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dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence
tomography system

Luc Froehly a,⁎, Sairam Iyer b, Frédérique Vanholsbeeck b

a Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, France
b Department of Physics, The University of Auckland, New Zealand

Dispersion compensation up to the third order is experimentally demonstrated by using a dual-fibre stretcher

combined with the coma of an imaging lens, in a fibre-based scan-free time domain optical coherence

tomography system, leading to an axial resolution of less than 3μm.

1. Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging

technique that has attracted immense interest over the last decade,

especially in the field of biomedical imaging [1]. Amongst the many

configurations that can be found in literature, fibre-based systems

present the distinct advantage of compactness and portability.

However, the use of optical fibres often introduces a strong chromatic

dispersion mismatch between the two arms of the interferometer,

which if not properly compensated, leads to a loss of depth resolution

[2]. Since optical sources with broad bandwidths are often utilised,

accurate dispersion compensation becomes crucial [3]. In general,

dispersion compensation in OCT is addressed through numerous

techniques ranging from optical (prisms, rapid scanning optical delay

line , acousto-optic modulators) to numerical compensation methods

[4–7]. Dispersion compensation in fibre-based systems can in

principle be obtained by finely adjusting the fibre lengths (to sub-

mm precision), but this is very impractical. Recently, Iyer et al.

showed that dispersion compensation with a dual-fibre stretcher

system allows for an all-fibre fine tuning of the dispersion imbalance

by altering the differential dispersion of two different types of optical

fibres [8]. This technique is however limited to the 2nd order term and

the remaining 3rd order dispersion cannot be properly compensated

by using only the two stretchers. Recently, Froehly et al. showed that

this 3rd order term can potentially be compensated by using the

properties of diffraction gratings in a scan-free grating-based time

domain OCT system [9]. In this paper, we show that by combining the

two setups we are able to independently compensate for a variable

amount of the 2nd and 3rd order chromatic dispersion terms, given a

source bandwidth of 165 nm, which is equivalent to a depth re-

solution of less than 3μm.

2. Principle

The setup that we use in this paper is a combination of two

different configurations (labeled A and B in Fig. 1) which were

published previously [8,9]. The former configuration is the fibre based

system consisting of two fibre stretchers, while the latter is the scan-

free time domain correlator. Both of these setups will be elaborated in

Sections 2.1 and 2.2, respectively. Further, in Section 2.3 we describe

the theorywhich allows us to compensate for the 3rd order dispersion

term.

2.1. Stretcher compensation

The details of the fibre-based tunable dispersion compensator is

described in [8]. In the system shown in Fig. 1(A), a fibre stretcher is

present in both arms of the interferometer. Each stretcher is made up

of different fibre types and is operated in parallel by elastically

stretching or unstretching the fibres by the same lengthΔL. This allows

us to keep the relative group delay constant, while adjusting the

second order dispersion term independently, in each arm. Therefore,

by operating the two stretchers in parallel, this systemcan compensate

for a variable amount of chromatic dispersion with a strong second
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order coefficient, while simultaneously allowing adjustment of the

group delay between the two arms of the interferometer.

2.2. Scan-free time domain correlator

Although this technique is still unfamiliar in the field of OCT, scan-

free optical time domain correlations allow direct registration of the

temporal correlation features without any temporal scanning or

inverse Fourier transform. Such techniques originate from spectros-

copy [10] and are widely used in ultra-short pulse shape measure-

ment [11]. The application of scan-free time domain correlators to

imaging has been the subject of numerous works, with each time

different improvements and modalities; to have a complete overview

of the actual state of the art the reader may refer to the review paper

by Froehly and Leitgeb [12]. Scan free systems are inherently fast, but

with a sensitivity almost 20 dB lower than that of FDOCT [13,14].

