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ABSTRACT

In this paper we provide a new algorithm allowing to solve a

variational Bayesian issue which can be seen as a functional opti-

mization problem. The main contribution of this paper is to trans-

pose a classical iterative algorithm of optimization in the metric

space of probability densities involved in the Bayesian methodology.

Another important part is the application of our algorithm to a class

of linear inverse problems where estimated quantities are assumed

to be sparse. Finally, we compare performances of our method with

classical ones on a tomographic problem. Preliminary results on a

small dimensional example show that our new algorithm is faster

than the classical approaches for the same quality of reconstruction.

Index Terms— Variational Bayesian, infinite dimensional opti-

mization, sparse reconstruction.

1. INTRODUCTION

The recent advances of information technologies have widely in-

creased the size of data involved in reconstruction problems. Simul-

taneously, signal processing techniques have allowed to overcome

instrumentation limitations, creating hence new theoretical chal-

lenges. In particular, the size of datasets collected nowadays can be

very large. There is therefore a need for reconstruction methods for

large dimensional inverse problems.

A classical approach when dealing with these ill posed problems

is to introduce additional information. The Bayesian methodology

involved in this paper consists in a modelisation of sources as prob-

ability density functions, see for instance [4] for details. This ap-

proach allows the development of unsupervised methods, where the

so called hyperparameters, i.e. parameters of the model, are adjusted

automatically to tune the weight between the a priori information

and the information coming from the data. We call these methods

”fully Bayesian” as they consist in a construction of a posterior dis-

tribution of parameters of interest and of hyperparameters. In prac-

tice, most of ”fully Bayesian” approaches use Markov Chain Monte

Carlo (MCMC) [9] algorithms to estimate the posterior mean. For

instance, in the case of deconvolution problems, where the covari-

ance matrix is easily invertible, efficient samplers can be developed

and this method can easily be handled. So there are many MCMC

approaches that developed fully Bayesian [5]. However, in general,

the use of MCMC is limited by the lack of an effective sample of

correlated vectors.

Therefore D. MacKay proposed in 1995 an alternative method-

ology, the so called variational Bayesian method [7]. The main idea

of this method is to approximate the posterior distribution by a sep-

arable density. Even if it gives approximate solutions, this method

could be more efficient that MCMC in large dimensional cases, es-

pecially when the covariance matrix is no longer invertible. Indeed,

as the calculations are analytical, the rate of convergence is much

better than for the MCMC approaches. This methodology is applied

in lot of areas: sources separations using ICA [3], deconvolution [2],

recursive methods [11]. However, as we will see later, variational

Bayesian method leads to an implicit solution. Hence iterative meth-

ods are used to approximate this solution. And classical iterative

methods used in this context are often too heavy to be efficient for

large dimensional dataset.

The main contribution of this paper is to define an iterative algo-

rithm able to provide, in few iterations, a close approximation of the

solution of the variational Bayesian problem. The original idea is to

adapt a classical finite-dimensional optimization algorithm, the gra-

dient descent method [8], to the space of probability distributions.

Another contribution of this paper is the application of our method

to a class of linear inversion problems involving sparse prior infor-

mation. As an example, we apply this new algorithm to a classical

problem of tomography.

In section 2 we recall the classical variational Bayesian approach

whereas in section 3 we introduce our algorithm. Section 4 gives an

application of this method on a linear problem with sparse informa-

tion illustrated in section 5. Finally, Section 6 concludes the paper.

2. BAYESIAN VARIATIONAL METHODS

We first introduce the key principle of the variational Bayesian

method presented in [3]. This Bayesian method is mainly used for

ill-posed inverse problems where the posterior distribution takes

intricate forms. The main idea is to approximate the true posterior

by separable distributions, close to this posterior in the sense of

the Kullback-Leibler divergence. This approximation step turns the

estimation problem as an optimization paradigm which enlarges the

range of validity of Bayesian methods in terms of complexity of the

inverse problem.

In the following we denote by Y ∈ R
M the M dimensional

vector containing the data information whereas W ∈ R
N represents

the vector of hidden variables to be determined. We assume that W

is random with a known distribution p(W), the a priori distribution.

The main challenge is to determine the corresponding posterior dis-

tribution p(W|Y). Note that even for a simple a priori distribution,

the posterior distribution can have an intricate form. We thus have to

approximate it by a separable probability density q.

