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ALGEBRAIC TORI AS NISNEVICH SHEAVES WITH

TRANSFERS

BRUNO KAHN

Abstract. We relate R-equivalence on tori with Voevodsky’s the-
ory of homotopy invariant Nisnevich sheaves with transfers and
effective motivic complexes.
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1. Introduction

Let k be a perfect field and let T be a k-torus. Then T has a natural
structure of a homotopy invariant étale sheaf with transfers in the sense
of Voevodsky [18, §3.3]. However, we shall be interested here in T as a
Nisnevich sheaf with transfers [17].
Surprisingly, this point of view is related to R-equivalence on tori

as studied by Colliot-Thélène and Sansuc in [3]. Let L be the group
of cocharacters of T . Let us denote by HI the category of homotopy
invariant Nisnevich sheaves with transfers over k. The main results of
this note are:

Proposition 1. There is a natural isomorphism T−1
∼

−→ L in HI.

(The definition of T−1 is recalled in the proof of Proposition 2).
Since T−1 = Hom(Gm, T ) in HI (e.g. [5, Lemme 3.4.5] or [9, Prop.

4.3]), adjunction gives a morphism

(1) L⊗HI Gm → T
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2 BRUNO KAHN

where ⊗HI denotes the tensor product in HI. This morphism becomes
an isomorphism in the étale topology, but may not be so in the Nis-
nevich topology, which is the point here.

Theorem 1. a) (1) is an isomorphism [in the Nisnevich topology] if
T (i.e. L) is invertible.
b) In general there is an exact sequence

0 → S1(k)/R → (L⊗HI Gm)(k) → T (k) → T (k)/R → 0

where S1 is the kernel of a flasque resolution of T .

Corollary 1. S1(k)/R only depends on T . �

Of course, Corollary 1 is easy to prove directly: see end of Section 2.

Corollary 2. The assignment Sm(k) ∋ X 7→
⊕

x∈X(0) G(k(x))/R
provides G/R with the structure of a homotopy invariant Nisnevich
sheaf with transfers. In particular, any morphism f : Y → X of
smooth connected schemes induces a morphism f ∗ : G(k(X))/R →
G(k(Y ))/R. �

In Section 3, we get a version of Theorem 1 in the category DMeff
−

of [18], see Theorem 3 and Corollary 3. In Section 4, we relate this
approach to questions of stable birationality as studied in [3] and [4]:
this provides alternate proofs of some of their results (at least over a
perfect field), e.g. Corollaries 4 and 5, the main result being Theorem
4. Finally, we raise a few questions in Section 5.

Acknowledgements. Theorem 1 and Theorem 2 below were obtained
in the course of discussions with Takao Yamazaki during his stay at the
IMJ in October 2010: I would like to thank him for inspiring exchanges.
I also thank Daniel Bertrand for a helpful discussion. Finally, I wish to
acknowledge inspiration from the work of Colliot-Thélène and Sansuc
on tori [3, 4], which will be obvious throughout this paper.

2. Proofs

We shall actually prove a more general version of Proposition 1 and
Theorem 1, which may be useful for other purposes. Let G be a semi-
abelian variety over k, which is an extension of an abelian variety A by
a torus T .

Lemma 1. The exact sequence

0 → T (k) → G(k) → A(k)

induces an exact sequence

0 → T (k)/R
i

−→ G(k)/R → A(k).
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Proof. Let f : P1
99K G be a k-rational map defined at 0 and 1. Its

composition with the projection G → A is constant: thus the image of
f lies in a T -coset of G defined by a rational point. This implies the
injectivity of i, and the rest is clear. �

Let L be the cocharacter group of T .

Proposition 2. There is a natural isomorphism G−1
∼

−→ L in HI.

Proof. Recall [17, p. 96] that if F is a presheaf [with transfers] on
smooth k-schemes, the presheaf [with transfers] Fp

−1 is defined by

U 7→ Coker(F(U ×A1) → F(U ×Gm)).

