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The paper presents a computation strategy for solving integral equations in electromagnetism. Nowadays, powerful programmable 

Graphic Processing Units (GPU) can be found in any standard computer. The paper investigates the benefits of the use of GPUs in 

addition to the CPU one in order to improve computation speed by using integral methods. Java language and the JCuda library, not 

often used in speed calculation by the computing community, has been used here. A 100 time speed-up is reported in matrix assembly 

between an optimized traditional CPU computation and a CPU+GPU one. FMM…  

 
Index Terms—Fast Multipole Method on GPU, JCuda computing, Pure Java ...  

 

I. INTRODUCTION 

NTEGRAL equation methods (IEM) are currently widely used 

in electromagnetic modeling. Unlike the finite element 

method (FEM), they do not require the meshing of non-active 

materials like air. However, they are based on the computation 

of electromagnetic interactions between all elements (i.e. full 

interaction). Therefore, they lead to fully dense systems of 

equations. They are well known to be easily parallelizable 

because of the independence of interactions. Moreover, the 

interest of IEM has considerably increased since the 

emergence of acceleration methods such as the Fast Multipole 

Method (FMM). In this kind of algorithm, near and far field 

interactions are separated [1]: 

farnear VVV   (1) 

While far fields computations are highly accelerated by 

FMM, the near field interaction is treated classically. In 

particular, full near field matrices have to be computed with a 

high performance strategy in order to keep the advantage of 

using FMM. 

In this work, a parallelized and vectorized full matrix 

interaction computation strategy is implemented, first using a 

classical CPU on a standard personal computer then a CUDA 

capable GPU [2]. The main software is developed thanks to 

Java language so the use of the JCuda library enables GPU 

interfacing directly from Java [3]. The choice of using Java 

can seem to be surprising for speed computations, but the use 

of this language enables easy portability, robust and fast 

software developments, and performances are respectable in 

comparison with most commonly used language like C++ [4]. 

II. CHARGE DENSITY COMPUTATION 

Let consider a perfect conductor be in free space associated 

to a known potential V0. To compute the charge density in 

electrostatics, the following integral equation has to be solved: 
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Where S is the surface of the conductor, σ is the charge 

density, ε0 is the vacuum permittivity and r is the distance 

between the point where the potential is expressed (on the 

conductor) and the integration point. 

III. NEAR FIELD COMPUTATION 

The near potential (1) is computed as presented in (2). Let 

mesh the surface into a set of triangle patches. The system of 

linear equations is generated using a point matching approach 

with 0-order shape function. This method is very simple but 

has already shown its accuracy. 

A. High performance matrix assembly 

In (2), if S is meshed into N cells, N integrals on N cells 

have to be computed. This is why the computation time 

increases in N2. Moreover, the numerical evaluation of the 

integrals of (2) is sometime numerically singular (in particular 

for the computation of the interaction of an element on itself 

so when r is close to zero). The use of analytical formulae [5] 

to evaluate the kernel of (2) is then preferred but these 

computations can be time-consuming. The chosen approach is 

a mix of numerical and analytical integral computation in 

order to get the best ratio between accuracy and speed. 

The integrals are first computed thanks to a numerical 

Gauss integration technique. In this approach, there are three 

overlapped loops in the algorithm (fig. 1). 
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// Loop 1: on all the N elements

For i = 0,1,…N // can be parallelized if multi-CPU

// Loop 2: interaction of element i with all elements

For j = 0,1,…N

// Loop 3: Gauss integration

For k = 0,…number of Gauss points

Integral(i,j) += 1/r(i,j,k) *weight(k) * jacobian(k)

End

End

End
 

Fig. 1.  Classical matrix assembly algorithm.  
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Working on larger and continuous sets of data improves 

memory access speed and therefore the computation speed. 

That is why the two last loops are switched in order to have a 

high number of indexes in the last loop. It is allowed because 

all interactions are independent. Furthermore vectorized 

operators can be used as shown in the fig. 2. The benefit of the 

vectorized algorithm toward the classical one is a speed-up of 

almost 30 to 50 times for the matrix assembly. 

