SNPs 

that passed stringent QC thresholds (call rate>95% for SNPs with a MAF≥5% and call 

rate>99% for SNPs with a MAF<5%, HWE exact p>0.0001, MAF >0.01 and removing all 

SNPs with GC or TA alleles) (Table 1). Although imputation biases can occur due to poorly-

clustering SNPs with miscalled genotypes in the starting dataset, cluster plot checking is 

not feasible at the genome-wide scale and therefore it is not implemented in standard 

GWAS QC.  

We evaluated the accuracy of imputed genotypes by comparing allele frequencies at the 

same SNP between imputed and true, directly typed data. For each QC-imputation 

iteration, we performed an allele frequency comparison between the actual directly-typed 

and imputed SNPs. Under perfect imputation, we would expect to see alignment with the 

null hypothesis of no association. We used SNPTEST (9) to investigate differences between 

directly-typed and imputed genotypes at the same variants within the same samples, 

taking into account the distribution of genotype probabilities for each individual. For the 

purposes of our comparison, we used those SNPs that were directly genotyped in OA 

cases and also present in the HapMap reference samples. Table 1 summarizes the number 

of these SNPs for each QC threshold. 
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When comparing directly-typed with imputed allele frequencies at the same variant in the 

same individuals, we arbitrarily considered p<10-6 as significantly different. We calculated 

the correlation between imputed and directly-typed MAF, using the expected counts to 

allow for genotype-associated probabilities. We also applied a series of post-imputation 

QC steps in order to eliminate unreliably imputed SNPs, aiming to filter out as many of 

these SNPs as possible whilst retaining a good proportion of non-significant SNPs. We 

compared two alternative methods for post imputation QC filtering, firstly the IMPUTE-

info score, which is associated with the imputed allele frequency estimate which ranges 

from 1, indicating high confidence, to 0 suggesting decreased confidence, and secondly 

the freq-add-proper-info score provided by SNPTEST, a relative statistical score ranging 

from 0 to 1, representing no information to complete information respectively. The 

SNPTEST freq-add-proper-info score has been shown to be highly correlated with the 

IMPUTE-info score under the additive model (10). In both scenarios we also filtered out 

SNPs with MAF <5%. Figure 1 illustrates the effects of altering post-imputation QC filters 

on the QCed data. Based on these results we chose to use the IMPUTE-info score with a 

filtering threshold <0.8 and MAF <5% which effectively eliminated ~79% of the significant 

SNPs whilst retaining ~85% of the non-significant ones (SNPTEST freq-add-proper-info <0.9 

and MAF 5% would be roughly equivalent to this eliminating ~73% of the significant SNPs 

whilst retaining ~89% of the non-significant ones). We applied this post-imputation filter 

to each of our datasets and compared the results. We looked at the unQCed and QCed 

datasets first, as synopsised in Table 1. For each scenario, we examined frequency 



differences between the directly-typed and the imputed genotypes as described above. In 

addition, we compared the imputed genotypes at imputed SNPs only for the unQCed and 

the fully QCed (QCed data with all poorly-clustering markers removed) strategies.   

 
Results 
Table 1 summarises the number of SNPs with significantly (p<10-6) different allele 

frequencies between the directly-typed and imputed data in the same set of individuals 

for each of the different QC sets. Correlation plots and R2 values for the comparisons of 

the QCed and unQCed datasets are presented in Figure 2. The difference between the 

unQCed (R2=0.993) and QCed data (R2=0.994) was minimal. After post-imputation filtering 

there were 77 SNPs with significantly different (imputed v. directly-typed) allele 

frequencies in the unQCed data compared with 67 significant SNPs in the QCed data. In an 

attempt to improve imputation for the small subset of poorly-imputed SNPs in the QCed 

data we excluded all SNPs with MAF<5% and, subsequently, also SNPs with MAF<10%. We 

found that eliminating these lower MAF SNPs prior to imputation had little effect overall. 

The R2 for the post-imputation QC filtered comparison with the QCed data was virtually 

identical both when excluding all SNPs with MAF<5% (R2 = 0.994) and when excluding all 

SNPs with MAF<10% (R2 = 0.991). 

