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Abstract—A new all-optical node architecture, known as Packet
Optical Add-Drop Multiplexer (POADM), may lead to a consid-
erable cost reduction for the infrastructure of the all-optical
metropolitan rings if associated with proper dimensioning studies.
We present a dimensioning problem which consists of minimiz-
ing the total number of receivers located in POADMs for a
metropolitan all-optical ring with a fixed number of wavelengths
and a given traffic matrix. We prove that this problem is NP-
complete and provide a heuristic. The heuristic principle is
to match and to group transmissions instead of considering
them independently. We justify the transmission group matching
approach by confronting the results of our algorithm with its
simplified version. The results obtained allow us to recommend
the heuristic in the planning of POADM configurations in all-
optical rings with a limited number of wavelengths.

I. INTRODUCTION

An all-optical network is composed of equipment which can

handle the optical signal from its origin to its destination as an

opposition to an opto-electronic network where the signal must

be stopped and regenerated at each node. All-optical networks

offer both better performance and lower energy consumption

than the classical opto-electronic networks [4]. For these

reasons, they have been chosen to be the next generation

of metropolitan networks. The DOROthéE1 project aims to

reduce the CAPital EXpenditure (CAPEX) of metropolitan

networks with low ecological impact by properly dimensioning

them. We focus our attention on all-optical rings. In an all-

optical network, there are two main parameters that have to be

taken into consideration in the dimensioning process, namely

the number of wavelengths and the equipment required in the

nodes. Thus, this is a bi-criteria optimization problem. The

well studied Wavelength Assignment (WA) problem consid-

ers the first parameter only. Numerous works [5], [8], [11]

considered networks equipped with Add-Drop Multiplexers

(ADMs). An ADM is both a receiver and a transmitter. The

defined problems treated the number of wavelengths and the

number of ADMs. Nevertheless in [6] the authors proposed a

very promising node architecture, the Packet Optical Add-Drop

Multiplexer (POADM), in which transmitters and receivers are

independent. A node is composed of several receivers and

one transmitter that can emit on each wavelength. Problems

defined for ADM networks are no longer valid for POADM

since the receivers and a transmitter are separated. The proper

1DOROthéE is a Digiteo project financed by the Ile-de-France region.

dimensioning of a POADM network requires the consideration

of two parameters : the number of wavelengths and the number

of receivers.

In our previous work [15], we provided a solution consider-

ing the number of receivers as a constraint. There, we defined a

single criterium minimization problem known as the Minimum

WaveLength Problem (MWLP). The problem was to find the

minimum number of wavelengths needed for a given traffic

matrix when the total number of receivers in the network is

minimal. We showed that the problem is NP-complete and

provided a heuristic. In the present work, we define the prob-

lem called the Minimum Receiver Problem (MRP) consisting

in finding the minimum number of receivers needed for a

given traffic matrix in a network where the total number of

available wavelengths is fixed. Indeed, the maximum number

of wavelengths that can be used is predetermined from the

moment the fiber has been buried underground. As long as

we do not use more than this number of wavelengths, the

cost of using one more wavelength is negligible since the

fiber is already present. In that case, the number of receivers

becomes the only parameter, whereas the maximum number

of wavelengths becomes an additional constraint. It should be

noticed that there is a relation between these two problems.

Indeed if a solution to the MWLP also respects the wavelength

constraint (i.e. does not use more than a given number of

wavelengths) then this solution is an optimal solution to the

MRP. In the article we thus attempt to state formally and

solve the MRP. We show that the problem is NP-complete

and provides a heuristic.

The rest of this paper is organized as follows. Section II

contains an overview of all-optical technology and a survey

of the related research studies. In Section III we formally

introduce the MRP. We study its complexity in Section IV

and in Section V we present a heuristic algorithm which solves

the MRP and comment on the results obtained in Section VI.

Finally, we conclude and outline perspectives.

II. RELATED WORK

In this section we give an overview of all-optical tech-

nologies. In the first part, we explain the principle of traffic

assignment and, in the second part, we present several node

architectures which lead to different dimensioning problems.

All but one of these architectures have been exhaustively

studied.



Optical networks use Wavelength Division Multiplexing

(WDM) to carry a vast amount of traffic through the fiber. Each

wavelength is considered as a high speed channel with a fixed

transmission rate. Since the wavelength capacity is large, most

of the dimensioning solutions consist in grouping requests in

order to reduce the number of wavelengths required. These

methods, known as traffic grooming methods, use Time Divi-

sion Multiplexing (TDM) to divide wavelengths into smaller

channels. The number of channels that a wavelength contains

is called grooming ratio.