If F is homotopy invariant, we may replace U × A1 by U and the
rational point 1 ∈ Gm realises Fp

−1(U) as a functorial direct summand
of F(U ×Gm).
If F is a Nisnevich sheaf [with transfers], F−1 is defined as the sheaf

associated to Fp
−1.

Now A(U ×A1)
∼

−→ A(U ×Gm) since A is an abelian variety, hence

Ap
−1 = 0. We therefore have an isomorphism of presheaves T p

−1
∼

−→

Gp
−1, and a fortiori an isomorphism of sheaves T−1

∼
−→ G−1. If U is

affine, the sequence T (U) → T (U × Gm) → L(U) → 0 is exact by a
direct computation, which concludes the proof. �

Proposition 2 and adjunction now give a morphism

(2) L⊗HI Gm → G.

Theorem 2. a) (2) is an isomorphism if G is an invertible torus.
b) In general there is an exact sequence

0 → S1(k)/R → (L⊗HI Gm)(k) → G(k) → G(k)/R → 0

where S1 is the kernel of a flasque resolution of T .

Proof. a) We reduce to the case T = RE/kGm, where E is a finite
extension of k. Let us write more precisely HI(k) and HI(E). There is
a pair of adjoint functors

HI(k)
f∗

−→ HI(E), HI(E)
f∗
−→ HI(k)

where f : SpecE → Spec k is the projection. Clearly,

f∗Z = Ztr(SpecE), f∗Gm = T

where Ztr(SpecE) is the (homotopy invariant) Nisnevich sheaf with
transfers represented by SpecE. Since Ztr(SpecE) = L, this proves
the claim.
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b) A diagram chase based on Lemma 1 reduces us to the case G = T .

Choose a flasque resolution 0 → S1 → T0
p

−→ T → 0 of T as in [3, §5].
Recall that, if

(3) 0 → Q1 → L0 → L → 0

is the corresponding sequence of cocharacter groups, L0 is an invertible
lattice (i.e. a direct summand of a permutation lattice) chosen so that
L0(E) → L(E) is surjective for any extension E/k. In particular, (3)
is exact as a sequence of Nisnevich sheaves.
Since ⊗HI is right exact, the sequence

Q1 ⊗HI Gm → L0 ⊗HI Gm → L⊗HI Gm → 0

is exact, which implies that in the commutative diagram

(Q1 ⊗HI Gm)(k)→(L0 ⊗HI Gm)(k)→(L⊗HI Gm)(k)→ 0

α1





y

α0





y

≀ α





y

0→ S1(k) → T0(k) → T (k) →T (k)/R→0

the top sequence is exact, while the bottom one is exact by [3, p. 199,
Th. 2]. This gives isomorphisms Cokerα ≃ T (k)/R and Kerα ≃
Cokerα1. �

Direct proof of Corollary 1. Let 0 → S ′
1 → T ′

0

p′

−→ T → 0 be another
flasque resolution of T . Consider the third flasque resolution

0 → S ′′
1 → T0 × T ′

0

(p,p′)
−→ T → 0

where S ′′
0 is defined as the kernel of (p, p′). We have exact sequences

0 → S1 → S ′′
1 → T ′

0 → 0, 0 → S ′
1 → S ′′

1 → T0 → 0

which are split by [3, Lemme 1 (viii)] (cf. loc. cit., proof of Lemme 5).
Thus we have

S ′′
1 (k)/R ≃ S1(k)/R× T ′

0(k)/R ≃ S ′
1(k)/R× T0(k)/R.

But T0(k)/R = T ′
0(k)/R = {1} because T0 are T ′

0 are open subsets
of affine spaces (cf. [3, proof of Th. 2]). �

3. Extension to DM

Let DMeff
− be the category of effective motivic complexes introduced

in [18]: it has a t-structure with heart HI. It also has a tensor structure
that we shall just denote by ⊗. This tensor structure is right t-exact;
its relationship with ⊗HI is given by the formula

F ⊗HI G = H0(F [0]⊗ G[0])
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for F ,G ∈ HI.
The category DMeff

− also enjoys a (partially defined) internal Hom.
Coming back the the semi-abelian variety G of the previous section,
we have an isomorphism

L[0] = G−1[0] ≃ HomDMeff
−
(Gm[0], G[0])

[9, Rk. 4.4], hence (2) extends to a morphism in DMeff
−

(4) L[0]⊗Gm[0] → G.