Given this apparent minimal influence of input data QC on imputation outcome, we 

investigated further the small set of SNPs displaying significant allele frequency 

differences for the presence of a common characteristic that could conceivably be used as 

a post-imputation filter. In order to rule out poor genotyping as the cause of these 



significant differences, we examined all cluster plots for the unfiltered significant SNPs 

(p<1x10-6, n=325). Fourteen poorly-clustering SNPs were removed and the data were re-

imputed. After post-imputation QC, 3 additional SNPs were not significant and 6 were less 

significant. We then inspected the cluster plots for 10 SNPs on either side of the 61 SNPs 

remaining significantly different to rule out poor imputation due to flanking SNP poor 

clustering properties. We examined the cluster plots for 1,008 SNPs and found that 36 of 

these were poor; these resided in the proximity of 35 of the significant SNPs. We 

subsequently removed these SNPs and re-imputed. We found that following post-

imputation QC filtering, only 3 of the 61 SNPs were no longer significant and the R2 

remained the same as for the QCed data (R2 = 0.994) for the post-imputation QC filtered 

data. When we repeated comparisons using IMPUTE v2 with the HapMap3 (CEU, release 

#2 Feb 2009) and data from the 1,000 genomes project (Pilot 1 genotypes released Mar 

2010; phased haplotypes released Jun 2010) as the reference panels, we observed 

qualitatively similar results. 

Differences in region-specific recombination rates may account for the few remaining 

significant SNPs, as variants in areas of especially high recombination rate may be more 

challenging to impute accurately regardless of QC. To investigate this, we firstly examined 

the QCed unfiltered data and found that when the data were dichotomized into those 

markers with lower (<1cm/Mb) and higher (≥1cM/Mb) recombination rates there were 

more significant SNPs present in the higher recombination rate group compared to the 

lower recombination group (p=1.85x10-27, average recombination rates of 12.8 and 3.04 



respectively). When we examined the QCed data post-imputation QC, this difference 

disappeared (p=0.526). This clearly indicates that application of the post-imputation QC 

filter successfully identifies the majority of significant SNPs with high recombination rates. 

Therefore, to include recombination rate as an extra filter would not be prudent, for 

example using the QCed post-imputation QC filtered data and applying a further filter 

using a recombination rate threshold of >1cM/Mb would eliminate 2,075 SNPs, only 24 of 

which are significantly different.  

 

Discussion 
The imputation accuracy of common variants does not appear to be substantially affected 

by GWAS QC steps. Our data demonstrate that there is little difference in imputation 

accuracy observed in unQCed GWAS data when compared with QCed GWAS data. 

Furthermore, the implementation of additional QC steps (e.g. filtering out variants with 

MAF<0.05 and <0.10) does not considerably improve overall imputation accuracy. Missing 

variants and directly typed variants that fail pre-imputation QC checks are imputed and 

these data are used for downstream analyses. Post-imputation QC successfully eliminates 

a good proportion of inaccurately-imputed SNPs. Specifically, by applying a very stringent 

post-imputation QC threshold a smaller set of variants with more accurately predicted 

genotypes remain. The IMPUTE-info threshold of <0.8 and MAF≤5% criterion successfully 

filtered out the majority of poorly-imputed SNPs. However, the application of these strict 

filters in GWAS data could result in many SNPs being excluded from the data and thus 

potential true association signals could be missed. Some of the inaccurately-imputed 



variants were due to poor clustering properties. It is plausible that the handful of variants 

that still remained inaccurately imputed could be due to differences in ethnicity between 

our data and the HapMap CEU reference panel from which the genotypes were predicted. 

We have used IMPUTE, but do not expect our results and conclusions to qualitatively 

differ with different imputation methods, for example BEAGLE and MACH exhibit similar 

imputation accuracy to IMPUTE (11). Differences in population structure between the 

reference panel and target dataset can be a source of imputation inaccuracy. Imputation 

accuracy for common SNPs may be further increased by using larger reference panels with 

data on denser sets of variants. Our results show that GWAS QC is not of paramount 

importance for the imputation of common variants. This may be different for the 

imputation of low frequency and rare variants based on emerging reference panels such 

as the 1000 genomes (www.1000genomes.org) and UK10k (wwww.uk10k.org) projects. In 

summary, our study demonstrates that imputation of common variants is generally very 

accurate and robust to GWAS QC, which is not a major factor affecting imputation 

outcome. 
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Titles and legends to figures 

Table 1. 

arcOGEN data for chromosome 22 detailing the different pre-imputation QC steps. A 

breakdown of the SNP number for each QC threshold is indicated both with and without 

the post-imputation QC.  

