
HAL Id: hal-00610893
https://hal.science/hal-00610893

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JCuda vectorized and parallelized computation strategy
for solving integral equations in electromagnetism on a

standard personal computer
Christophe Rubeck, Bertrand Bannwarth, Olivier Chadebec, Benoît

Delinchant, Jean-Paul Yonnet, Jean-Louis Coulomb

To cite this version:
Christophe Rubeck, Bertrand Bannwarth, Olivier Chadebec, Benoît Delinchant, Jean-Paul Yonnet,
et al.. JCuda vectorized and parallelized computation strategy for solving integral equations in elec-
tromagnetism on a standard personal computer. COMPUMAG 2011, Jul 2011, Sydney, Australia.
�hal-00610893�

https://hal.science/hal-00610893
https://hal.archives-ouvertes.fr

> PD2.13 <

1

JCuda vectorized and parallelized computation strategy for solving

integral equations in electromagnetism on a standard personal

computer

C. Rubeck, B. Bannwarth, O. Chadebec, B. Delinchant, J-P. Yonnet and J-L. Coulomb

Grenoble Electrical Engineering Laboratory, INP/UJF/CNRS UMR 5269, 38402 Saint Martin d’Hères Cedex, France

The paper presents a computation strategy for solving integral equations in electromagnetism. Nowadays, powerful programmable

Graphic Processing Units (GPU) can be found in any standard computer. The paper investigates the benefits of the use of GPUs in

addition to the CPU one in order to improve computation speed by using integral methods. Java language and the JCuda library, not

often used in speed calculation by the computing community, has been used here. A 100 time speed-up is reported in matrix assembly

between an optimized traditional CPU computation and a CPU+GPU one. FMM…

Index Terms—Fast Multipole Method on GPU, JCuda computing, Pure Java ...

I. INTRODUCTION

NTEGRAL equation methods (IEM) are currently widely used

in electromagnetic modeling. Unlike the finite element

method (FEM), they do not require the meshing of non-active

materials like air. However, they are based on the computation

of electromagnetic interactions between all elements (i.e. full

interaction). Therefore, they lead to fully dense systems of

equations. They are well known to be easily parallelizable

because of the independence of interactions. Moreover, the

interest of IEM has considerably increased since the

emergence of acceleration methods such as the Fast Multipole

Method (FMM). In this kind of algorithm, near and far field

interactions are separated [1]:

farnear VVV  (1)

While far fields computations are highly accelerated by

FMM, the near field interaction is treated classically. In

particular, full near field matrices have to be computed with a

high performance strategy in order to keep the advantage of

using FMM.

In this work, a parallelized and vectorized full matrix

interaction computation strategy is implemented, first using a

classical CPU on a standard personal computer then a CUDA

capable GPU [2]. The main software is developed thanks to

Java language so the use of the JCuda library enables GPU

interfacing directly from Java [3]. The choice of using Java

can seem to be surprising for speed computations, but the use

of this language enables easy portability, robust and fast

software developments, and performances are respectable in

comparison with most commonly used language like C++ [4].

II. CHARGE DENSITY COMPUTATION

Let consider a perfect conductor be in free space associated

to a known potential V0. To compute the charge density in

electrostatics, the following integral equation has to be solved:

dS
r

V
S


 0

0
4

1
 (2)

Where S is the surface of the conductor, σ is the charge

density, ε0 is the vacuum permittivity and r is the distance

between the point where the potential is expressed (on the

conductor) and the integration point.

III. NEAR FIELD COMPUTATION

The near potential (1) is computed as presented in (2). Let

mesh the surface into a set of triangle patches. The system of

linear equations is generated using a point matching approach

with 0-order shape function. This method is very simple but

has already shown its accuracy.

A. High performance matrix assembly

In (2), if S is meshed into N cells, N integrals on N cells

have to be computed. This is why the computation time

increases in N2. Moreover, the numerical evaluation of the

integrals of (2) is sometime numerically singular (in particular

for the computation of the interaction of an element on itself

so when r is close to zero). The use of analytical formulae [5]

to evaluate the kernel of (2) is then preferred but these

computations can be time-consuming. The chosen approach is

a mix of numerical and analytical integral computation in

order to get the best ratio between accuracy and speed.

The integrals are first computed thanks to a numerical

Gauss integration technique. In this approach, there are three

overlapped loops in the algorithm (fig. 1).

I

Manuscript received January 1, 2008 (date on which paper was submitted
for review). Corresponding author: F. A. Author (e-mail:

f.author@nist.gov).

Digital Object Identifier inserted by IEEE

// Loop 1: on all the N elements

For i = 0,1,…N // can be parallelized if multi-CPU

// Loop 2: interaction of element i with all elements

For j = 0,1,…N

// Loop 3: Gauss integration

For k = 0,…number of Gauss points

Integral(i,j) += 1/r(i,j,k) *weight(k) * jacobian(k)

End

End

End

Fig. 1. Classical matrix assembly algorithm.

> PD2.13 <

2

Working on larger and continuous sets of data improves

memory access speed and therefore the computation speed.