By [10, Lemma 6.3] or [7, §2], the cone of (4) is the birational mo-
tivic complex ν≤0G[0] associated to G. We are going to compute its
homology sheaves.
Let NST denote the category of Nisnevich sheaves with transfers.

Recall that DMeff
− may be viewed as a localisation of D−(NST), and

that its tensor structure is a descent of the tensor structure on the
latter category [18, Prop. 3.2.3].

Lemma 2. If G is an invertible torus, there is a canonical isomorphism
in D−(NST)

L[0]⊗Gm
∼

−→ G[0]

which descends to (4). In particular, ν≤0G[0] = 0.

Proof. Same as for Theorem 2 a) (reduction to G = Gm). �

Consider a coflasque resolution (3) of L. Taking a coflasque resolu-
tion of Q1 and iterating, we get a resolution of L by invertible lattices:

(5) · · · → Ln → · · · → L0 → L → 0.

Note that this is a version of Voevodsky’s “canonical resolutions” of
[18, §3.2] p. 202; in particular, L[0] is isomorphic in D−(NST) to the
complex

L· = · · · → Ln → · · · → L0 → 0.

Lemma 3. Let Tn denote the torus with cocharacter group Ln. Then
the object ν≤0G[0] of DMeff

− is isomorphic to the complex

· · · → Tn → · · · → T0 → G → 0.

Proof. By Lemma 2, Ln[0] ⊗ Gm[0] ≃ Tn[0] is homologically concen-
trated in degree 0 for all n. It follows that the commplex

T· = · · · → Tn → · · · → T0 → 0

is isomorphic to L[0]⊗Gm[0] inD−(NST), hence a fortiori in DMeff
− . �



6 BRUNO KAHN

Let Q1 = Ker(L0 → L) as in (3), and for n > 0 let Qn+1 = Ker(Ln →
Ln−1). By construction of L·, Qn is coflasque for all n > 0 and

0 → Qn+1 → Ln → Qn → 0

is a coflasque resolution of Qn.

Theorem 3. Let Sn be the torus with cocharacter group Qn. For any
connected smooth k-scheme X with function field K, one has

Hn(ν≤0G[0])(X) =











0 if n < 0

G(K)/R if n = 0

Sn(K)/R if n > 0.

Proof. For any nonempty open subscheme U ⊆ X we have isomor-
phisms

(6) Hn(ν≤0G[0])(X)
∼

−→ Hn(ν≤0G[0])(U)
∼

−→ Hn(ν≤0G[0])(K)

(e.g. [7, p. 912]). We now conclude via Lemma 3 and Theorem 2. �

Corollary 3. a) If k is finitely generated, the n-th homology sheaf of
ν≤0G[0] takes values in finitely generated abelian groups, and even in
finite groups if n > 0 or G is a torus.
b) If G is a torus, then (4) is an isomorphism (equivalently ν≤0G[0] =
0) if G is split by a Galois extension E/k whose Galois group has cyclic
Sylow subgroups.

Proof. a) This follows via Theorem 3 and Lemma 1 from [3, p. 200,
Cor. 2] and the Mordell-Weil-Néron theorem. b) We may choose the
Ln and hence the Sn split by E/k. The conclusion then follows from
Theorem 3 and [3, p. 200, Cor. 3]. �

Remark 1. In characteristic p > 0, all finitely generated perfect fields
are finite and tori over such fields are invertible. To give some contents
to Corollary 3 a) in this case, one may pass to the perfect closure k of
a finitely generated field k0. If G is a semi-abelian variety on k, it is
defined over some finite extension k1 of k0. If k2/k1 is a finite (purely
inseparable) subextension of k/k1, then the composition

G(k2)
Nk2/k1−→ G(k1) → G(k2)

equals multiplication by [k2 : k1]. Hence Corollary 3 a) remains true at
least after inverting p.
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4. Stable birationality

If X is a smooth variety over a field k, we write Alb(X) for its
generalised Albanese variety in the sense of Serre [15]: it is a semi-
abelian variety, and a rational point x0 ∈ X determines a morphism
X → Alb(X) which is universal for morphisms from X to semi-abelian
varieties sending x0 to 0.
We also write NS(X) for the group of cycles of codimension 1 on X

modulo algebraic equivalence. This group is finitely generated if k is
algebraically closed [8, Th. 3].