In point-to-point opto-electronic networks the traffic is

add/drop to/from a wavelength using electronic Add-Drop

Multiplexers (ADMs). The optical signal is systematically

stopped at each node and thus an ADM is needed on each

wavelength. Since the cost of these devices represents a large

part of the Capital Expenditure (CAPEX), it is a priority to

reduce the number of required ADMs. In the first technology

we present, all optical network nodes are equipped with

Optical Add-Drop Multiplexers (OADMs) that, added to a

node, allow the optical signal to bypass the node. When

equipped with OADMs, a node requires ADM only on the

wavelengths on which it has to add/drop traffic. By properly

organizing the traffic flow it is thus possible to suppress

ADMs and then reduce the CAPEX. The traffic grooming and

wavelength assignment problem was, for OADM node archi-

tecture, proved NP-complete [5] and heuristics were provided

for mesh [13], ring [3], [5], [8], [11], [16], [10] and multi-

ring [17] topologies. More recently, networks provided with

Reconfigurable Optical Add-Drop Multiplexers (ROADMs)

have been studied. A ROADM is a tunable device that can

add/drop traffic onto/from different wavelengths over time.

ROADM offers more flexibility than OADM and allows one

to perform dynamic traffic grooming, saving both CAPEX

and Operational Expenditure (OPEX). With dynamic traffic

grooming, ROADM leads to new dimensioning constraints

and thus to new dimensioning problems [7]. In [17] the

authors considered an architecture provided with Optical Cross

Connect (OXC) that allows time-slot traffic switching. Based

on the observation that a node may have to add but not drop

(or, symmetrically, drop but not add) traffic from a wave-

length, the authors of [6] present another node architecture

known as Packet Optical Add-Drop Multiplexer (POADM).

This architecture, we study, is composed of several receivers

and one tunable transmitter that can add traffic to different

wavelengths over time. As for ADM based networks, the

number of receivers used is a large part of the CAPEX. Once

again, the flexibility provided by this technology should lead

to better results if associated with effective traffic assignment

heuristics. Nevertheless, there is no dimensioning process for

this technology.

III. MINIMUM RECEIVER PROBLEM

We formally introduce the MRP. Given a traffic matrix and a

number of available wavelengths, the MRP is the minimization

problem which consists in finding an assignment of the traffic

on the wavelengths that minimizes the number of receivers

required. The problem presented below is the decision problem

associated with the MRP.

Problem: MINIMUM RECEIVER PROBLEM

Data:

• An elementary circuit [2] G = (V,E) .

• A traffic matrix T where T [i, j] is an amount of traffic

to be sent from a node i to a node j.

• A set λ = {λ1, λ2, ..., λW } of wavelengths, W ∈ N.

• A wavelength capacity C ∈ N.

• A number of receivers z ∈ N.

We call assignment the operation which decomposes T into

a set of W matrices Tk of the same dimension as T and

associates Tk to a wavelength k ∈ λ of a ring.

Question: Is it possible to find an assignment of the traffic

T on the wavelengths λ that respects simultaneously the flow

and capacity constraints and that does not use more than z
receivers ?

Flow constraint: For any couple of nodes (i, j), the

amount of traffic carried on each wavelength has to be equal

to the total amount of traffic between i and j:

∀i, j ∈ V,
∑

k∈λ

Tk[i, j] = T [i, j].

Capacity constraint: Let loadk(x) be the load of the arc

x ∈ E for the wavelength k. In other words loadk(x) is equal

to the amount of traffic carried by the arc x on the wavelength

k. loadk(x) cannot exceed the capacity C:

∀k ∈ λ, ∀x ∈ E, loadk(x) =
∑

i,j s.t. x∈path(i,j)

Tk[i, j] ≤ C.

IV. COMPLEXITY

We use the Partition Problem (PP) [9] to prove that the

MRP is NP-Complete.

Problem: PARTITION PROBLEM

Data:

• A set of integers X = {x1, x2, ..., xm}

Question: Is it possible to find A and B such that A∪B = X ,

A ∩B = ∅ and
∑

x∈A x =
∑

x∈B x?

Theorem 4.1: The MRP is NP-complete.

Proof: Given an instance of MRP and an assignment of

traffic T on λ, we can determine whether this assignment

involves less than z receivers and verify both the capacity

and flow constraints in polynomial time. The certificate of

MRP is in P.



