Phuong Pham Quang 
email: phuong.pham-quang@g2elab.grenoble-inp.fr
  
Benoît Delinchant 
  
C Llie 
  
E Slusanschi 
  
Jean-Louis L Coulomb 
  
Bertrand Du Peloux 
  
P Pham-Quang 
  
C Ilie 
  
B Du Peloux 
  
Mixing Techniques to Compute Derivatives of semi-numerical models: Application to Magnetic Nano Switch Optimization

published or not. The documents may come   L'archive ouverte pluridisciplinaire

I. INTRODUCTION

Sizing by optimization is nowadays of major interest of the design process of electromagnetic device. Our goal is to use optimization algorithms in conjunction with semianalytical model in order to solve the sizing problem. Among the deterministic algorithms, the constrained gradient based optimization using Sequential Quadratic Programming (SQP) algorithms is very efficient. Such algorithms require accurate values of the objective function and constraint derivatives. Unfortunately, it is often difficult to obtain the symbolic expression of the derivatives of the sizing model. But several techniques as Automatic Differentiation (AD) can be used to compute these derivatives.

The paper highlights a generic framework of model composition using different derivation techniques. This approach is shown through the example of a magnetic nano switch optimization.

II. DERIVATION TECHNIQUES

The finite difference approximation leads to an approximation suffering from both truncation and cancellation errors. It is very easy to set-up, but it is very difficult to settle the adjustment parameter.

The derivatives can be computed symbolically. This method is reliable and the faster that can be found, not only with symbolic expression but also with functions resulting from numerical integration or from implicit solver (thanks to implicit theorem). The main drawback of this method is the impossibility to differentiate the computing code (with conditional instructions, loops, etc.).

Automatic differentiation (AD) exploits the natural process of source code compilation and makes use of the intermediate representation of implemented functions in different programming languages. The derivatives of each elementary operation can be obtained in a straightforward way and can be combined according to the chain rule of differential calculus in order to obtain the derivative of the initial function. Thus, depending on the chosen accumulation strategy, functions of arbitrary complexity can be differentiated in two ways, namely forward and reverse.

In the forward mode one propagates derivatives of intermediate variables with respect to the independent variables, while in reverse, derivatives of the function with respect to intermediate variablesalso called adjointsare propagated.

Typically, AD can be implemented using either the operator overloading (ADOL-C [START_REF] Enciu | Automatic differentiation for electromagnetic models used in optimization[END_REF], CppAD, etc) or the source transformation technique (ADIFOR, ADiJaC [START_REF] Slusanschi | Algorithmic differentiation of Java programs[END_REF], etc). In operator overloading one overloads the operators which are applied on new variable types, with the routine call performing the actual derivative computation. The source transformation approach examines the source code of the original function and generates new code that computes the desired derivatives in the same time that the original function.

III. SENSITIVITY PROPAGATION OF COMPOUND MODEL As studied in [START_REF] Delinchant | Reducing sensitivity analysis times-cost of compound model[END_REF] , and as shown in Fig. 1 and Fig. 2, two kinds of sensitivity propagation mechanism can be considered to build global sensitivities. 

IV. DERIVATIVES OF MAGNETIC NANO SWITCH MODEL

The semi-numerical model of magnetic nano switch was presented in [START_REF] Pham-Quang | Semi-analytical magneto-mechanic coupling with contact analysis for MEMS/NEMS[END_REF]. It involves a coupled magneto-mechanical deformation of a cantilever beam, and allows evaluating the contact length and the contact force. The following part details how the derivatives of each model blocks are computed.

A. Magnetic model

For specific configuration of MEMS/NEMS, the Coulombian approach is used for the modeling of magnet, leading to a full analytical magnetic field model. Forces and magnetic torques applied on the beam (in magnetic parts) are computed by adaptive numerical integrations. The derivatives of this magnetic model can be computed symbolically with accuracy and rapidity [START_REF] Delinchant | Gradient based optimization of semi-numerical models with symbolic sensitivity[END_REF].

B. Mechanical deformation model

The model used to compute deformation in the presence of contact of a cantilever beam has inputs and outputs as shown in Fig. 3 Fig. 3. Inputs and outputs of mechanical deformation model ADiJaC [START_REF] Slusanschi | Algorithmic differentiation of Java programs[END_REF] was used in order to manage the derivation of this complex algorithm. ADiJaC is a source transformation AD tool that implements both the forward and reverse modes on Java codes. To date it is the first useable AD tool for the Java programming language. Differentiating the NEMS model with ADiJaC was improved to deal with special cases of matrix operations, nested method calls, special functions (e.g. "length"), and special array initializationsall intra-procedural transformations. During this work, ADiJaC's interprocedural analysis was also enhanced, so as to allow the tool to differentiate functions returning arrays, and receiving any number of vector and scalar parameters.

C. Magneto-Mechanic coupling

Sequential magnetic-mechanical coupling

The sequential magneto-mechanical coupling described in Fig. 4. has been solved by an implicit solver with Gauss method. Its derivatives are computed symbolically thanks to a classical implicit theorem. All these models are given with their own Jacobian using different techniques (symbolic or AD). CADES framework defines a standard to make the composition possible. Each model implementing this standard can be integrated into the framework. Then the overall is treated automatically by another AD tool (ADOL-C) to build the global model (Fig. 5).

D. Composition in the CADES framework

V. OPTIMIZATION RESULTS

Working principle of magnetic nano switch was presented in [START_REF] Pham-Quang | Semi-analytical magneto-mechanic coupling with contact analysis for MEMS/NEMS[END_REF]. Geometry and parameters to be optimized are given in Fig. 6. The optimization aims to determine dimensions of both fixed and mobile magnets and their positions on the beam. The objective is to minimize the volume of magnets, while respecting constraints such as length of contact and contact force, in order to ensure the quality of contact or the contact resistances are below a desired value. Fig. 6. Geometry and parameters to be optimized A genetic algorithm (without gradients) and the SQP algorithm (using gradients) were used. Both gave the same results but the first algorithm needed 3 hours computation time while the second only 92 seconds.

VI. CONCLUSIONS Deterministic optimization using gradient based algorithms is very efficient for sizing problems with constraints. However, such algorithms meet a major lack of usage because of the difficulty to obtain exactly and rapidly the derivatives values. This paper highlights the composition of different derivation techniques in a compound model through the example of magnetic nano switch.

The full paper will detail the propagation mechanism of derivatives. Each derivation techniques will be detailed, highlighting advantages and drawbacks. More details will be given on the optimization procedure and results.
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 1 Fig. 1. A compound model based on partial derivative propagation
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 5 Fig. 5. Sensitivity propagation of magnetic nano switch in CADES

Magnetic Mechanic