That is why the two last loops are switched in order to have a

high number of indexes in the last loop. It is allowed because

all interactions are independent. Furthermore vectorized

operators can be used as shown in the fig. 2. The benefit of the

vectorized algorithm toward the classical one is a speed-up of

almost 30 to 50 times for the matrix assembly.

B. Fixing singularities

After the matrix assembly, the artificial singularities which

have been introduced with the numerical integration are fixed.

The diagonal coefficients of the matrix are corrected by the

analytical solution of the corresponding integrals.

C. Pure Java computation

An optimized vectorized Java matrix package has been

developed in the G2Elab [6]. It is based on contiguous

memory storage of the matrix, adapted indexes and macro

matrix manipulation commands.

Before assembling the matrix, a pre-processing is needed. A

table containing all the coordinates of elements Gauss points

in the main referential is generated. The process is repeated for

the Gauss weights, the Gauss jacobians and the matching

points. Then the matrix is assembled line per line thanks to

vectorized operators and the diagonal is fixed.

D. JCuda implementation

Thanks to the JCuda library, it is possible to call CUDA

kernels directly from Java. A Java GPU matrix library has

been developed. It enables the management of the GPU

memory allocation, the data transfer between the GPU device

and the host, matrix manipulations and the call of kernels.

1) GPU computing accuracy

It is well known that GPU are much faster in single

precision computing than in double precision. Furthermore,

only latest GPU are double precision capable. Therefore the

good computation accuracy of (2) in single precision must be

checked before developing a CUDA method. Computations of

(2) on a triangle in single and double precision are compared

for analytical and numerical method. Errors are noticed in the

order of magnitude of 1e-7. So the quality of the evaluation of

(2) is only a few influenced by the single precision

computation. For the same calculations, results between CPU

and GPU are compared. A difference on the 1-3 last digits is

noticed. The explanation is that in CUDA most functions are

implemented in non-standard-compliant way [2].

2) JCuda matrix assembly

Performances in CUDA programming are better if the

algorithm is massively parallelized, therefore the matrix has to

be computed with a high number of threads. The chosen

approach allocates one thread to each interaction. So, N2

threads are defined. Each thread contains only the Gauss

integration loop. A simplified version of the matrix assembly

CUDA kernel is presented in fig. 3.

Only the mesh is sent to the GPU. Gauss points, Gauss

jacobians, Gauss weights and matching points tables are

generated on the GPU thanks to CUDA kernels. The tables

stay in the GPU global memory. The access to the data from

the assembling CUDA kernel is done continuously to preserve

high speed computation (i and j indexes are inverted). Finally

the diagonal of the matrix is fixed with analytical solutions.

3) JCuda linear system solving

Once the set of linear equations is obtained and stored in the

global memory of GPU, the full interaction problem is solved

by a GMRES iterative method [7]. The iterative method

developed here is not a fully GPU algorithm because it is

hardly parallelizable, only the matrix product for the

computation of the residual is done using the JCublas library.

// Loop 1: on all the N elements

For i = 0,1,…N // can be parallelized if multi-CPU

// Loop 2: Gauss integration

For k = 0,1,… number of Gauss points

// Vectorized interaction of element i with all elements

Integral(i,:) += 1/r(i,:,k) *weight(k,:) * jacobian(k,:)

End

End

Fig. 2. Vectorized matrix assembly algorithm.
__global__ void Assembling_kernel

(int N, float* matrix, ..., int nb_gauss_pt)

{

// get the thread coordinates

int j = blockDim.x * blockIdx.x + threadIdx.x;

int i = blockDim.y * blockIdx.y + threadIdx.y;

if (i < N && j < N)

{

- get the matching point from global memory

// loop on Gauss points

float integral = 0.0;

for (int k=0; k < nb_gauss_pt; k++)

{

- get gauss point coordinates from global memory

- get gauss weight and jacobian from global memory

- compute r

// compute the integral

integral += 1.0 / r * gauss_weight * gauss_jac;

}

// return the potential to the global memory

matrix[i*N+j] = 1.0 / (4*Pi*Epsilon) * integral;

}

}

Fig. 3. Simplified CUDA kernel for matrix assembly using Gauss

integration technique.

0.5

0.501

0.502

0.503

0.504

0.505

0.506

Pure analytical 7 Gauss pts w ith f ixed

diagonal

R
e

la
ti

v
e

 e
rr

o
r

(%
) Single precision

Double precision

Fig. 4. Relative error of the charge distribution depending of integration

technique and variables precision (lower is better).

> PD2.13 <

3

Therefore at each iteration a vector is transmitted between the

host computer and the CUDA device. A simple Jacobi

preconditioning method is used.

4) Hardware adaptability

The main limiting factor of GPU computing is the graphic

memory amount. That is why two strategies have been

developed. First if the GPU can contain the matrix then the

problem is solved with the iterative method presented before.

If there is no memory enough, then the matrix is assembled by

blocks and transferred to the host computer. The system is

solved by a classical CPU method.

E. Results

1) Benchmark problem

In our example, a spherical iso-potential conductor (radius

of 10 cm) is modeled. The potential is set to 1 mV. This

example is simple but the theoretical charge density is known,

so the accuracy of computing can be precisely evaluated.