To determine this approximating law, we first consider the log-

likelihood of data which can be written, see [3], as:

log p(Y) = F (q(W)) +KL[q(W)||p(W|Y))], (1)

where KL[q(W)||p(W|Y)) is the Kullback-Leibler divergence be-

tween the approximate probability density function (pdf) q and the



posterior pdf. In this case,

F (q(W)) =

∫

q(W) log

(

p(Y,W)

q(W)

)

dW, (2)

is the “negative free energy“. As log p(Y) is independent of the ap-

proximating density q, minimizing the Kullback-Leibler divergence

is obviously equivalent to maximize this negative free energy.

The objective of variational Bayesian methods is thus to find

q
opt = argmax

q
F (q(W )). (3)

The negative free energy can also be written as

F (q(W)) = 〈log p(Y,W)〉q(W) +H(W), (4)

where H(W) is the entropy of W under the distribution q, whereas

〈log p(Y,W)〉q(W) =

∫

log(p(Y,W))q(W)dW. (5)

represent the expectation of log p(Y,W) under the distribution

q(W). Note that as KL is convex, Eq. (1) ensures that F is concave

relatively to the approximating probability density function q(W),
thus we have to solve a convex infinite dimensional optimization

problem.

Assuming that q is a separable pdf, i.e. q(W) =
∏

i qi(wi),
we can obtain an analytic form for qi(wi) (see [3] for details on the

variational calculus ):

qi(wi) =
1

Ki
exp

(

〈log p(Y,W)〉∏
j 6=i qj(wj)

)

. (6)

Although this solution is obtained analytically, Eq. (6) clearly

does not have an explicit form. This solution is hardly tractable in

practice, and is thus approximated thanks to iterative methods. These

methods impose the use of conjugate prior to obtain a posterior law

belonging to a known family. In this context, optimizing the poste-

rior turns out to an optimization of its distribution parameters. As in

Eq. (6) the calculus of qi imposes the knowledge of all qj for j dif-

ferent from i, this optimization is either performed alternatively or

by groups of coordinates, by storing the corresponding covariance

matrix.

However, this method increases considerably the computation

time. To reduce this drawback, we can only perform the optimization

algorithm by group of coordinates. This approach reduces the num-

ber of iterations but induces to store and invert a large correlation

matrix. Hence for large dimensional problems these methods are not

efficient in practice. Our purpose is thus to solve the functional op-

timization problem given by the Bayesian variational method more

efficiently than the approaches induced by Eq. (6).

3. THE PROPOSED ALGORITHM

The optimization problem involved in variational Bayesian method

is an infinite dimensional concave problem. It would therefore be

convenient to determine the approximating density thanks to clas-

sical optimization algorithms, such as the gradient descent method.

This is this method which is employed hereafter. However, we have

to pay a particular attention to the fact that we stand in an infinite

dimensional non-vector space: the space of probability density func-

tions. There are two ways to understand this issue. The first one is

to consider that we treat a subspace of the L1 function space which

is an infinite dimensional vector space. In this case the classical gra-

dient descent method is still feasible. However, we thus have to pay

a particular attention to the fact that all elements of this subspace

have to satisfy
∫

f = 1, which induces a projection step at each

iteration. The second approach, developed here, is to consider that

we stand in a subspace of the probability measures space. The main

advantage is that the normalization step is no longer necessary. The

main drawback is that a measure space is no longer a vector space

(see [1] for details). We thus have to adapt the gradient descent

method in this case, taking the structure of the space into account.

Let us define the proposed method. Assume that for k ≥ 0,

{qk1 , . . . , qkN} are constructed and that qk(W) =
∏

qki (wi). As

we stand in the space of probability measures, the following step

must give a probability density on R
N , absolutely continuous with

respect to qkdλ, λ being the Lebesgue measure on R
N . Such a

condition is satisfied, thanks to the Radon-Nikodym theorem, see

[10] for instance, if we consider

q
k+1 = hq

k
(7)

where h ∈ L1(qk) is a positive separable function. As in the gradi-

ent descent algorithm, this function h is based on the Gateaux deriva-

tives of F at qk. In order to ensure that h is a positive integrable

function we choose to take

h(W) = exp(α∇F (q(W))). (8)

where ∇F stands for the Gateaux derivative of F whereas α > 0
is the algorithm step-size. We take this form for h and we choose

α small enough to ensure that the functional F increases at each

iteration. Furthermore a calculus similar to those of [3] shows that

∀i = 1, . . . , N
∂F

∂qi
= 〈log p(Y,W)〉∏

j 6=i qk
j
(wj)

− log qi − 1.

