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11.NUMERICAL TECHNIQUES

An independent loops search algorithm for solving
inductive PEEC large problems

T-S. Nguyen, J-M. Guichon, O. Chadebec, G. MeuldeKincent
Grenoble Electrical Engineering Laboratory, Univtgref Grenoble
Grenoble-INP / Université Joseph Fourier / CNRS US89, Grenoble, France

Abstract —This paper describes an original approachfor
determining independent loops needed for mesh-curng
analysis in order to solve circuit equation systenarising in
Partial Element Equivalent Circuit (PEEC) approach.
Presented algorithm is well-suited for large degreeof freedom
problems, saving significantly memory and decreasimthe time
of resolution.

[. INTRODUCTION
Node-voltage and Mesh-current analysis are two
powerful methods which simplify circuit analysis

substantially. However, let us point out that nodalysis

is unsuitable for circuits with many mutual indugtes such

as those provided by inductive low frequency PEEC
method. In such cases, only independent loop asalgsild
reduce the circuit equations into the smallest remnisf
unknowns and also provided a much better condition
number for the system than those given by standard
Kirchhoff's equations [1]. Despite this clear adtage, this
approach requires to identify an independent set of
independent loops (or mesh), which is well knownkfeing

an uneasy task.

Many strategies has been proposed to determine
independent loop matrix, such as general matrivtsol by
inspection of the circuit [2] or graph algorithm3][#].
Method proposed in [2] is extremely time and memory
consuming for complicated 3D structures due toube of
large scale matrix calculation and storage. The'Gagah in
[4] has better performance than the generic grabhtisn
proposed in [3] but its drawback is the dependaeritie the
geometry discretization.

In this paper, a novel strategy coupling a genlerab
matrix method with a simple graph algorithm is praed.
The proposed method is a generic circuit solutiochsas
[2][3] and requires similar computational complgxits [4].

An industrial application with 11,445 branches heeen
treated using our method.

Il. PEECMESH CURRENT PRINCIPE

A. Equivalent circuit formulation

By assuming quasi-static conditions and without any
magnetic material, the classical PEEC method isvelr
from the equation governing the total electricdiat a point
r inside the conductors:
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where J is the current density; is the scalar electric

potential, s is the material conductivityy, is the vacuum
permeability andy is the excitation pulse.

To compute the current in each branch, a mesh-based
analysis is used [1], where mesh is set of indepenkbop
of branches in the graph representing the cirdyi. can
change (1) into a new equation:

MZ M _=Z | =MV, =V, )
where Zy, is a complex branch impedance matitx, is a
complex loop-based impedance matriy, is a vector
independent loop-based currerit,is the transition matrix
(branch — independent loop matrix) where each ai¢nse
equal to -1, 0 or 1V is the vector of source voltages (most
part of time equal to 0). Expression to computeheac
element inZ, can be found in [1]. Let us notice that one
fundamental loop may be composed of geometrical PEE
filament and external electric component (R, L,sGurce
current, source voltage)

B. Graph partition for independent loops identification

In this paper, the general circuit denotes the PEEC
circuit, a sub-circuit is a group of independermps and the
circuit connecting all sub-circuit will be calledper-circuit.
The general circuit is then composed of sub-ciscaitd a
super-circuit. The union of these both sets of jredelent
loops is the complete set of independent loops hef t
general circuit (see Fig. 1). Sorif denotes the number of
independent loops:

mgeneral _circuit = n"lsuper—circuit +

Z rnsub—ci reuit (3)

all _sub—circuit

i
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!

Fig. 1. Union of two set of loops in PEEC network

To identify all of fundamental loops, we have to:
» Step 1: Partition general circuit into several sirouits
and detects all fundamental loops in each of them.
Step 2: Create the super-circuit from general dieod
sub-circuits and then search all fundamental loojits
The partitioning of the general circuit into sulbeciits and
super-circuit will be described in the next section
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ll. IDENTIFICATION FUNDAMENTAL LOOPSALGORITHM

A. Sub-circuits determination and their loops analysis

A very efficient way to search independent loopsois
look for loops with the minimum number of branchége
want to determine all loops havikgbranches at the most.
In a typical PEEC discretization, most part of ipeledent
loops is composed of 4 branches (see Fig. 2) schuse
k=4 to be sure that a large humber of loops woulébbed
rapidly.

1D conductor 1D conductor

meshing 3 branches loop /meshing

4 branches loop
2D conductor " A-
meshing it

Fig. 2. Small loop of PEEC conductor meshing

A Sub-circuit can be created by regrouping all $mal
loops (with less thak branches) which share at least one
branch with another small loop (see Fig. 3a). At émd of
the process, some fundamental loops in the subicican
miss. It remains to identify them.

To complete the missing loops, a graph algorithm is
used to find the large-loops (with more tHabranches) in
the sub-circuit. An important number of loops ha=et
already found, then building a spanning tree isy Viast.
The missing co-tree denotes the part of co-tree
corresponding with missing loops. From this spagriee
and missing co-tree, all missing loops are detezththanks
to Breath First Search algorithm (BFS) (see Fig. 3b, c).

m=13
Small loop =12

D D D —-I -—_—l J Spanning-tree
Q u [ _ J Co-tree

O L L
oj/e]e) O D

(a) Sub-circuit (b) Graph of sub-circuit

Spanning-tree Co-tree :
L mm =
1
I - ’
1
1 1 ==
1 1
— ey
1 1

(c) Search of missing loop

Common branch of 2 loops

¥

Dok

Fig. 3. Sub-circuit loop analysis
B. Super-circuit loop analysis
In step 2, we need to search a sub-circuit intepadh
linking its connections with the super-circuit (SEig. 4).
This task is achieved thanks to BFS algorithm. Caltéhe

paths have been found, a super-circuit is creamuposed
of the sub-circuit internal path and the branchbglwhave

been not included in sub-circuits. So, since tliisud has
been reduced, the general matrix solution [2] fieieht to
identify the last fundamentals loops.

Inter-ciruit path (not in sub-circuit)

Sub-circuit path

@ @,

Fig. 4. Reduction of general circuit to super-citcu

IV. NUMERICAL RESULT

Classical general matrix solution technique hasnbee
compared with this new approach. Both techniques ha
been implemented in commercial InCa3D software f5].
LED headlight PCB with 11,445 branches and 4,762
fundamental loops has been modeled. The resulainerl
highlights the efficiency of the new method.

My rncasp
Fig. 5. Car Headlight LED PCB modeling in InCa3Dydesy of Valeo)
TABLE |

Time for determining a set of independent loop
Classical general matrix solution [2] New algomith
Time(s) 2894 s 2.1s

With our new approach, the total time for the cnotre
distribution computation is 85s (PC Intel Core 2oDu
@2.66Ghz - 2GB memory). The independent loops kearc
algorithm is combined with an Adaptive Multi-LevEhst
Multipole Method. 2.5s are needed to analyze theuitj
7.5s to compute the near interactions, 75s foritdrative
solving process. The memory requirement does noeeak
240 MB.
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