4.1. Well-known lemmas. I include proofs for lack of reference.

Lemma 4. a) Let G,G′ be two semi-abelian k-varieties. Then any
k-morphism f : G → G′ can be written uniquely f = f(0) + f ′, where
f ′ is a homomorphism.
b) For any semi-abelian k-variety G, the canonical map G → Alb(G)
sending 0 to 0 is an isomorphism.

Proof. a) amounts to showing that if f(0) = 0, then f is a homomor-
phism. By an adjunction game, this is equivalent to b). Let us give
two proofs: one of a) and one of b).
Proof of a). We may assume k to be a universal domain. This is

classical for abelian varieties [13, p. 41, Cor. 1] and an easy computa-
tion for tori. In the general case, let T, T ′ be the toric parts of G and
G′ and A;A be their abelian parts. Let g ∈ G(k). As any morphism
from T to A′ is constant, the k-morphism

ϕg : T ∋ t 7→ f(g + t)− f(g) ∈ G′

(which sends 0 to 0) lands in T ′, hence is a homomorphism. Therefore
it only depends on the image of g in A(k). This defines a morphism
ϕ : A → Hom(T, T ′), which must be constant with value ϕ0 = f . It
follows that

(g, h) 7→ f(g + h)− f(g)− f(h)

induces a morphism A × A → T ′. Such a morphism is constant, of
value 0.
Proof of b). This is true if G is abelian, by rigidity and the equiv-

alence between a) and b). In general, any morphism from G to an
abelian variety is trivial on T . This shows that the abelian part of
Alb(G) is A. Let T ′ = Ker(Alb(G) → A). We also have the counit
morphism Alb(G) → G, and the composition G → Alb(G) → G is
the identity. Thus T is a direct summand of T ′. It suffices to show
that dimT ′ = dimT . Going to the algebraic closure, we may reduce
to T = Gm.
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Then consider the line bundle completion Ḡ → A of the Gm-bundle
G → A. It is sufficient to show that the kernel of

Alb(G) → Alb(Ḡ) = A

is 1-dimensional. This follows for example from [1, Cor. 10.5.1]. �

Lemma 5. Let G be a semi-abelian variety over an algebraically closed
field k. Let A be the abelian quotient of A. Then the map

(7) NS(A) → NS(G)

is an isomorphism.

Proof. Let T = Ker(G → A) and X(T ) its character group. Choosing
a basis (ei) of X(T ), we may complete the Gn

m-torsor G into a product
of line bundles Ḡ → A. The surjection

Pic(A)
∼

−→ Pic(Ḡ) →→ Pic(G)

show the surjectivity of (7). Its kernel is generated by the classes of
the irreducible components Di of the divisor with normal crossings
Ḡ− G. These components correspond to the basis elements ei. Since
the corresponding Gm-bundle is a group extension of A by Gm, the class
of the 0 section of its line bundle completion lies in Pic0(A), hence goes
to 0 in NS(Ḡ). �

Lemma 6. Let X be a smooth k-variety, and let U ⊆ X be a dense
open subset. Then there is an exact sequence of semi-abelian varieties

0 → T → Alb(U) → Alb(X) → 0

with T a torus. If NS(Ū) = 0 (this happens if U is small enough), there
is an exact sequence of character groups

0 → X(T ) →
⊕

x∈X(1)−U (1)

Z → NS(X̄) → 0.