This entails

hi(wi) =





1

Ki

exp
(

〈log p(Y,W)〉∏
j 6=i qk

j
(wj)

)

qki





α

(9)

=

(

qri (wi)

qki (wi)

)α

,

where qri (wi) = 1
Ki

exp
(

〈log p(Y,W)〉∏
j 6=i qk

j
(wj)

)

is an inter-

mediate density measure.

We thus define qk+1 as

q
k+1(W) = q

k(W)





∏

i

1

Ki

exp
(

〈log p(Y,W)〉∏
j 6=i qk

j
(wj)

)

qki





α

= q
k(W)

(

qr(W)

qk(W)

)α

.

(10)

This algorithm allows to minimize jointly all (qi) unlike the classical

Bayesian Variational algorithm. Moreover, the stepsize α can be

chosen in order to optimize the convergence rate. Note that with a

logarithmic scale we retrieve the classical updating equation of the

gradient descent method.

4. APPLICATION TO SPARSE LINEAR PROBLEMS

In order to have a better understanding of the algorithm defined in

section 3, we show how it can be applied to linear inverse problems.



4.1. The model

We treat in this section the classical linear problem:

y = Hx+ b, (11)

where H is a matrix in MN×M whereas b ∈ R
M is a Gaussian

white noise. Here the parameter vector X is assumed to be sepa-

rable. Concerning the prior distribution we choose to take sparsity

into account by considering that the distribution of X is a separable

Student-t distribution. Indeed, Student-t distributions is a large class

of distributions depending on a parameter. For small values of this

parameter, they are heavy-tailed distributions, see for instance [6] for

details. In the following, we use the fact that a Student-t distribution

can be modelised as a Gaussian Scale Mixture, that is a Gaussian dis-

tribution with an inverse variance given by a hidden variable follow-

ing a Gamma law, Gamma(a
2
, a
2
). Thus, for every i = 1, . . . , N ,

we take

p(xi) =

∫

R+

√
zi

(2π)N/2|σ2
1 |1/2

e
−

zix
2
i

2σ2
1

(a
2
)a/2z

a/2−1
i e−

azi
2

Γ(a
2
)

dzi.

Hence, we choose to solve an extended problem which takes the

hidden vector Z into account. Thanks to this rewriting, the Student-t

distribution is conjugate with the Gaussian likelihood.

In this setting, one can easily check that the joint posterior dis-

tribution is given by

p(x, z|y) ∝ exp

[

−‖y −Hx‖2
2σ2

b

]

∗
∏

i

√
zi

σ1
exp

[

−zix
2
i

2σ2
1

]

(a
2
)a/2z

a/2−1
i e−

azi
2

Γ(a
2
)

.

(12)

This posterior distribution is not tractable analytically due to two

main drawbacks. The first issue is the link between X and Z, which

is solved by the classical variational Bayesian approach. The second

one occurs when the dimension of the vector X increases. In this

case, the correlation matrix is too large to be inverted efficiently.

This issue is solved by our algorithm presented in section 3. Details

are exposed hereafter.

4.2. Variational Bayesian algorithm

In this context we apply the algorithm introduced earlier, by taking

W = (X,Z). We want to approximate (12) by separable laws, thus

by a probability distribution

q(W) = q(X,Z) =
∏

i

qi(xi)q̃i(zi),

which maximizes (4).

As we can see in (12), for i = 1, . . . , N , the posterior law of Xi

is Gaussian whereas the posterior law of Zi is Gamma. Therefore

we determine X thanks to our method and we update afterward the

parameters of Z. We choose to initialize our approximating laws

by taking q0i (xi) as a Gaussian probability density function and the

approximate law q̃0i (zi) as a Gamma one. Thus, for i = 1, . . . , N
we take:

q
0
i (xi) = N (m0(i), σ

2
0(i))

q̃
0
i (zi) = Gamma(a0, b0).