Despite this sensitivity decay, imaging capacity of such a system has

been demonstrated and the actual state of the art with this technique

shows performances good enough (93 dB sensitivity, 47 kHz A-scan)

to reach in-vivo imaging of biological tissues [15]. Such systems

present interesting intrinsic properties such as, the ability to perform

optical real-time spectral analysis of A-scans [16,17]. Also, recently it

has been shown that the dispersion properties of the diffraction

grating can be exploited by using the relationship between the grating

axis and the sample depth [9]. In this way, one can tunably com-

pensate for the dispersion imbalance between the two arms of the

interferometer, but the decoupling of the second and third order

dispersion terms, will not be possible.

Time domain scan-free optical correlation techniques encompass

many configurations that can be found in literature. A fibre system has

been already proposed in 2006 [18] following works of Hauger in

2003 [13] and coupled to that of Zeylikovich in 1998 [19]. The general

principle of these techniques is similar to the one depicted in Fig. 2.

For simplicity, in this figure we focus on the recombination of light

from the reference and sample arms, where the temporal correlation

takes place.

The lens L1 images the diffraction grating plane R onto the CCD

detector plane D. Two temporal signals r(t) and s(t), that have the

same polarization states are incident onto the grating (R) with

opposite angles θi and −θi. The Fourier transform of the signals r(t)

and s(t), gives the complex spectra R ̂ νð Þ and S ̂ νð Þ, respectively. These

can be expressed in their complex form R ̂ νð Þ = R νð Þej:φR νð Þ and S ̂ νð Þ =

S νð Þej:φS νð Þ. The moduli of these spectra are directly accessible in the

spectral plane of the spectrometer, which is physically in the back focal

plane of the lens L1.

Light at wavelength λi coming from r(t) and s(t), focuses on to the

spectral plane at two points that are symmetrical with respect to the

optical axis. In the detector plane D, these points produce a classical

two wave interference pattern of period Tf =
λi

2:sinθ′d
, where θ′d is the

diffraction angle at wavelength λi. By integrating the individual fringe

intensities over the spectral bandwidth of the light source, the signal

C(z) in the plane D of the detector is:

C zð Þ = I0 + 2Re ∫
v

R ̂ νð ÞS ̂ νð Þ⋅e−j2π 2z
γcsinθið Þνe

j4πzγΛdν

" #

ð1Þ

where z is the horizontal coordinate on the CCD camera lines, I0 is the

background intensity, Λ is the grating periodicity, γ is the magnifi-

cation of the imaging system and c is the speed of light in vacuum.

Eq. (1) clearly shows the correlation operating between the temporal

fields realised by the system. The temporal variable is spatially dis-

played through the variable change t =
2zsin θið Þ

c
.

2.3. Spatial aberration vs induced dispersion law

Fig. 3 illustrates the principle behind translating the wavefront

aberration into a dispersion compensating mechanism. Fig. 3(A)

shows how the two points A and B at the grating, are imaged through

the lens onto the detector. In the detector plane they correspond to

points A′ and B′, respectively. The presence of the diffraction grating

implies that for a given point to be imaged, different k vectors cor-

responding to different colours, simultaneously merge at the detector

as seen in the figure. Here, Σ and Σ′ are ‘coloured’ wavefronts

associated to the imaging of points (i.e. surfaces of equal optical

paths). In order to understand the key principle, consider an achro-

matic and stigmatic imaging where no wavefront distortion is

present, hence there will be no optical path difference for different

wavelengths (or k vectors). Consequently, an incident pulse at pointA

(A)

(B)

Fig. 1. Hybrid OCT setup combining two configurations: (A) fibre based interferometer

with dual-fibre stretcher, (B) scan-free time domain correlator.

Fig. 2. Working principle of the scan-free correlator.
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(or B) will not encounter any additional dispersion and this is the

reason why pulses at the output points A′ and B′ are not distorted

with respect to the incident one.