Proof. This follows for example from [1, Cor. 10.5.1]. �

Lemma 7. Let k be an infinite field and let f : G 99K G′ be a rational
map between semi-abelian k-varieties, with G a torus. Then there exists
an extension G̃ of G by a permutation torus and a homomorphism
f̃ : G̃ → G′ which lifts f up to translation in the following sense: there
exists a rational section s : G 99K G̃ of the projection π : G̃ → G and
a rational point g′ ∈ G′(k) such that f = f̃ s+ g′. If f is defined at 0G
and sends it to 0G′, then g′ = 0.
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Proof. Let U be an open subset of G where f is defined. We define
G̃ = Alb(U). Applying Lemmas 6 and 4 b) and using NS(Ḡ) = 0, we
get an extension

0 → P → G̃ → G → 0

where P is a permutation torus, as well as a morphism f̃ = Alb(f) :
G̃ → G′.
This much does not use that k is infinite. With this assumption,

U(k) 6= ∅ because G is unirational. A rational point g ∈ U defines
an Albanese map U → G̃ sending g to 0G̃. Since P is a permutation

torus, g ∈ G(k) lifts to g̃ ∈ G̃(k) (Hilbert 90) and we may replace s by
a morphism sending g to g̃. Then s is a rational section of π. Moreover,
f = f̃s+ g′ with g′ = f(g)− f̃(g̃). The last assertion follows. �

Lemma 8. Let G be a finite group, and let A be a finitely generated
G-module. Then
a) There exists a short exact sequence of G-modules 0 → P → F →
A → 0, with F torsion-free and flasque, and P permutation.
b) Let B be another finitely generated G-module, and let 0 → P ′ →
E → B → 0 be an exact sequence with P ′ an invertible module. Then
any G-morphism f : A → B lifts to f̃ : F → E.

Proof. a) is the contents of [4, Lemma 0.6, (0.6.2)]. b) The obstruc-
tion to lifting f lies in Ext1G(F, P

′). This group is isomorphic to
Ext1G(P

′∗, F ∗) (Z-duals), which is 0 since P ′∗ is invertible and F ∗ is
coflasque. �

Lemma 9. Let G,G′ be as in Lemma 4, with toric parts T, T ′, and let
0 → S1 → T0 → T , 0 → S ′

1 → T ′
0 → T ′ be flasque resolutions of T and

T ′. Then any homomorphism f : G → G′ lifts to a homomorphism
f0 : T0 → T ′

0.

Proof. Reasoning as in the proof of Lemma 4, we first see that f induces
a homomorphism f ′ : T → T ′. The obstruction to lifting f ′ to f0 lies
in Ext1k(T0, S

′
1).

This group is 0: indeed, it sits in a short exact sequence

0 → H1(k,Hom(T0, S
′
1)) → Ext1k(T0, S

′
1) → H0(k,Ext1(T0, S

′
1))

and it suffices to show that both sides are 0. The étale sheaf Ext1(T0, S
′
1)

is associated to the presheaf K 7→ Ext1K(T0, S
′
1). It is 0: for K/k

large enough, T0 and S ′
1 are split over K and we reduce to computing

Ext1K(Gm,Gm). Any extension of Gm by Gm defines a Gm-torsor with
base Gm, which is trivial since Pic(Gm) = 0.
It remains to show that H1(K/k,HomK(T0, S

′
1)) = 0 for any finite

Galois extension K/k splitting T0 and S1. Let G = Gal(K/k). If L0, Q
′
1
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are the cocharacter groups of L0 and S1, the G-module HomK(T0, S
′
1)

is isomorphic to HomK(L0, Q
′
1), which is coflasque since L0 is invertible

and Q′
1 is coflasque. �

4.2. Less standard lemmas.

Lemma 10. Let

(8) 0 → P → G → H → 0

be an exact sequence of semi-abelian varieties, with P an invertible
torus. Then ν≤0G[0]

∼
−→ ν≤0H [0].

Proof. As P is coflasque, (8) is exact in NST hence defines an exact
triangle

P [0] → G[0] → H [0]
+1
−→

in DMeff
− . The conclusion then follows from Lemma 2. �

Lemma 11. Let G,G′ be as in Lemma 4. Then the group HomNST(G,G′)
is canonically isomorphic to Hom(G,G′) (homomorphism of semi-abel-
ian varieties).