Let us consider an instance of the PP. From this instance we

build an instance of the MRP as follows. For each integer xi

of X we create two vertices in an initially empty elementary

circuit G. Those vertices are si (source of the traffic) and di
(destination of the traffic). Nodes in G are ordered so that

s1 ≺ . . . ≺ sm ≺ d1 ≺ . . . ≺ dm where X ≺ Y means that

X is placed before Y in the ring. We build the traffic matrix

so that the only non-zero elements are T [si, di] = xi. We fix

W = 2, C = (
∑m

k=1 xk)/2 and z = m.

For the given instances, if there is a solution to the PP then

we are able to build a solution to the MRP and reciprocally.

We associate the subset A (respectively B) with the first λ1

(respectively the second λ2) wavelength. In the PP solution,

an integer xi is associated with one of the two subsets, A
or B. The whole traffic xi = T [si, di] is therefore assigned

to the wavelength which corresponds to this subset. As we

assign the entire traffic flow to a single wavelength, the flow

constraint is respected. For the same reason the solution does

not use more than z receivers. For each wavelength the amount

of traffic passing through an arc is less than or equal to

the amount of traffic passing through the arc (sm, d1) on

the same wavelength. Since load1(sm, d1) =
∑

x∈A = C
and load2(sm, d1) =

∑

x∈B = C, the capacity constraint is

respected. If the PP has a solution then the MRP has a solution

too.

If we have a solution to the MRP, then each traffic flow is

assigned to a single wavelength due to the number of receivers

limited to z. The assignment of traffic on the arc (sm, d1)
directly provides the partition of integers, which is a solution

to the PP. If there is a solution to the MRP, then there is also

a solution to the PP.

We prove there is a polynomial reduction from the PP to

the MRP and that the certificate of MRP is in P. Thus, we

prove that MRP is NP-complete.

V. HEURISTIC

The algorithm we propose has three steps. First, it groups

the requests, then selects groups and, finally, assigns them to

wavelengths.

For a given n-node ring with nodes numbered from 1 to

n, we consider each wavelength as an n-dimension cube.

Dimension i is associated with the arc i (i.e. the arc between

nodes i and i+1). The length of each edge of this cube is equal

to C. Such a cube is called a box and the number of boxes

available is equal to the number of wavelengths available, w.

A request r(x,y) is a traffic flow between nodes x and y. It

is represented as as an n-dimension vector. The height h(r)
of request r is equal to the amount of traffic this request is

carrying and its length l(r) is equal to the number of arcs

between its origin and its destination. For example, in a 4-node

ring we consider the request r(1,3) = (3, 3, 0, 0). This request

passes through arcs 1 and 2 but not through arcs 3 and 4. Thus,

we have h(r(1,3)) = 3 and l(r(1,3)) = 2. A unitary request is

a request with height equal to one (i.e. the smallest amount

of traffic to be transmitted). As non-unitary requests can be

split over several wavelengths, we may consider without loss

of generality that all requests are unitary requests.

A set of transmission requests with the same destination

forms an element. Inside the element, requests are decreasingly

ordered by length. An element e may be seen as a vector sum

of the request vectors it contains. An element composed of all

the requests towards a given destination is called a complete

element. There are at most n complete elements numbered

according to their destination node. The length of an element

e is l(e) = maxr∈e(l(r)) and its size is s(e) =
∑

r∈e l(r).
Its height h(e) is equal to the number of unitary requests it

contains. A rectangular element is a particular element that

contains only requests of the same length.

In order to minimize the number of the receivers needed in

the ring, the traffic associated with a given complete element

should be carried by the smallest number of wavelengths. Our

goal is therefore to cut the complete elements into elements

that fit into the smallest number of available wavelengths.

To discover the shape of a complete element ed, we have

to compute the amount of traffic passing through each arc

towards d. Let us note ldi the amount of traffic in the arc i
destined to d. Under the assumption that a node does not send

anything to itself and taking into account a circular network

architecture we obtains a vector ld :







ldi = 0 if i = d
ldi = ldn + ti,d otherwise and if i = 1
ldi = ldi−1 + ti,d otherwise

The three steps, that compose our algorithm, are repeated

until the assignment of all traffic. The variable Ch represents

the height of the cut.

Initialisation Ch = C.

Step 1 Generally speaking, heuristics of packing obtain

better results when the elements to be packed have regular

shapes. A cut provides a partition of an element e into a set of

k resultant elements {e0, e1, . . . , ek−1} with k = ⌈h(e)/Ch⌉.

