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Software Coupling and Orchestration Tool to the
Modeling of Multi-physic Problems
L. Mokhtari, B. Delinchant, J-L. Coulomb, T. Le duc, and P. Pham Quang

Abstract—We present in this paper Scot, which is a modular
software solution for weakly coupling models, methods and
orchestration of the simulation. The goal behind Scot is to make
easier the phase of modeling and optimize the phase of simulation
by tuning the solvers simulation parameters. Specifications and
composition of Scot will be described. Scot has been successfully
validated by two different applications, the PEEC-MoM coupling
to the modeling of an electromagnetic device and the magneto-
mechanic coupling to the modeling of deformable nano-switch
contact NEMS.

Index Terms—Software component, weak coupling, Tuning
solvers, Orchestration, PEEC and MoM method, and magneto-
mechanic coupling.

I. INTRODUCTION

THE PROBLEM in multidisciplinary systems modeling is
that researchers attempt to model all the different parts of

the system that don’t appear from their research field, so the
models they develop can be of poor quality and may contain
several errors of modeling.

In this context, it appears more interesting to use specialized
tools to carry out the different models and then link them to
rebuild the overall representation of the complex system [1].

Scot (Software Coupling and Orchestration Tool) is a
software tool with a modular architecture developed for the
purpose of coupling weakly models, methods and specialized
tools. It includes some interfaces and makes easy to develop
others as required. Models written in any language and em-
bedded in Java, can be easily linked to Scot.

Scot has been successfully tested on two applications. The
first concerns the modeling of a real electro-magnetic device
by coupling the PEEC (Partial Elements Equivalent Circuit
method) and MoM (Method of Moments) method with using
a Matlab-Scot coupling. The second test example is a magneto-
mechanic coupling applied to the modeling of a deformable
switch beam NEMS (Nano Electro-Mechanical Systems).

II. SPECIFICATIONS OF SCOT

Coupling strategies are described by two ways in Scot; in
the first, the models are implemented directly in Scot and
both of the control and the simulation are done on Scot,
however, in the second, there are two layers as shown in (Fig.
1). The layer of supervision from where we configure and
control the coupling and, the layer of simulation where the
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models exchange the unknown variables. When the desired
convergence is reached, the layer of supervision calls the layer
of simulation to get the results for post processing.
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Fig. 1. Scot Coupling scheme of two models using CT (Coupling Terms).

A. Scot elements

1) Variables: State variables, are tokens consumed or pro-
duced by an ScotComponent or ScotTransformer, character-
ized by its type (integer, real, boolean. . . ), size, and value.
Among Scot variables, there are also parameters of configu-
ration and control.

2) Components: ScotSolver is the basic component of Scot,
it includes a path to load some type of files, an initialization
and solving method, and a name of the recovered variable.
ScotSolver is composed by sComp Matlab and sComp Java.
The first is an interface that allows to couple external Matlab
models (Fig. 3(a)), this type of component is used in the
application VI-A. The second one calls models written in java
language and can use models in ICAr1 (Fig. 3(b)) components
norm as done in the application VI-B.
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Fig. 2. Representation of Scot Coupling component, its parameters and
interactions with Scot manager and other components.

1ICAr : Norm of the software component used in CADES environment [2]
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Fig. 3. Graphical user interfaces of Scot Components (a) GUI of Scot
Component calling Matlab model, and (b) GUI of Scot Component calling
Java class.

3) Composite component: The sComp Composite (Scot
composite component) is a class of ScotSolver, it is specified
in the goal to build easily complex coupling algorithms. It
allows us to couple ScotSolvers sequentially with or without
feedback (Fig. 4). With using sComp Composite, some parts
of a complex algorithm are encapsulated and seen as a simple
ScotSolver from the ScotCoplingTool.

 

Fig. 4. Graphical user interface of Scot composite component.

4) Transformers: Since the models are not necessarily
designed to be coupled thus state variables produced by one
model can not be consumed by another. In this case, it is
necessary to use coupling terms ”ScotTransformer”. These
ScotTransformers may also be transition matrices to reduce
the order of the state variables or, software that performs
interpolation between different scale meshes such as OASIS
[3], MpCci [4].

5) Coupler: Represents the manager of the simulation.
At this level, we select the coupled ScotSolvers and Scot-
Transformers, and specify the orchestration strategy that these
selected components will exchange variables. The parameters
and functions of orchestration are given by the ScotCoupling-
Tool, these parameters define the coupling strategy.

III. UML DIAGRAMS OF THE SCOT SOFTWARE

To facilitate the understanding of the Scot Composition
and architecture, we have given in (Fig. 5) and (Fig. 6) the
simplified UML diagrams of Scot.
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Fig. 5. Simplified UML diagram of the ScotSolver class and its subclasses.
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Fig. 6. Simplified UML diagram of the ScotCouplingTool.

IV. COUPLING OF SCOT AND MATLAB

A Socket based communication is developed to couple and
adapt the Matlab models to the ScotComponent (Fig. 7), it
contains 2 java classes and a ”.dll” library and implements
the following methods:

1) Initialization of the Matlab models (build the models
according to the model parameters).

2) resolution of the models and getting the residuals to test
the convergence of the coupling.

3) getResults to recover the final results when the conver-
gence criteria is achieved.