As mentioned in part 2, from the conjugate hypothesis, at each

iteration, qki stays a Gaussian distribution whereas q̃ki stays a Gamma

law. At the next step, the density of qk+1
i which depends of the step

size α, is computed with Eq. (10). We see that, for i = 1, . . . , N ,

q
k+1
i (α) = q

k
i

(

qri

qki

)α

is still a Gaussian law with variance:

σ
2
k+1(i) =

σ2
r(i)σ

2
k(i)

σ2
r(i) + α(σ2

k(i)− σ2
r(i))

where

σ
2
r(i) =

(

(HTH)[i, i]

σ2
b

+
ak(i)

bk(i)σ2
1

)−1

(13)

and the mean of qk+1
i (α) is

mk+1(i) =
mk(i)σ

2
r(i) + α(mr(i)σ

2
k(i)−mk(i)σ

2
r(i))

σ2
r(i) + α(σ2

k(i)− σ2
r(i))

,

with

mr(i) = σ
2
r(i)×

(

HTy − (HTH − diag(HTH))mk

σ2
b

)

i
(14)

Performances of this algorithm strongly depend on the step size

α. For a fixed α small enough, this algorithm indeed converges.

However, in order to increase the speed of convergence, we choose to

determine an approximation of the optimal step size αopt thanks to a

Taylor expansion of our functional. Finally for every i = 1, . . . , N ,

we take qk+1
i = qk+1

i (αopt).

Concerning the approximation of q̃i we keep the standard varia-

tional Bayesian method. We obtain a Gamma function with updating

equations:

ak+1(i) =
a

2
+

1

2
, (15)

bk+1(i) =
m2

k(i) + σ2
k(i)

2σ2
1

+
a

2
. (16)

5. RESULTS

5.1. Simulation parameters

In this section we emphasize our approach by comparing it with clas-

sical Bayesian methods, i.e. MCMC approach and classical varia-

tional Bayesian (VB), and with a classical non bayesian reconstruc-

tion method, the filtered Back Projection (FBP method). We choose

to treat the linear problem given by Eq. (11) with a non invertible ma-

trix H coming from a tomographic problem. From the limitations

of MCMC approach, we solve a relatively small inverse problem

(image 64× 64 = 4096 unknowns).

The test image is given by a sparse phantom, composed of 7

peaks with a magnitude between 0.5 and 1 (see Fig.2(a)). We have

simulated data in parallel beam geometry. These projections are col-

lected from 32 angles, uniformly spaced over [0, 180[. Each projec-

tion is composed of 95 detector cells. We add a white Gaussian noise

(iid) with standard deviation equal to 0.3 (see Fig. 1). Data have thus

a relatively bad signal to noise ratio and the number of unknowns is

larger than the number of data, which leads to an ill-posed inverse

problem.



Fig. 1. Data collected : sinogram composed of 32 angles and 95

detector cells.

5.2. Results and discussion

All the iterative approaches are initialized with a zero mean and a

variance equal to one, and the hyper-parameters σ2
b , σ

2
1 and a are

respectively fixed to 1, 0.05 and 0.1. The original image and its dif-

ferent reconstructions are summed up on Fig. 2. A comparison of

Fig. 2 (b) with 2 (c), 2 (d) and 2 (e) clearly shows that the analytical

inversion of the Radon transform perform using the Filtered Back

Projection (FBP) algorithm is less robust to noise than Bayesian ap-

proaches. Asymptotically, in Bayesian cases theoretical results are

favorable to the MCMC approach, as it does not need any approx-

imation. In practice, the number of samples is too small to fit with

asymptotic results of MCMC method, which explains the bad re-

construction observed in Fig. 2(c). Finally, our approach (see Fig.

2(e)) has the same reconstruction quality than the classical varia-

tional Bayesian approach (see Fig. 2(d)). However when we com-

pare the execution time (see Tab. 1), we see that our approach is 5

time faster than the VB approach and 370 faster than the MCMC ap-

proach for this small inverse problem. Moreover this ratio increases

with the size of the problem as both MCMC and classical variational

Bayesian need the inversion of a covariance matrix at each iteration.

It is not the case of our algorithm. Thanks to this benefit, large di-

mensional problems can be solved by our fully Bayesian approach.

Table 1. Computing time (s).

method FBP VB our approach MCMC Gibbs

CPU time (s) 0.05 586.20 103.55 37079.50

6. CONCLUSION

In this paper, we have defined a new iterative algorithm based on

the descent gradient principle in the space of probability densities.

We have also shown how this algorithm can be implemented in the

context of variational Bayesian methods. The main interest of this

algorithm is that it converges faster than the classical Bayesian meth-

ods and allows an use on large dimensional datasets. A small tomo-

graphic application allows us to compare our method with classical

ones. We see that even in small cases, performances of our algorithm

can be better than classical ones. Furthermore its linear structure

simplifies an use on large dimensional problems.
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