2) Hardware specifications

The CPU results are obtained with an Intel Xeon 2.67 GHz

in single core. The CUDA devices are a Geforce 320M (48

cores, 0.95 GHz, 250 MB of shared memory) and a Tesla

C1060 (240 cores, 1.30 GHz, 4 GB of RAM).

3) Integration method accuracy

The sphere is meshed into 9068 triangular patches. The

GMRES convergence break is set to 1e-9 and the Krylov

subspace is extended to 30. Therefore the errors are mainly

due to the meshing and the integration technique. The fig. 4

shows the relative error of the charge distribution between the

theoretical values and the computations, depending of

integration technique and variable precision. As expected, a

double precision computation is better than a single one, and a

pure analytical computation [8] is better than a numerical one.

However, the differences are really poor (0.004%) and it is

reasonable to use the numerical method in single precision.

4) Matrix assembly speed

The mesh is refined to 20602 patches and the matrix is

computed in single precision. As shown on fig. 5, numerical

technique is faster than the pure analytical one (3-4 times).

There is one order of magnitude in computation times between

the CPU computation and the low cost Geforce 230M one, for

which the matrix is assembled in 9 parts and transferred to the

host computer. Finally, two orders of magnitude are noticed

between the CPU and the Tesla C1060 computations. The

speed up in using GPU is not the number of GPU cores

because a GPU core is less powerful than an Intel CPU one.

5) Iterative solver speed

A gain of an order of magnitude between CPU and GPU in

the solving of the linear system is noticed in spite of the data

transfers between the CUDA device and the host computer.

The computation is done in single precision and the meshing

and solving parameters are the same as previously.

6) JCuda limitations

Some commonly optimizations, like the use of pinned

memory in order to speed up data transfers, are not attractive.

Indeed the data transfer is faster but the access to these data

from Java is slower. In fact JCuda is based on C library and

performances decrease in using C memory scheme from Java.

F. Conclusion

A very efficient integration method has been developed,

mixing analytical and numerical approach. Matrix assembly is

faster without real losing of precision. Furthermore, the use of

GPU thanks to JCuda library speeds up the computation of

two orders of magnitude. The linear solving is also speeded up

of one order of magnitude.

IV. FAR FIELD COMPUTATION

A. Fast Multipole Method

B. Single precision computation

C. JCuda implementation

D. Results

E. Conclusion

V. CONCLUSION AND PERSPECTIVES

We have reported in this paper a strategy for computing

electromagnetic fields on Java platform with the JCuda library

on a standard computer. ….

Wavelets compression [9], [10] which seems more

parallelizable than the FMM will be investigated.

VI. REFERENCES

[1] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,
Journal of Computational Physics”, vol. 73, Issue 2, pp. 325-348, Dec

1987.

[2] NVIDIA. (2010, Nov.) “NVIDIA CUDA programming guide”,

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/C

UDA_C_Programming_Guide.pdf

[3] M. Hutter, JCuda (Java bindings for CUDA), http://www.jcuda.de/
[4] V. Reinauer, T. Wendland, C. Scheiblich, R. Banucu, “Object-Oriented

Development and Runtime Investigation of 3-D electrostatic FEM

problems in Pure Java”, Proceeding of CEFC 2010 Confrenece, to be
published in IEEE Trans. Mag., 2011.

[5] E. Lezar and D.B. Davidson, “GPU acceleration of method of moments

matrix assembly using Rao-Wilton-Glisson basis functions,” Proceeding
of ICEIE 2010 conference, vol.1, no., pp.V1-56-V1-60, 1-3 Aug. 2010.

[6] J-L. Coulomb, “Numerical Design Of Experiments and Optimization” ,

http://forge-mage.g2elab.grenoble-inp.fr/project/got
[7] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat.

Comput. vol. 7, no. 3, pp. 856, July 1986.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

Intel CPU Geforce 320M Tesla C1060

T
im

e
 (

m
s

)

Pure analytical
7 Gauss pts with fixed diagonal

Fig. 5. Comparison of matrix assembly times depending of architecture and

integration technique (lower is better).

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://www.jcuda.de/
http://forge-mage.g2elab.grenoble-inp.fr/project/got

> PD2.13 <

4

[8] S. Rao, A. Glisson, D. Wilton, and B. Vidula, “A simple numerical
solution procedure for statics problems involving arbitrary-shaped

surfaces,” IEEE Trans. Antennas Propagat. vol. 27, no. 5, pp. 604–608,

Sep 1979.
[9] C. Scheiblich, V. Kolitsas and W. M. Rucker, “Compression of the

Radiative Heat Transfer BEM Matrix of an Inductive Heating System

Using a Block-Oriented Wavelet Transform,” IEEE Trans. Magn., vol.
47, no. 3, pp. 1712-1715, Mar. 2009.

[10] C. Scheiblich, R. Banucu, V. Reinauer, J. Albert and W. M. Rucker,

“Parallel Hierarchical Block Wavelet Compression for an Optimal
Compression for 3-D BEM Problems,” IEEE Trans. Magn., vol. 47, no.

5, pp. 1386-1389, May 2011.