These three methods are respectively called by the
sComp Matlab methods : init(), solve(), and getOutputs(). The
tight connection between Scot and Matlab is performed by
Matlab Engine.
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V. COUPLING STEPS DESCRIPTION WITH USING SCOT

Scot has a suitable graphical user interface that allows us
to easily build coupling applications by following the steps
below:

a) Step one: Build the Scot components and Scot cou-
pling terms as explained briefly in section II-A2. These
components appear in the work bar in the left side of the
main page of Scot.

b) Step two: Select a ScotCouplingTool, this one pro-
vides as an interface where we can find the ScotSolvers built
before, we choose the components to be coupled and give the
orchestration parameters.

1 2

3

Fig. 7. Steps description of coupling with using Scot.

VI. APPLICATION

A. First Application : Micro-inductance

We have chosen as a first application the modeling of
a micro-inductance (Fig. 8) by coupling PEEC and MoM
method to respectively model the electric inductance and
magnetic materials in the device.
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Fig. 8. Micro-inductance, composed by two magnetic regions (µr = 1000)
and an electric inductance powered by a source voltage (V = 1volt, f = 1kHz).

The numerical model of the micro-inductance is given by
the system of equations below (1).

{
[MM ] · [M] + [BSm] · [I] = [0]
[Zm] · [I] + [LFm] · [M] = [V ]

(1)

where,

[MM ] Magnetostatic matrix, obtained with LOCAPI [6]
[BSm] Impact of the electric on magnetic, coupling term,
[Zm] Impedance matrix, obtained with INCA3D [7]
[LFm] Impact of the magnetic on electric, coupling term.

The resolution of the system (1) gives us the vector of
material magnetizations [M] and the electric current in the
inductance [I], according to the sources vector [V ].

The model of the micro-inductance has been validated with
the finite element approach in [5]. For the same results of
magnetizations and electric current in the inductance, we
have compared the time resolution of strong coupling to the
tuned weak coupling proposed in [1] regarding the number of
unknowns (Fig. 9).
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Fig. 9. Curves of the time resolution regarding the number of unknowns.

The curves show that the simulation of the coupling system
has found a good interest in orchestration, it has enhanced and
sped up the convergence of the coupling.

B. Second Application : Magneto-Mechanic NEMS

The second test case is a model of Magneto-Mechanic nano-
switch, composed by a permanent magnet, an electromagnet
and a deformable beam (Fig. 10). This model has been build
and detailed in [8]. A weak coupling iterative algorithm is
used to couple a numerical mechanic model with an analytical
magnetic one. The computed variables are the contact forces
produced by the electromagnet on the permanent magnet,
the beam deformation vector caused by the displacement of
the permanent magnet and the contact length with the fixed
substrate.
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Fig. 10. Deformable Magneto-Mechanic nano-swith NEMS.

To orchestrate the simulation of the coupled model, the
available parameters are the accuracy and the number of
iteration of the mechanic model, and the accuracy of the
integral in the magnetic one since it is solved numerically
(Fig. 11).
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Fig. 11. Iterative coupling model and tuned paramters of the Magneto-
Mechanic NEMS and its tunable parameters.

1) Coupling strategy: In coupling algorithms, the accura-
cies of the coupled solvers are unchanged during the simula-
tion. We have proposed a progressive accuracy function based
on the coupling iteration number as shown in figure 12,

We have presented in this paper Scot which is a solvers coupling and orchestration tool. The solvers 

are specified under a norm of Scot Components and have provided the simulation parameters to the 

manager. These parameters allow us to use the coupling strategies proposed in [\ref{Mokhtari}]-

[\ref{mpcci}], develop and test new efficient algorithms to optimize the multi-physic systems 

simulation.\vspace{0.1cm} 

 

The concept of layers introduced in Scot minimizes a lot exchanging data with the supervisor which 

vacates space memory and requests much less the processor. The architecture based software 

components used in Scot promotes the reusing of models libraries and so facilitate the modeling of 

multi-physic systems.\vspace{0.1cm} 

 

In the applications, we have used a static ScotComponent, our future research concerns the 

specification of dynamic ScotComponents to the co-simulation of temporal models with variable 

subcycling step time to accelerate and optimize this type of coupling simulation. 
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Fig. 12. Progressive and fixed accuracy.

Posteriori parameters analysis can be peformed to
determine the optimal parameters of the simulation and then
automatically tune the coupled model.

A comparison has been made between the fixed and pro-
gressive accuracy approach. We have plotted in (Fig. 13) the
force and deformation residuals, and given the relative errors
and the simulation cpu time of the two approaches.
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Fig. 13. Residuals of the mechanic and magnetic model, relative errors, and
simulation cpu time of the fixed and progressive accuracy approach.

We can see that the progressive accuracy approach is enough
faster than the fixed accuracy one, it has converged with a thin
relative error and minimized the simulation cpu time by 38 %.

VII. CONCLUSION
We have presented Scot which is a solvers coupling and

orchestration tool. The solvers are specified under a norm of
Scot Components and have provided the simulation parameters
to the manager. These parameters allow us to use the coupling
strategies proposed in [1]-[4], develop and test new efficient
algorithms to optimize the multi-physic systems simulation.

The concept of layers introduced in Scot minimizes a
lot exchanging data with the manager which vacates space
memory and requests much less the processor. The architecture
based software components used in Scot promotes the reusing
of models libraries and so facilitates the modeling of multi-
physic systems.

In the applications, we have used a static ScotComponent,
our future research concerns the specification of dynamic
ScotComponent to the co-simulation of temporal models with
variable subcycling step time to accelerate and optimize this
type of coupling simulation.
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