B. Fixing singularities 

After the matrix assembly, the artificial singularities which 

have been introduced with the numerical integration are fixed. 

The diagonal coefficients of the matrix are corrected by the 

analytical solution of the corresponding integrals. 

C. Pure Java computation 

An optimized vectorized Java matrix package has been 

developed in the G2Elab [6]. It is based on contiguous 

memory storage of the matrix, adapted indexes and macro 

matrix manipulation commands.  

Before assembling the matrix, a pre-processing is needed. A 

table containing all the coordinates of elements Gauss points 

in the main referential is generated. The process is repeated for 

the Gauss weights, the Gauss jacobians and the matching 

points. Then the matrix is assembled line per line thanks to 

vectorized operators and the diagonal is fixed. 

D. JCuda implementation 

Thanks to the JCuda library, it is possible to call CUDA 

kernels directly from Java. A Java GPU matrix library has 

been developed. It enables the management of the GPU 

memory allocation, the data transfer between the GPU device 

and the host, matrix manipulations and the call of kernels. 

1) GPU computing accuracy 

It is well known that GPU are much faster in single 

precision computing than in double precision. Furthermore, 

only latest GPU are double precision capable. Therefore the 

good computation accuracy of (2) in single precision must be 

checked before developing a CUDA method. Computations of 

(2) on a triangle in single and double precision are compared 

for analytical and numerical method. Errors are noticed in the 

order of magnitude of 1e-7. So the quality of the evaluation of 

(2) is only a few influenced by the single precision 

computation. For the same calculations, results between CPU 

and GPU are compared. A difference on the 1-3 last digits is 

noticed. The explanation is that in CUDA most functions are 

implemented in non-standard-compliant way [2].  

2) JCuda matrix assembly 

Performances in CUDA programming are better if the 

algorithm is massively parallelized, therefore the matrix has to 

be computed with a high number of threads. The chosen 

approach allocates one thread to each interaction. So, N2 

threads are defined. Each thread contains only the Gauss 

integration loop. A simplified version of the matrix assembly 

CUDA kernel is presented in fig. 3. 

Only the mesh is sent to the GPU. Gauss points, Gauss 

jacobians, Gauss weights and matching points tables are 

generated on the GPU thanks to CUDA kernels. The tables 

stay in the GPU global memory. The access to the data from 

the assembling CUDA kernel is done continuously to preserve 

high speed computation (i and j indexes are inverted). Finally 

the diagonal of the matrix is fixed with analytical solutions. 

3) JCuda linear system solving 

Once the set of linear equations is obtained and stored in the 

global memory of GPU, the full interaction problem is solved 

by a GMRES iterative method [7]. The iterative method 

developed here is not a fully GPU algorithm because it is 

hardly parallelizable, only the matrix product for the 

computation of the residual is done using the JCublas library. 

// Loop 1: on all the N elements

For i = 0,1,…N // can be parallelized if multi-CPU

// Loop 2: Gauss integration

For k = 0,1,… number of Gauss points

// Vectorized interaction of element i with all elements

Integral(i,:) += 1/r(i,:,k) *weight(k,:) * jacobian(k,:)

End

End
 

Fig. 2.  Vectorized matrix assembly algorithm.  
__global__ void Assembling_kernel

(int N, float* matrix, ..., int nb_gauss_pt)

{

// get the thread coordinates

int j = blockDim.x * blockIdx.x + threadIdx.x;

int i = blockDim.y * blockIdx.y + threadIdx.y;

if ( i < N && j < N )

{

- get the matching point from global memory

// loop on Gauss points

float integral = 0.0;

for ( int k=0; k < nb_gauss_pt; k++ )

{

- get gauss point coordinates from global memory

- get gauss weight and jacobian from global memory

- compute r

// compute the integral

integral += 1.0 / r * gauss_weight * gauss_jac;

}

// return the potential to the global memory

matrix[i*N+j] = 1.0 / (4*Pi*Epsilon) * integral;

}

}
 

Fig. 3.  Simplified CUDA kernel for matrix assembly using Gauss 

integration technique.  

