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INTRODUCTION

Structural variations of the human genome emerge as novel major contributors to genetic diversity and disease susceptibility. Copy number variation (CNV) refers to deletions or duplications larger than 1kb [START_REF] Feuk | Structural variation in the human genome[END_REF]. It was estimated that 12% of the genome could be affected by such variants in comparison to 1-2% covered by single nucleotide polymorphisms (SNPs) [START_REF] Redon | Global variation in copy number in the human genome[END_REF]; although a recent study provided a lower figure :   3.7% (Conrad et al., 2010). These large variations can overlap with genes and there is substantial evidence for correlation between CNVs and gene expression levels [START_REF] Stranger | Relative impact of nucleotide and copy number variation on gene expression phenotypes[END_REF]. CNVs are also known to be involved both in mendelian disorders, such as Williams-Beuren Syndrome (deletion at chromosome region 7q11.23) or Charcot-Marie Tooth neuropathy Type 1A (duplications at chromosome region 17p11.2), and complex traits such as HIV infection and asthma, among others [START_REF] Ionita-Laza | Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis[END_REF].

Recently, efforts have been made to provide resources supporting studies of structural variation in human diseases such as the Database of Genomic Variation which annotates genomic coordinates along with estimated frequencies of the CNVs (Conrad et al., 2010;[START_REF] Iafrate | Detection of large-scale variation in the human genome[END_REF][START_REF] Redon | Global variation in copy number in the human genome[END_REF]. However, the cost and the complexity of CNV assessment have restricted CNV studies to a list of carefully selected candidate genes. The possibility to study CNVs at a genome-wide scale is now possible using high-throughput SNP-array technologies. The new-generation SNP-arrays, such as the Infinium Illumina Human 1Million probe chip and the Affymetrix 6.0 platform, allow a cost-effective detection of CNVs by interpreting allele intensities for each marker. These platforms also include monomorphic probes in regions of common CNVs that presented technical problems for SNP array design due to a lack of polymorphic probes or because of disruption from Mendelian inheritance and Hardy-Weinberg equilibrium. The Illumina 1 Million SNP-array works with Beadstudio software that provides the variables used to perform the CNV calling. Different algorithms can then be employed to locate CNVs by finding breakpoints and assessing the number of copies present per individual. The most frequently-used algorithms for Illumina data are CNVpartition -an Illumina developed plug-in -, PennCNV [START_REF] Wang | PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[END_REF] and QuantiSNP [START_REF] Colella | QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data[END_REF].

Several studies have successfully assessed the role of CNVs in complex diseases such as asthma, autism, schizophrenia or cancer by applying high throughput analysis at genomewide level [START_REF] Bae | Identification of SNP markers for common CNV regions and association analysis of risk of subarachnoid aneurysmal hemorrhage in Japanese population[END_REF][START_REF] Bassett | Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome[END_REF][START_REF] Blauw | Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen[END_REF][START_REF] Cronin | Analysis of genome-wide copy number variation in Irish and Dutch ALS populations[END_REF][START_REF] Diskin | Copy number variation at 1q21.1 associated with neuroblastoma[END_REF][START_REF] Friedman | Deleted: 29/09/2010 Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation[END_REF][START_REF] Glessner | Autism genome-wide copy number variation reveals ubiquitin and neuronal genes[END_REF][START_REF] Greenway | De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot[END_REF][START_REF] Internationalschizophreniaconsortium | Rare chromosomal deletions and duplications increase risk of schizophrenia[END_REF][START_REF] Ionita-Laza | On the analysis of copy-number variations in genome-wide association studies: a translation of the family-based association test[END_REF]Kathiresan et al., 2009;[START_REF] Liu | Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer[END_REF][START_REF] Marshall | Structural variation of chromosomes in autism spectrum disorder[END_REF][START_REF] Simon-Sanchez | Genomewide SNP assay reveals mutations underlying Parkinson disease[END_REF][START_REF] Need | A genome-wide investigation of SNPs and CNVs in schizophrenia[END_REF][START_REF] Sha | Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population[END_REF][START_REF] Simon-Sanchez | Genomewide SNP assay reveals mutations underlying Parkinson disease[END_REF][START_REF] Stefansson | Large recurrent microdeletions associated with schizophrenia[END_REF][START_REF] Weiss | Association between microdeletion and microduplication at 16p11.2 and autism[END_REF][START_REF] Weiss | Association between microdeletion and microduplication at 16p11.2 and autism[END_REF][START_REF] Xu | Strong association of de novo copy number mutations with sporadic schizophrenia[END_REF][START_REF] Yang | Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis[END_REF]. A review of these studies indicates that they have used a wide range of methodologies, thus raising the issue of comparability of discovery rates. The rapid development of technologies in this field has not been accompanied by a careful evaluation of the software tools to assess disease risk association. In contrast to the nearly 100% concordance observed for bi-allelic genotypes, a recent study reported very low agreement estimates when the performance of different algorithms assessing CNV was compared using