Now consider the case depicted in Fig. 3(B) where the imaging lens

has been titled by an angle δ. This produces geometrical aberrations

like coma or astigmatism. According to wavefront aberration theory,

this leads to a deformation of the stigmatic wavefront (Σ′) which

gives in turn Σ′a). We can express it through a polynomial expansion,

using polar coordinates (ρ, θ) [20]:

W x0;ρ; θð Þ = ∑
j;m;n

Wklmx
k
0ρ

l
cos

m
θ ð2Þ

with k=2j+m, l=2n+m and where Wklm are wavefront aberration

coefficients related to the Seidel coefficients. Also x0 is the normalised

pupil coordinate. We can express the coma wavefront aberration as:

ΔWcoma = W131x0ρ
3
cosθ ð3Þ

where W131 is the coma aberration coefficient. In pupil coordinates

(x, y) the expression becomes:

ΔWcoma = W131x0x x
2
+ y

2
� �

ð4Þ

There is clearly a third order coefficient term with x. This is linked

to the wavelength through the diffraction grating effect. As a result,

the pulse experiences a third order induced delay term. Consequently,

optical paths for the different wavelengths incident onto B′a ex-

perience a time delay that is directly proportional to these coefficients.

Hence, in Fig. 3(B) the output pulse at point B′a is dispersed.

We also need to encompass the astigmatism induced from tilting

into our theory. Astigmatism is expressed in pupil coordinates as:

ΔWast = W222x
2
0x

2
ð5Þ

Essentially, this a second order termwhich can be compensated by

the dual fibre stretchers, as explained earlier. Also, for our case, the

effects of other aberrations due to the points being imaged outside of

the optical axis, is negligible, as the image area is small compared to

the magnification.

3. Results

In this sectionwe shall first describe the various components of the

setup shown in Fig. 1, after which we shall present and discuss our

results from a qualitative and quantitative perspective. The light

source is a supercontinuum source provided by Leukos Innovative

optical systems. This gives an output power of 80μW/nm over a

bandwidth of 420nm−2400nm with a repetition rate of 20 kHz. We

filter the source using a grating and a spatial filter to obtain a 165 nm

bandwidth centered at 688 nm, which is optimal for our detection

system. This spectral bandwidth is equivalent to a temporal point-

spread function (PSF) that has a full-width at half-maximum (FWHM)

of 2.1μm as seen in Fig. 4. The light from the source is split at the input

with a 90/10 coupler to maximise the light incident onto the sample.

This arm incorporates a 50/50 coupler which directs the light towards

the sample and collects the reflected signal. The PSF of the system is

observed when the sample is replaced by a mirror. Both the fibre

stretchers in the setup are made up of 4 m of fibre which are used for

dispersion and path length tunability (for more details refer to [8]).

The stretcher in the sample arm and most of the Mach-Zehnder

interferometer, including the couplers, is made up of FiberCore

SM800 fibre. For that fibre we measured a dispersion coefficient, β2
A≃

47ps2/km at 700 nm. On the other hand, for the reference arm

stretcher, we used some Crystal Fibre LMA-5 photonic crystal fibre

(PCF). This fibre possesses properties similar to that of the SM800

fibre in terms of transparency and core diameter, while simulta-

neously exhibiting a different dispersion parameter, β2
B≃37ps2/km

at 700 nm. Note that both types of fibres are present in each arm of

the interferometer as explained in [8]. The polarisation controllers

at the input and in the reference arm ensure that the polarisation

state of the light is aligned over the entire spectrum, thus pro-

viding optimum fringe contrast. Light exiting the fibre output from

each of the interferometer arms, is collimated with a microscope

objective (Leica Achr 10×infinity corrected) and passes through a

600 g/mm transmission diffraction grating, optimised for 600 nm

fromWasatch Photonics. The imaging lens is an achromatic lens from

Newport (PAC070) and the detector is an Ueye CCD detector with

1024*1280 pixels (UI-2240SE-M).

3.1. Experimental results and qualitative analysis

Without any dispersion compensation, we observe the experi-

mental normalised PSF shown in Fig. 5. The FWHM is degraded to

(A)

(B)

Fig. 3. Aberration effect on the temporal pulse shape. (A) Aberration-free temporal

imaging of the pulse that is diffracted by the grating and passes through the lens;Σ′

wavefront is the non aberrated image of Σ through the lens. A′ and B′ are the images of

A and B, respectively, through the lens. (B) Temporal image of a diffracted pulse

through the lens when aberration is introduced through tilting of the lens by an angle δ;

Σ′a is the aberrated wavefront when aberration is introduced through the imaging lens.