Proof. Any homomorphism of semi-abelian varieties defines a mor-
phism of the associated Nisnevich sheaves with transfers. Conversely,
let f : G → G′ be a morphism in NST. We argue à la Yoneda: we get
a map

fG : G(G) → G′(G).

Then fG(1G) defines a k-morphism G → G′, sending 0 to 0; by
Lemma 4, this is a homomorphism. �

Proposition 3. Let G,G′ be two semi-abelian k-varieties, with G a
torus. Then a rational map f : G 99K G′ induces a morphism f∗ :
ν≤0G[0] → ν≤0G

′[0].

Proof. If k is finite, then G is invertible and ν≤0G[0] = 0 by Lemma
2. Hence we may assume k infinite. Applying Lemma 7, f lifts to a
homomorphism G̃ → G′ where G̃ is an extension of G by a permutation
torus. By Lemma 10, the induced morphism

ν≤0G̃[0] → ν≤0G
′[0]

factors through a morphism f∗ : ν≤0G[0] → ν≤0G
′[0]. �

Remark 2. The proof shows that f∗ only depends on f up to translation
by an element of G(k) or G′(k).

Corollary 4. If T and T ′ are birationally equivalent k-tori, then ν≤0T [0]
≃ ν≤0T

′[0]. In particular, the groups T (k)/R and T ′(k)/R are isomor-
phic.
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Proof. The proof of Proposition 3 shows that f 7→ f∗ is functorial
for composable rational maps between tori. Let f : T 99K T ′ be a
birational isomorphism, and let g : T ′

99K T be the inverse birational
isomorphism. Then we have g∗f∗ = 1ν≤0T [0] and f∗g∗ = 1ν≤0T ′[0]. The
last claim follows from Theorem 3. �

Remark 3. It is known that a birational isomorphism of tori f : T 99K

T ′ induces a set-theoretic bijection f∗ : T (k)/R
∼

−→ T ′(k)/R [3, p.
197, Cor. to Prop. 11] and that the group T (k)/R is abstractly a
birational invariant of T (ibid., p. 200, Cor. 4). The proof above
shows that the bijection f∗ : T (k)/R ≃ T ′(k)/R is an isomorphism of
groups if f respects the origins of T and T ′. The proofs of Lemma 7
and Proposition 3 may be seen as dual to the proof of [3, p. 189, Prop.
5], and are directly inspired from it.

4.3. A converse.

Proposition 4. Let f : G 99K G′ be a rational map between semi-
abelian varieties, with G a torus. Assume that the map f∗ : G(K)/R →
G′(K)/R from Proposition 3 is identically 0 when K runs through the
finitely generated extensions of k. Then there exists a permutation
torus P and a factorisation of f as

G
f̃

99K P
g

−→ G′

where f̃ is a rational map and g is a homomorphism.
Conversely, if there is such a factorisation, then f∗ : ν≤0G[0] → ν≤0G

′[0]
is the 0 morphism.

Proof. As in the proof of Proposition 3, we may assume k infinite. By
Lemma 7, we may reduce to the case where f is a morphism. We shall
then get f̃ as a homomorphism. Let K = k(G). By hypothesis, the
image of the generic point ηG ∈ G(K) is R-equivalent to 0 on G′(K).
By a lemma of Gille [6, Lemme II.1.1 b)], it is directly R-equivalent
to 0: in other words, there exists a rational map h : G × A1

99K G′,
defined in the neighbourhood of 0 and 1, such that h|G×{0} = 0 and
h|G×{1} = f .
Let U ⊆ G × A1 be an open set of definition of h. The 0 and

1-sections of G×A1 → G induce sections

s0, s1 : G → Alb(U)

of the projection π : Alb(U) → Alb(G ×A1) = G such that Alb(h) ◦
s0 = 0 and Alb(h) ◦ s1 = f . If T1 = Ker π, then s0 − s1 induces a

homomorphism f̃ : G → T1 such that the composition

G
f̃

−→ T1 → Alb(U)
Alb(h)
−→ G′
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equals f . Finally, T1 is a permutation torus by Lemma 6.
The last claim of Proposition 4 follows from Lemma 2. �

Theorem 4. Let G,G′ be two semi-abelian varieties, with G a torus.
Suppose given, for every function field K/k, a homomorphism fK :
G(K)/R → G′(K)/R such that fK is natural with respect to the func-
toriality of Corollary 2. Then
a) There exists an extension G̃ of G by a permutation torus, and a

homomorphism f : G̃ → G′ inducing (fK).
b) fK is surjective for all K if and only if there exist extensions G̃, G̃′

of G and G′ by permutation tori such that fK is induced by a split
surjective homomorphism G̃ → G̃′.