 

Figure 1. 

A. Imputation results for the QCed data indicating the total number of SNPs filtered for 

different QC thresholds using the IMPUTE-info and freq-add-proper-info scores. The SNPs 

remaining after the filter (red bar) have been subdivided into SNPs that are significant 

(green bar) and not significant (yellow bar). B. The same data as percentage of significant 

and non significant SNPs removed for each threshold. Both methods of filtering appear to 

be equivalent, but the freq_add_proper_info is shifted to the right for the same numerical 

threshold; we chose the impute-info <0.8 for further analysis (similar to a 

freq_add_proper_info <0.9). 

 

Figure 2. 

Correlation plots and the associated R2 for (A) The unQCed and the QCed with and 

without post-imputation QC filtering (IMPUTE-info <0.8 and MAF <5%). (B) The imputed-

only markers in the unQCed and fully QCed data (QCed data with all poorly-clustering 

markers removed) without post-imputation QC filtering.  



Figure 1.

A

B

SNPs filtered out

SNPs remaining SNPs p<1x10-6

SNPs p≥1x10-6
IMPUTE info QC threshold Freq-add-proper-info QC threshold

N
um

be
r o

f S
N

Ps

N
um

be
r o

f S
N

Ps

Impute info or freq_add_proper_info score

Pe
rc

en
ta

ge
 o

f S
N

Ps



Unfiltered                                                     Filtered

UnQCed data

 R2 = 0.98426241                                        R2 = 0.99301225

QCed data

R2 = 0.98783721                                     R2 = 0.99380961

D
ire

ct
ly

 ty
pe

d 
M

A
F

Imputed MAF

Imputed MAF
Imputed MAF

Imputed MAF

D
ire

ct
ly

 ty
pe

d 
M

A
F

D
ire

ct
ly

 ty
pe

d 
M

A
F

D
ire

ct
ly

 ty
pe

d 
M

A
F

Unfiltered                                                    Filtered

Figure 2.

  (B)

M
A

F 
in

 th
e 

fu
lly

 Q
C

ed
 d

at
a

MAF in the unQCed data

Unfiltered

R2 = 0.99920016

(A)



Table�1.�Summary�of�QC�steps�and�related�SNP�number�breakdown.�
�
Pre�impute�QC�threshold�applied� Directly�typed�SNPs�also�

present�in�HapMap�
Post�imputation�
unfiltered�SNPs�

Post�imputation�QC�
filtered1�SNPs�

� � NS� S� NS� S�
None�(“unQCed”�dataset)� 80642� 7689� 375� 6498� 77�
Typical�GWAS�QC3�(“QCed”�dataset)� 7910� 7585� 325� 6446� 67�
As�above�plus�144�significant�SNPs�removed�with�poor�cluster�plots 7896� 7592� 304� 6449� 61�
As�above�plus�365�additional�SNPs�removed�with�poor�cluster�plots� 7860� 7557� 303� 6419� 58�
Typical�GWAS�QC3�plus�MAF�<5%� 7554� 7269� 285� 6434� 65�
Typical�GWAS�QC3�plus�MAF�<10%� 6544� 6287� 257� 5569� 53�
1Filtering�is�based�on�removal�of�SNPs�with�an�IMPUTE�info�score�of�<0.8�and�MAF�<5%.�
2There�were�8082�SNPs�in�the�unQCed�data,�of�which�18�were�monomorphic�in�the�arcOGEN�cases�but�polymorphic�in�HapMap;�these�SNPs�were�
removed�by�IMPUTE.�
3Typical�GWAS�QC�was�MAF��5%�with�call�rate�<95%�and�MAF�<5%�with�call�rate�<99%,�HWE�p<1x10�4,�and�exclusion�of�GCAT�and�MAF�<1%�SNPs,�
applied�as�an�additional�post�association�analysis�and�pre�imputation�QC�step.��
4Significant�SNPs�with�poor�cluster�plots�removed.���
5Those�SNPs�flanking�the�significant�SNPs�with�poor�cluster�plots�removed.�
NS,�not�significant�(p�1x10�6);�S,�significant�SNPs�(p<1x10�6)�
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