
HAL Id: hal-00611245
https://hal.science/hal-00611245

Submitted on 26 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging Mono/.NET and Java in the SCRIBO Project:
The Way to UIMA.NET

François-Régis Chaumartin, Etienne Coumont, Fabio Mancinelli, Olivier
Grisel

To cite this version:
François-Régis Chaumartin, Etienne Coumont, Fabio Mancinelli, Olivier Grisel. Bridging Mono/.NET
and Java in the SCRIBO Project: The Way to UIMA.NET. RMLL (Rencontres Mondiales du Logiciel
Libre), Jul 2009, Nantes, France. �hal-00611245�

https://hal.science/hal-00611245
https://hal.archives-ouvertes.fr

Bridging Mono/.NET and Java in the SCRIBO
Project: The Way to UIMA.NET

François-Régis Chaumartin, Etienne Coumont1, Fabio Mancinelli2, and Olivier
Grisel3

1 Proxem
{frc,etc}@proxem.com

2 XWiki
fabio.mancinelli@xwiki.com

3 Nuxeo
olivier.grisel@nuxeo.com

Abstract. In this paper we introduce the project SCRIBO (Semi-auto-
matic and Collaborative Retrieval of Information Based on Ontologies)
and we describe how we have leveraged the UIMA framework in order
to integrate existing tools in a general architecture. The paper focuses
on how we have bridged the Java and .Net platforms (using the Mono

framework), describing the problems and an effective solution to make
UIMA interoperability possible.

1 Introduction

The SCRIBO project’s goal is to develop algorithms and collaborative tools for
extracting knowledge from unstructured documents and images. Its distinguish-
ing features rely on the combination of semantic and statistical approaches for
natural language processing (NLP) and on its focus on the collaborative dimen-
sion of the knowledge extraction process. SCRIBO provides an integrated tool
chain for extracting light ontologies from a corpus of documents, for acquiring
knowledge by leveraging ontologies, and for extracting structures from digitalized
documents. The tool chain will operate in an integrated modular environment
built upon standard APIs that facilitates advanced collaboration by providing
graphical widgets for annotating semantically evolving texts and images.

One of the main challenges of the SCRIBO project is that of integrating the
existing components provided by project’s partners and make them interoper-
ate. We chose to leverage the UIMA framework in order to interoperate and to
provide components that exposes a standard interface that could be re-used also
in context other than SCRIBO itself.

2 Architecture

Figure 1 shows the current architecture of the SCRIBO framework:

Tool-chain
Ontologies

UIMA

Tool-chain
Knowledge extraction

UIMA

Tool-chain
Digital documents analysis

UIMA

UIMA

Integrated environments

Scribo Controller

RESTful API

Knowledge
Base

Ontologies +
Knowledge

UIMA
CAS Consumers

Data source

 Data sink

Document
base

UIMA
Collection reader

Product

Document
base

UIMA
Collection reader

Product

 HTTP

Extension

Extension

Confguration
Feedback
Lifecycle handling

Fig. 1. General architecture

– Tool-chains. These are the existing tools that are integrated using the UIMA
frameworks. These tools are already existing and developed using different
platforms (i.e., Mono (.Net), C++ and a Unix-like integration through Perl
and shell scripts), providing the following functionalities:
• Semi-Automatic extraction and refinement of ontologies.
• Named entities and relationships extraction.
• Digital document analysis and partitioning and information extraction.

These tool-chains are wrapped using the API provided by UIMA framework.
– Document bases and Products. These are existing products developed by

SCRIBO partners that provides document management facilities and a doc-
ument base that is used as input to the analysis tool-chains. These document
bases are exposed using UIMA collection readers and documents are feed di-
rectly to the tool-chains using the UIMA workflow.

– Controller. The controller is used to realize a model-view-controller archi-
tecture. The controller mediate the interaction between the integrated envi-
ronments (i.e., the view), the tool-chains and the knowledge base that will
store all the information extracted by the analysis (i.e., the model).