Proof. a) As in the proof of Propositions 3 and 4, we may assume k
infinite. Take K = k(G). The image of the generic point ηG by fK lifts
to a (non unique) rational map f : G 99K G′. Using Lemma 7, we may
lift f to a homomorphism

f̃ : G̃ → G′

where G̃ is an extension of G by a permutation torus P . Since G̃(K)/R
∼

−→ G(K)/R, we reduce to G̃ = G and f̃ = f .
Let L/k be a fonction field, and let g ∈ G(L). Then g arises from

a morphism g : X → G for a suitable smooth model X of L. By
assumption on K 7→ fK , the diagram

G(K)/R
fK−−−→ G′(K)/R

g∗




y

g∗




y

G(L)/R
fL−−−→ G′(L)/R

commutes. Applying this to ηK ∈ G(K), we find that fL([g]) = [g ◦ f ],
which means that fL is the map induced by f .
b) The hypothesis implies that G′(E)/R = 0 for any algebraically

closed extension E/k, which in turn implies that G′ is also a torus.
Applying a), we may, and do, convert f into a true homomorphism by
replacing G by a suitable extension by a permutation torus. Applying
Lemma 8 a) to the cocharacter group of G, we get a resolution 0 →
P1 → Q → G → 0 with Q coflasque and P1 permutation. Hence we
may further (and do) assume G coflasque.
Let K = k(G′) and choose some g ∈ G(K) mapping modulo R-

equivalence to the generic point of G′. Then g defines a rational map
g : G′

99K G such that fg is R-equivalent to 1G′. It follows that the
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induced map

(9) 1− fg : G′/R → G′/R

is identically 0.
Reapplying Lemma 7, we may find an extension G̃′ ofG′ by a suitable

permutation torus which converts g into a true homomorphism. Since
G is coflasque, Lemma 8 b) shows that f : G → G′ lifts to f̃ : G → G̃′.

Then (9) is still identically 0 when replacing (G′, f) by (G̃′, f̃).
Summarising: we have replaced the initial G and G′ by suitable

extensions by permutation tori, such that f lifts to these extensions
and there is a homomorphism g : G′ → G such that (9) vanishes
identically. Hence 1−fg factors through a permutation torus P thanks
to [the proof of] Proposition 4.
Write u : G′ → P and v : P → G′ for homomorphisms such that

1− fg = vu. Let G1 = G× P and consider the maps

f1 = (f, v) : G1 → G′, g1 =

(

g
u

)

: G′ → G1.

Then f1g1 = 1 and G′ is a direct summand of G1 as requested. �

Corollary 5. a) Let G′ be a semi-abelian k-variety such that G′(K)/R
= 0 for any function field K/k. Then G′ is an invertible torus.
b) In Theorem 4 b), assume that fK is bijective for all K/k. Then there
exist extensions G̃, G̃′ of G and G′ by invertible tori such that fK is
induced by an isomorphism G̃

∼
−→ G̃′.

Proof. a) This is the special case G = 0 of Theorem 4 b).
b) By Theorem 4 b), we may replace G and G′ by extensions by

permutation tori such that fK lifts to a split surjection f : G → G′.
Let T = Ker f . Then T/R = 0 universally. By a), T is invertible. �

Remark 4. Corollary 5 a) is a version of [4, Prop. 7.4] (taking [3, p.
199, Th. 2] into account). Theorem 4 was inspired by the desire to
understand its proof from a different viewpoint.