0.5

0.501

0.502

0.503

0.504

0.505

0.506

Pure analytical 7 Gauss pts w ith f ixed

diagonal

R
e

la
ti

v
e

 e
rr

o
r 

(%
) Single precision

Double precision

  
Fig. 4.  Relative error of the charge distribution depending of integration 

technique and variables precision (lower is better).  
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Therefore at each iteration a vector is transmitted between the 

host computer and the CUDA device. A simple Jacobi 

preconditioning method is used. 

4) Hardware adaptability 

The main limiting factor of GPU computing is the graphic 

memory amount. That is why two strategies have been 

developed. First if the GPU can contain the matrix then the 

problem is solved with the iterative method presented before. 

If there is no memory enough, then the matrix is assembled by 

blocks and transferred to the host computer. The system is 

solved by a classical CPU method. 

E. Results 

1) Benchmark problem 

In our example, a spherical iso-potential conductor (radius 

of 10 cm) is modeled. The potential is set to 1 mV. This 

example is simple but the theoretical charge density is known, 

so the accuracy of computing can be precisely evaluated. 

2) Hardware specifications 

The CPU results are obtained with an Intel Xeon 2.67 GHz 

in single core. The CUDA devices are a Geforce 320M (48 

cores, 0.95 GHz, 250 MB of shared memory) and a Tesla 

C1060 (240 cores, 1.30 GHz, 4 GB of RAM).  

3) Integration method accuracy 

The sphere is meshed into 9068 triangular patches. The 

GMRES convergence break is set to 1e-9 and the Krylov 

subspace is extended to 30. Therefore the errors are mainly 

due to the meshing and the integration technique. The fig. 4 

shows the relative error of the charge distribution between the 

theoretical values and the computations, depending of 

integration technique and variable precision. As expected, a 

double precision computation is better than a single one, and a 

pure analytical computation [8] is better than a numerical one. 

However, the differences are really poor (0.004%) and it is 

reasonable to use the numerical method in single precision. 

4) Matrix assembly speed 

The mesh is refined to 20602 patches and the matrix is 

computed in single precision. As shown on fig. 5, numerical 

technique is faster than the pure analytical one (3-4 times). 

There is one order of magnitude in computation times between 

the CPU computation and the low cost Geforce 230M one, for 

which the matrix is assembled in 9 parts and transferred to the 

host computer. Finally, two orders of magnitude are noticed 

between the CPU and the Tesla C1060 computations. The 

speed up in using GPU is not the number of GPU cores 

because a GPU core is less powerful than an Intel CPU one. 

5) Iterative solver speed 

A gain of an order of magnitude between CPU and GPU in 

the solving of the linear system is noticed in spite of the data 

transfers between the CUDA device and the host computer. 

The computation is done in single precision and the meshing 

and solving parameters are the same as previously. 

6) JCuda limitations 

Some commonly optimizations, like the use of pinned 

memory in order to speed up data transfers, are not attractive. 

Indeed the data transfer is faster but the access to these data 

from Java is slower. In fact JCuda is based on C library and 

performances decrease in using C memory scheme from Java. 

F. Conclusion 

A very efficient integration method has been developed, 

mixing analytical and numerical approach. Matrix assembly is 

faster without real losing of precision. Furthermore, the use of 

GPU thanks to JCuda library speeds up the computation of 

two orders of magnitude. The linear solving is also speeded up 

of one order of magnitude. 

IV. FAR FIELD COMPUTATION 

A. Fast Multipole Method 

B. Single precision computation 

C. JCuda implementation 

D. Results 

E. Conclusion 

V. CONCLUSION AND PERSPECTIVES 

We have reported in this paper a strategy for computing 

electromagnetic fields on Java platform with the JCuda library 

on a standard computer. …. 

Wavelets compression [9], [10] which seems more 

parallelizable than the FMM will be investigated. 
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