Fig. 4. Spectrum of the light source and temporal PSF. The spectrum can be seen in the

inset and the corresponding normalised theoretical PSF is in the main window.
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12μm, which is nearly 6 times broader than the diffraction limited

one. The shape of the PSF exhibits both 2nd and 3rd order dispersion

terms as well as higher order terms. We proceed by compensating for

the 2nd order dispersion term through the dual stretchers (95°

rotation of the PCF stretcher corresponds to a 2.4 mm elongation of

the PCF) which results in a measured PSF of about 5.1μm that can be

seen in Fig. 6. When we take a closer look, we observe some residual

higher order terms that cannot be further compensated by the

stretchers alone. The next step was to tilt the imaging lens by an angle

δ=3.4°. This angle has been chosen experimentally by looking at the

shape of the PSF.When the PSF is symmetrical and as sharp as possible

then the tilt angle is registered. This dramatically decreased the

FWHM of the temporal PSF down to 2.8μm as seen in Fig. 7. However,

there are still some remaining higher order dispersion terms that

could neither be suppressed by the stretchers, nor the lens.

Nonetheless, the obtained PSF is very close to the diffraction limited

one. When looking carefully at the Fig. 7 we may notice a very small

decreasing of the PSF contrast with respect to Fig. 6. From a principle

point of view, there is no reason why the PSF should decrease due to

dispersion compensation. In fact, when we performed several ex-

periments with the lens (see ref [5]), we noticed an increase of the PSF

amplitude with dispersion, as expected. We believe that the small

decrease in PSF contrast is due to a small ‘undesired’ defocus added to

the tilt of the lens, which decreases the incident power on the camera,

hence reducing the SNR. In the next section we shall quantitatively

analyze these results and compare it to the theoretical predictions.

3.2. Quantitative analysis

3.2.1. Phase analysis

Fig. 8 shows the calculated experimental Optical Path Difference

(OPD) (the red OPD =
phase⋅λ

2π
) for the three PSFs in the following

cases :

• No dispersion compensation

• Dispersion compensation through only the stretchers

• Lens dispersion compensation added to the stretchers

In all the graphs the linear term of the power series expansion as

well as the constant one have been removed. Fig. 8(A) is the optical

path difference (OPD) extracted from the experimental PSF for the

three previously mentioned cases. We fitted the experimental data

with a 4th degree polynomial. The vertical axis is the OPD expressed

in terms of the number of wavelengths (λ) with respect to the central

wavelength of the source. Although Fig. 8(B) is very similar to the

previous graph, here we only plot the fitting curves and limit the fit to

the 2nd and 3rd order. By closely observing both these graphs, it is

clear that the stretcher mainly compensates for the 2nd order dis-

persion. The resulting effect is that the phase after stretcher com-

pensation is almost flat between 3.9×1014Hz and 4.5×1014Hz and

leads to an equivalent theoretical PSF FWHM of about 6μm which is

consistent with the measured one. Beyond 4.5×1014Hz we notice a

strong decrease in the OPD for the stretcher curve which almost

reaches −4λ. The energy in the higher frequencies is also decreasing

in this wavelength range (see the inset of Fig. 4). This is the reason

why we see an asymmetric spreading of the PSF (Fig. 6) for high

frequencies, but with an amplitude lower than that of the main peak.

The lens effect can be clearly understood as a third order correction

term as seen in Fig. 8(A) and (B). In Fig. 8(B), upon first glance it may

seem that the lens is increasing the OPD. However, while it does

increase the second order term, a fourth order term is also growing in

the opposite direction, leading to a global flattening that can clearly be

seen in Fig. 8(A). Finally, on the same figure we see that the residual

higher order terms (even and odd ones) are still present, but are low

enough (≤0.2λ) to give a global PSF close to the diffraction limited

case.