Moreover, we want a cut to have some special properties

in order to produce resultant elements with regular shape.

Firstly, resultant elements should (as much as possible) be

the same height. Ideally, this height is a sub-multiple of C.

Secondly, resultant elements should be as low as possible in

order to reduce the space they will take when packed into a

box. Rectangular elements are, according to their definition,

perfectly regular. We decide to measure how much an element

is not "rectangular like". The measure of the irregularity of an

element e is irr(e) = h·l(e)−s(e). The greater the irregularity

number of an element is the harder it is to pack. The cut has

to minimize
∑

i irr(ei) =
∑

i(h · l(ei)− s(ei)). The following

method leads to a cut with these properties.

Informally, we form groups of Ch requests from the bottom

to the top of e. Since the requests are ordered in e according

to their lengths, resultant element ei contains longer requests

than a resultant element ei+1. The element on the top can be



smaller than h. Formally,

ei =

{

{riCh
, riCh+1, . . . , riCh+Ch−1} if i 6= k − 1

{r(k−1)Ch
, . . . rh(e)} otherwise

Step 2 only if Ch > 1, We use here an acceptance-rejection

method to select groups of elements. The acceptance rate is

noted τ . Ideally, we would like to consider each possible set

(group) of elements. Nevertheless, as we want the complexity

to remain reasonable, we consider hereafter only pairs of

elements (or single element). If the elements of a pair do

not fit together in a virtual empty box of capacity Ch then

the pair is rejected regardless of τ . For elements a and b,
from a non-rejected pair, we compute fit_rate(a, b) = s(a)+s(b)

nCh

which measures the fraction of space occupied by the elements

a and b when packed in a virtual box of capacity Ch. A

pair of elements with a fit rate greater than τ is selected.

As an element can appears into more than one pair, we use

a maximum matching algorithm [12] (on the selected pairs)

in order to get the biggest subset of accepted pairs that does

not contain a same element twice. We notice that the elements

of a same accepted pair are from this moment indivisible and

will be treated as a single element. In the remaining subset of

elements, an element a is accepted if fit_rate(a) = s(a)
nCh

> τ .

Step 3 We use a first fit decreasing method [18] to pack all

the accepted elements (or accepted pair of elements) into the

w boxes. After the first iteration the boxes can already contain

elements. The height of the cut is modified so that h = ⌊h/2⌋.

VI. RESULTS

In this section we discuss the performance of the heuristic

algorithm. Firstly, we show, on instances, the influence of the

acceptance rate τ . Afterwards we compare two variants of our

heuristic: with and without pairing the elements in step 2 of

the proposed algorithm. We show, thereby, the influence of the

pairing of elements and explain in which cases it should be

used. The experiments presented below have been made for

16-node ring networks with wavelength capacity C = 32. We

use All-To-All (ATA) spatial traffic distribution, in which the

sizes of the connections are generated following uniform or

normal (N(µ,0.2µ), µ = 16) distribution. In another simulation

series we use Rich-Get-Richer (RGR) [1] spatial distribution

for which the mean volume of traffic received by each node is

equal to µ. The latter is chosen to represent a realistic traffic

condition, as in a metropolitan ring some nodes may attract

more traffic (e.g. video base server, backbone access node).

A. Influence of the acceptance rate

As we have said before, the number of receivers required

for a given node is equal to the number of parts in which

the associated complete element has to be cut. In order to

minimize the number of receivers we want this number of

parts to be as small as possible. In other words we want the

resultant elements to be as high as possible. Nevertheless a

too high resultant element may be difficult to pack if it does

not fit well with other resultant elements. The acceptance rate

τ allow us to select elements that, despite their height, do not

lead to the degradation of the wavelength utilization. Figure 1

depicts the evolution of the ratio z/W (number of receivers /

number of wavelengths) depending on the acceptance rate.

Fig. 1. Influence of the acceptance rate τ on [z,W ]

We see that if τ increases then the ratio z/W increases too.

If the acceptance rate is high then the pairs of elements tend

to be rejected and packed later. The number of receivers thus

increases whereas the number of wavelengths decreases. So,

we know that when the load of traffic is high in the ring (i.e.

the number of available wavelengths is small), solutions can

be found by increasing the acceptance rate. Symmetrically if

the number of wavelengths is large, then we can save receivers

by decreasing the acceptance rate.