– Integrated environments. These components provide the user interface to
the SCRIBO framework and allow the user interact with it by changing the
parameters, visualize the analysis results and modify them collaboratively
in order to detect mismatches and correct errors.

3 Bridging Mono/.NET and Java: the way to UIMA.NET

In this section we describe how we succeeded in integrating MONO and .NET-
based tools in the UIMA framework, in the context of the SCRIBO project.

Our company, Proxem, has already under development a linguistic platform,
Antelope. It includes several Natural Language Processing components (taggers,
parsers, semantic, lexicons, Named Entities recognizers. . .) written mainly with
the C# language, and running under the Microsoft .NET Framework or Mono,
its open source cross-platform counterpart. Our problem was to integrate them
into the UIMA framework, for which only two default implementations (C++
and Java) exist. Rewriting all our components was not something possible; we
decided to find a solution to create a UIMA annotator component, running on a
MONO or .NET runtime instead of a JVM, and being able to be called from any
UIMA client process. First, we tried to create a Web service based on the SOAP
standard protocol. Despite much effort, we didn’t succeed in this way; there are
incompatibility issues between the Web services exposed in UIMA, and their
implementation in .NET. Moreover, UIMA Web services expose some classes
using Axis libraries, which cannot be easily translated into the .NET equivalent.
We then explored a lower-level solution, using sockets to communicate between
both virtual machines; we decided to use Vinci, which presents two advantages:

– It is provided as a standard protocol of the UIMA framework.
– It uses only standard Java libraries, so is it easily transposable into .NET.

Fig. 2. Architecture of UIMA.NET showing the communication between components.

3.1 Vinci services

Vinci services can be used directly by the Collection Processing Manager (CPM).
Vinci handles service naming and location and data transport. Service naming
and location are provided by a Vinci Naming Service (VNS). When a Vinci
service is started, it has to register itself to the VNS. Then, when a CPM needs
to use the service, it has to know the exact name of the wanted service. A query
is made to the VNS in order to discover the machine and port hosting the service,
which can then be directly invoked.

3.2 Conception of a UIMA annotator for the MONO/.NET
Framework

We first had to convert the UIMA libraries (.jar files) into a MONO/.NET as-
sembly. We did it by using the IKVM static compiler, a tool that can translate
Java bytecode into MONO/.NET Intermediate Language (the equivalent of Java
bytecode). We then created a service launcher, named StartVinciService, a sim-
ple MONO/.NET executable which is in charge to call the main function of the
Vinci service implementation class, from the library previously translated:

VinciAnalysisEngineService impl.main(args)

We also created a new MONO/.NET class library, named AnnotatorLi-
brary, that contains our annotators. Each annotator is a class that inherits from
the UIMA.NET class CasAnnotator ImplBase, and overrides the process(CAS)
method to perform the annotation job, by calling the CAS methods the same
way it is done in Java.

This class must be referenced in the annotator XML descriptor file, by spec-
ifying its namespace, name, and assembly:

<annotatorImplementationName>

MyNS.MyDotNetAnnotator, AnnotatorLibrary

</annotatorImplementationName>

If the assembly is signed, its full name must be specified:

<annotatorImplementationName>

MyNS.MyDotNetAnnotator, AnnotatorLibrary,

Version=1.0, Culture=neutral, PublicKeyToken=0123abcdef

</annotatorImplementationName>

Now we have to create a Vinci deployment descriptor file that references the
previous annotator descriptor file as the “resourceSpecifierPath”. We are now
ready to launch our MONO/.NET Vinci service. We start the Vinci Naming
Service if not already done. Then we launch our StartVinciService executable,
with one argument, the path to the annotator descriptor file. We can now use
this service from a UIMA client, such as the CAS Visual Debugger, which is one
of the tools provided with the UIMA Framework.

4 Conclusion

Our first intuition that a SOAP-based standard component should be easy to
implement was wrong; in fact, the low-level solution was much simpler to deploy.
We demonstrated a fast and easy way to build cross-platforms UIMA applica-
tions, and we are proud to provide what we expect to be the first MONO/.NET
UIMA implementation.