3.2.2. Comparison with theory

3.2.2.1. Stretcher compensation. The effect of optical fibre stretching on

dispersion coefficients has been widely studied for over two decades

[21,23]. Recently, its application to OCT was demonstrated by Iyer

et al. about a year ago [8]. Basically, it was shown that the stretch

Fig. 5. Normalised temporal PSF when the dispersion is imbalanced.

Fig. 6. Normalised temporal PSF when the dispersion is compensated by only the

stretchers.

Fig. 7. Normalised temporal PSF when the dispersion is compensated by the stretchers

and tilting the lens.
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induced phase change developed up to the 3rd order can be written

as:

ΔΦ =
β2

2 ⋅ ω−ω0ð Þ
2⋅CPCF⋅ΔL

+
β3

6 ⋅ ω−ω0ð Þ
3⋅ΔL

ð6Þ

where β2 is the second order dispersion coefficient (we measured

β2=37ps2/km @ 700 nm), β3 is the third order dispersion coefficient

(wemeasuredβ3=42⋅10−14ps2/km@700 nm,which ismuch smaller

than β2),ω is the light angular frequency,ω0 is the central light angular

frequency, CPCF is a coefficient that accounts for the strain-induced

optogeometrical changes of the PCF fibre (we measured CPCF=0.45)

andΔL is the change in fibre length after stretching (ΔL=2.4mm in this

experiment). In principle, there should also be a coefficient for strain-

induced optogeometrical changes acting on β3, however, as β3 is much

smaller thanβ2, this term is not significant. Hence,wedonot account for

this coefficient in the following analysis and this is partially the reason

for the mismatch between the theoretical and experimental values.

In Fig. 9, there is excellent agreement between the theoretical

stretcher compensation based on a third order development and the

experimental curve. The nearly constant residual 4% error is mainly

due to the limited development of the theoretical dispersion law, and

partially due to the difference that exists between the effective β
coefficients and the computed ones.

(A)

(B)
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Fig. 8. (A) Optical Path Difference (OPD) of the different PSF spectrums: dotted lines are experimental data whereas solid lines are 4th order fits of the experimental data. (B) Fits of

the experimental OPD data, where only the second and third order dispersion terms are shown.

Fig. 9. Comparison between the theoretical and experimental stretcher compensation. (A) Blue curve is the experimental stretcher compensation and the red curve is the theoretical

one. (B) Difference between theory and experiment (expressed in percentage).
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3.2.2.2. Lens compensation. As explained in Section 2.3, tilting of the

lens induces a coma aberration which is a third order term with

respect to the angle, and in turn to the wavelength. This aberration is

then directly a third order dispersion law. A simulation of the

aberration induced by tilting of the lens by an angle δ=3.4°, was done

in ZEMAX and the obtained OPD was converted into a dispersion law

using Matlab. The resulting temporal PSF is shown in Fig. 10. There is

very good agreement between the experimental result shown in

Fig. 10(b) and the theoretical simulation shown in Fig. 10(c). We see

some residual mismatch on the left side of the PSF which could be due

to several reasons: a discrepancy in the centering on the lens or a

variation of the lens in manufacturing to specifications given in the

data sheet. Despite this small error, it is clear from Fig. 10 that both the

experimental and theoretical PSFs are close to the diffraction limited

case given in Fig. 10(a).

3.2.3. Discussion

3.2.3.1. Stretcher. We have shown that the stretchers can efficiently

compensate for the first and second order dispersion terms without

significantly altering the third order. However, the limitation of

our stretchers is the maximum dispersion mismatch that can be

induced by stretching the optical fibres. This is dependent on two

main parameters:

• The difference in the dispersion coefficients of the two fibres in each

arm of the interferometer.

• The maximum length of fibre that can be elastically stretched by the

rubber stretchers.

The first parameter is subject to future work as there is a growing

effort to create fibres with strong variations in their composition and/

or structure [22]. These changes in turn affect the dispersion coef-

ficients and their behaviour with respect to the wavelength. This is

certainly a feasible way to achieve higher dispersion compensation

and also to change the ratio between the second and third order

dispersion coefficients.