B. Influence of the pairing method

Figure 2 and 3 depict the influence of using or not the

pairing method in step 2 of our heuristic. Figure 2 has been

computed on an instance with ATA spatial distribution and

normal (N(µ, 0.2µ)) distribution for the size of the connection

whereas Figure 3 has been computed on an instance with RGR

traffic distribution. On each we compare three curves. The

straight line represents the minimal number of receivers (zmin)

for a given traffic.

zmin =
∑

i∈V

⌈

∑

j T [j, i]

C

⌉

We notice that this lower bound, as it is not dependant on

the number of available wavelengths, may not be close to the

optimal solution when the number of available wavelengths is

small. The two other curves represent the number of receivers

required for a given traffic and a given number of wavelengths

using both with and without the method of pairing.

We see with these curves, that the solution without pairing is

not highly affected by the number of available wavelengths. On

the other hand, the solution with pairing performs extremely

well when the wavelength constraint is not tight but leads

to worse results when the assignment of traffic becomes the

bigger problem.



Fig. 2. Influence of the pairing method (ATA spatial distribution, Size of
connections normally distributed)

Fig. 3. Influence of the pairing method (RGR spatial traffic)

As we want to statut on the performance of the heuristic

with pairing, we have to study a large number of instances.

Nevertheless, for a given traffic matrix T , it is difficult to

say if the wavelength constraint is either tight or open as the

wavelength assignment problem is itself a difficult problem.

The MWLP heuristic, presented in [15], provides a solution

that have the minimum number of receivers zmin and a number

of wavelengths that we note Wmax. For each MRP instance

that has more than/exactly Wmax available wavelengths we

are able to find an optimal solution. Thus, our interest is

in the MRP instances that have less than Wmax available

wavelengths.

Let Wmin be the number of wavelengths used by a solution

of a efficient wavelength assignment heuristic for the given

matrix T . Such a solution can be provided, for instance,

by the arc-colouring based heuristic presented in [14]. It

seems reasonable to consider Wmin as the minimal number

of wavelengths required. In other word, we will consider

the MRP instances which have more than Wmin available

wavelengths.

We generated 500 random traffic matrix for 16-node

ring networks using RGR distribution. From a same matrix

we generated three types of instances. In the first type,

the number of available wavelengths is hardly constraint

(i.e. W ∈ (Wmin,Wmin + Wmax−Wmin

3 )). In the second

type, the number of available wavelength is tight (i.e.

W ∈ [Wmin + Wmax−Wmin

3 ,Wmin + 2(Wmax−Wmin)
3 ]) and

finally in the third one, the number of available wavelengths

is open (i.e. W ∈ (Wmin + 2(Wmax−Wmin)
3 ,Wmax)). In

all three cases C = 32. The results of this experiment is

showed in Figure 4. In this figure, x% means that the average

solution has x% more receivers than the optimal solution for

a number of available wavelength equals to Wmax (Wmax is

provided by the MWLP heuristic).

Open Tight Hard

With pairing 5.6% 20% 29.7%

Without pairing 14% 23.5% 27.5%

Fig. 4. Influence of the pairing method (Exhaustive simulations)

As expected the results presented in Figure 4 confirm the

observations made on the instance of Figures 2 and 3 when

the wavelength constraint is opened. In that case the heuristic

with pairing performs well, increasing the minimum number

of receivers by only 5.6 percent whereas the heuristic without

paring get a 14 percent. When the wavelength constraint is

tight the pairing method get also slightly better results than its

opponent. Finally, the experience shows that the performance

of the pairing method is comparable when the wavelength

constraint is hard.

CONCLUSION AND FURTHER WORK

The paper presents a part of our work dedicated to the

dimensioning of all-optical ring networks with POADM node

architecture. A POADM node can emit on all available

wavelengths but it can only read on a subset of available

wavelengths. The network infrastructure cost (CAPEX) of

such a network can therefore be brought down by reducing the

number of receivers present in the nodes. Our goal was to min-

imize this number when the number of available wavelengths

is limited. We proved that the corresponding optimization

problem is NP-complete. The heuristic we proposed is based

upon a preliminary matching of pairs of grouped transmission

which attempts to “wipe out” their shape irregularities. We

proposed this coupling in order to obtain an efficient wave-

length assignment. The exhaustive simulation results show the

advantage of the introduction of pairing. They also exhibit that

the heuristic results converge to the optimal solution when the

number of available wavelengths is unlimited.

As a further work we consider studying together the prob-

lem we discussed here with the one which we treated before

in [15], and which consisted of minimizing the wavelength

number with the given, minimal number of receivers. We will

want thus to formulate and solve a bi-criteria problem.
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