Corollary 6. Let f : G 99K G′ be a rational map of semi-abelian
varieties, with G a torus. Then the following conditions are equivalent:

(i) f∗ : ν≤0G[0] → ν≤0G
′[0] is an isomorphism (see Proposition 3).

(ii) f∗ : G(K)/R → G′(K)/R is bijective for any function field
K/k.

(iii) f is an isomorphism, up to extensions of G and G′ by invertible
tori and up to a translation. �
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5. Some open questions

Question 1. Are lemma 7 and Proposition 3 still true when G is not a
torus?

This is far from clear in general, starting with the case where G is
an abelian variety and G′ a torus. Let me give a positive answer in the
case of an elliptic curve.

Proposition 5. The answer to Question 1 is yes if the abelian part A
of G is an elliptic curve.

Proof. Arguing as in the proof of Proposition 3, we get for an open
subset U ⊆ G of definition for f an exact sequence

0 → Gm → P → Alb(U) → G → 0

where P is a permutation torus. Here we used that NS(Ḡ) ≃ Z, which
follows from Lemma 5.
The character group X(P ) has as a basis the geometric irreducible

components of codimension 1 of G − U . Up to shrinking U , we may
assume that G − U contains the inverse image D of 0 ∈ A. As the
divisor class of 0 generates NS(Ā), D provides a Galois-equivariant
splitting of the map Gm → P . Thus its cokernel is still a permutation
torus, ans we conclude as before. �

Question 2. Can one formulate a version of Theorem 4 and Corollary
5 providing a description of Hom(ν≤0G[0], ν≤0G

′[0]) (at least in case G
and G′ are tori)?

The proof of Theorem 4 suggests the presence of a closed model
structure on the category of tori (or lattices), which might provide an
answer to this question.
For the last question, let G be a semi-abelian variety. Forgetting its

group structure, it has a motive M(G) ∈ DMeff
− . Recall the canonical

morphism
M(G) → G[0]

induced by the “sum” maps

(10) c(X,G)
σ

−→ G(X)

for smooth varieties X ([16, (6), (7)], [1, §1.3]).
The morphism (10) has a canonical section

(11) G(X)
γ

−→ c(X,G)

given by the graph of a morphism: this section is functorial in X but
is not additive.
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Consider now a smooth equivariant compactification Ḡ ofG. It exists
in all characteristics. For tori, this is written up in [2]. The general
case reduces to this one by the following elegant argument I learned
from M. Brion: if G is an extension of an abelian variety A by a torus
T , take a smooth projective equivariant compactification Y of T . Then
the bundle G×T Y associated to the T -torsor G → A also exists: this
is the desired compactification.
Then we have a diagram of birational motives

(12)

ν≤0M(G)
∼

−−−→ ν≤0M(Ḡ)

ν≤0σ





y

ν≤0G[0].

By [10], we have H0(ν≤0M(Ḡ))(X) = CH0(Ḡk(X)) for any smooth
connected X . Hence the above diagram induces a homomorphism

(13) CH0(Ḡk(X)) → G(k(X))/R

which is natural in X for eht action of finite correspondences (compare
Corollary 2). One can probably check that this is the homomorphism
of [11, (17) p. 78], reformulating [3, Proposition 12 p. 198]. Similarly,
the set-theoretic map

(14) G(k(X))/R → CH0(Ḡk(X))

of [3, p. 197] can presumably be recovered as a birational version of
(11), using perhaps the homotopy category of schemes of Morel and
Voevodsky.
In [11], Merkurjev shows that (13) is an isomorphism for G a torus

of dimension at most 3. This suggests:

Question 3. Is the map ν≤0σ of Diagram (12) an isomorphism when G
is a torus of dimension ≤ 3?

In [12], Merkurjev gives examples of tori G for which (14) is not
a homomorphism; hence its (additive) left inverse (13) cannot be an
isomorphism. Merkurjev’s examples are of the form G = R1

K/kGm ×

R1
L/kGm, where K and L are distinct biquadratic extensions of k. This

suggests:

Question 4. Can one study Merkurjev’s examples from the above view-
point? More generally, what is the nature of the map ν≤0σ of Diagram
(12)?

We leave all these questions to the interested reader.
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