The second parameter is governed by the Young's modulus of the

fibre. But, silica fibres can only be stretched by amaximum of ~2%[23].

So, an alternative approach to maximise the dispersion mismatch

would be to increase the length of fibre wrapped around the stretch-

ers, but when using PCF fibres this option may become expensive.

Nonetheless, the main advantage of the dual stretchers is the ease of

implementation and compactness due to its all-fibre format.

3.2.3.2. Lens compensation. As we have demonstrated earlier, lens

compensation can correct for third order dispersion. In fact we have

seen that the degree of dispersion compensation we add with the lens

is directly dependent on the spatial aberration we induce with the

lens itself. Generally, in an imaging system, adding spatial aberration

decreases its spatial resolution. In Fig. 11, lens (L) is forming an image

of the grating (G) onto the detector (D). Here, spatial aberrations

should decrease the lateral resolution on the detector (D). As the

lateral axis on the detector is connected to the depth into the sample

(dimension z) we may infer that the spatial aberration cancels the

dispersion compensation due to the lens coma. However, this is not

the case as was demonstrated from the previous experiments. This a-

priori paradox can be understood from Fig. 11. Let RB and SB be the

light exiting the reference and sample arms, respectively. The tem-

poral signals carrying the tomographic information lies within the

entire beam profile (i.e. there is no spatial localization into the sample

beam of the tomographic information).RB is transmitted through the

zeroth order of the diffraction grating (G), whereas SB is diffracted

through the−1 order. The lens (L) images (G) on plane (I) so thatA is

imaged on A′ and B on B′. In the presence of aberration (we have

chosen defocus, for the sake of clarity in the diagram) the detector

plane (D) no longer matches the image plane (I). The only region in

the detector plane (D) where all the spectral content from all the

beams is attained, lies in the region between a and b. Here, all the

beams that are overlapping can be seen in the Fig. 11. On one hand as

between a and b all beams wavelength content is present the Fourier

transform gives the complete information about temporal fields,

hence there is no information loss in the correlation between those

temporal fields. On the other hand as the overlapping field is limited

in the detector plane it is also limited in the object plane (i.e. the

grating plane (G)). By back propagation through the lens (L) of the

points a and b which are limiting the field, we find points A″ and B
″

which are limiting the effective OCT system depth field which is

imaged through the lens when aberration is induced. To summarise,

inducing an aberration effectively compensates for a dispersion order

related to the aberration order, but this leads to a decrease in the

imaging depth field of the whole OCT System.

Fig. 10. Comparison between theoretical and experimental lens compensation. (a) Theoretical diffraction limited PSF. (b) Experimental PSF after lens and stretcher compensation.

(c) Obtained PSF when theoretical lens compensation is added to the experimental stretcher compensated PSF.
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3.2.3.3. Extension of the method to the Near Infra Red range. Most OCT

systems opperate in the NIR range. The reason why we didn't realize

our experiment in the classical 840 nmor 1300 nmcentralwavelengths

is because we combined two independent setups designed for different

applications and both of them were not optimized to work together

(the cutoff wavelength of the fibre system used in the setup was at

700 nm and they were optimized to work around 830 nm). As we

intended to perform our proof-of-principle experimentwith the largest

source bandwidth (greater than 150 nm), wewere facing the following

dilemma with the fibred setup. If we move towards the longer

wavelengths (i.e. greater than 850 nm), it does work as we utilized

800–880 nm in the experiment in Ref. 8. But, since we are using amuch

larger bandwidth, the bend loss becomes a lot more significant

especially with the use of stretchers that accentuate the sharp loss

between the shorter and longer wavelengths. Now, if part of our

wavelength window is below the cutoff wavelength then we would be

in themultimode regime. But, sincewewere only using short lengths of

fibre (~7 m), this didn’t appear as a problem to us. So, with a different

fibre that is less susceptible to bend loss around (850 nm), we can

demonstrate broad bandwidth 2nd order compensationwith the setup.

Nonetheless, for the proof-of-principle what we have demonstrated is

adequate, and could be extended to the NIR range with adequate fibres.

In terms of the scan-free system, in Ref. 5 we showed that lens

compensation becomes more efficient in the long wavelength range.

We have performed experiments for the 800–900 nm bandwidth that

showed successful independent removal of the second and the third

order term of dispersion. However to maintain a uniform contrast for

the entire bandwidth of the experiment, we had to work at shorter

wavelength when using almost 200 nm bandwidth.

4. Conclusion

Dispersion compensation in OCT is crucial especially, when dealing

withhigh resolution systems (few μmresolution) and/or thicker samples

to be observed. Although there are efficient methods to compensate for

dispersion in bulk OCT systems, the problem is still relatively complex

with fibred systems, as fibres are highly sensitive to any environmental

change (pressure, temperature, etc.). Generally, a continual steady

variation of the dispersion compensation would be necessary with

time to continuously optimise the resolution. The standard way to

proceed with any fibred interferometer is to insulate the whole setup as

much as possible from external changes. We demonstrated in the frame

of this paper that the use of fibre stretchers coupled to a scan-free

correlation system enables a tunable and nearly independent dispersion

compensationof the 2nd and3rd order. The former term is dealtwith the

dual stretchers that enable tuning of the optical path difference between

the two arms of the interferometer, while simultaneously compensating

for the 2nd order dispersion. The latter term is dealt with the time

domain correlator, which has the property to convert Seidel aberration

coefficients into the same order dispersion coefficients, allowing us to

compensate for the 3rd order dispersion. Although essentially dedicated

to system dispersion compensation, in the frame of this ‘proof of

principle’ paper, we would like to outline potential interests of such a

system for a more general purpose. The main advantage of the solution

wepropose is to be able to independently compensate 2ndand3rd order

terms which are the main predominant terms involved in OCT. Taking a

closer look at the properties of such a system, we hypothesise that

average dispersion could also be compensated. Further, we imagine that

the tunability of this method will allow us to compensate for depth-

dependent dispersion in the sample, in a continuous manner. This could

be a kind of adjustable depth dependant dispersion compensation if

coupled to the fact that real time A-scans (or B-scans; see ref [16]) are

obtained with scan free systems. At this point, we would like to make a

few remarks about the system:

• Scan-free time domain detection systems share, in principle, the

same sensitivity limitations with TDOCT. Clearly, this limitation is

critical when both sensitivity and real-time conditions are simul-

taneously needed. Nevertheless, authors have recently shown high

speed imaging capability together with relatively good sensitivity in

in-vivo biological media [24,25].

• Specific properties of these systems, such as dispersion compensation,

optical processing of Wigner functions, potentially depth dependant

dispersion compensation and artefact-free optically processed time

domain imaging, are highly attractive and unique features [12]. Such

systems may also become a standard for functional imaging in some

media where real-time access to functional information is more

important than the sensitivity (i.e. less scattering samples and/or

fewer constraints in incident light power). The complex A-scan is

directly obtained without scanning, or any numerical signal proces-

sing in the detector plane. Having said that, the demodulation of the

A-scan and noise filtering, require numerical processing. When we

speak about ‘post-processing’ free, this means without demodulation.

Then the ‘post-processing’ free property (as compared to FDOCT) and

scan-free (as compared to TDOCT) becomes a key factor, especially in

the frame of spectroscopic OCT.

• Finally, this detection modality is a free-space scheme making it a

hybrid system by combining fibre and free-space components. For

endoscopic type measurements, the fibred imaging part could be

separated from the free-space one, outside the region of interest.

To have a complete overview of the impact of such a hybrid system

in the field of in-situ biological imaging, the complexity of the system

with respect to obtained results needs to be addressed. Indeed, actual

fibred OCT systems are still less developed than external systems,

often due to the complexity of the system. Scan-free systems, with of

course an inherent lower sensitivity, show globally simpler architec-

tures and may, in the frame presented earlier, be a good candidate for

fibre systems.
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