HapMap data [START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF].

Here, we report the results from reliability and validity analyses comparing three CNV calling algorithms for Illumina 1M probe-array data (CNVpartition, PennCNV and QuantiSNP) using multiplex ligation-dependent probe amplification (MLPA) as the gold-standard analysis. The study was conducted on 96 duplicate samples from the Spanish Bladder Cancer Study. We also assessed whether the source of DNA (blood or saliva) and the number and type of SNPs considered in the CNV definition influenced the performance of the SNP calling algorithms. S1).

Log R Ratio (LRR) and the B Allele Frequency (BAF) were exported from the normalized Illumina data through the Beadstudio software to perform CNV calling. LRR is the ratio between the observed and the expected probe intensity. The expected intensity is an interpolation of the mean intensities of the surrounding genotype clusters. BAF represents the proportion of B alleles in the genotype. A region without evidence of CNV should show a LRR around zero and three clusters of BAF of 0, 0.5 and 1 corresponding to the three genotypes AA, AB and BB, respectively (Supp. Figure S1). Individuals not fitting at least one of the CNV specific quality control metric recommended by PennCNV [START_REF] Wang | PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[END_REF] were excluded from the analysis: LRR-Standard Deviation>0.28, 0.45>BAF-median>0.55, BAF-drift>0.002, and -0.04>Wave Factor>0.04. After applying the abovementioned criteria, 92 individuals (90 duplicates and 2 triplicates) were suitable for this study, thus providing 96 pairs for comparison (90 from duplicate individuals and 6 from triplicate individuals) and 186 assays (90 individuals * 2 samples and 2 individuals * 3 samples). Among the duplicates there were 63 and 33 pairs from blood and saliva samples, respectively (Supp. Table S1). 

CNV calling

Three algorithms available for Illumina data were applied: CNVpartition, PennCNV [START_REF] Wang | PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[END_REF] and QuantiSNP [START_REF] Colella | QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data[END_REF] identifying regions where the estimated number of copies of the probes inside and outside the region is different. A confidence value is also provided to allow the filtering of the CNV and limit the number of false positive callings.

PennCNV and QuantiSNP are algorithms developed by academic teams and freely available [START_REF] Colella | QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data[END_REF][START_REF] Wang | PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[END_REF]. They are both based on a Hidden Markov Model (HMM) in which the number of gene copies is the hidden state and the LRR and the BAF are the two observed states that are considered independent of each other given the number of copies. A first-order HMM is considered where the number of copies at one probe depends on the number of copies at the previous probe. However, the two algorithms differ in their transition and emission probabilities. While transition probabilities depend on the distance between adjacent probes for both approaches, the probabilities for PennCNV are also statespecific, accounting for the fact that some state transition events (e.g., from normal state to heterozygous deletion) are more likely than others (e.g., from heterozygous deletion to trizygous). Regarding the BAF emission probabilities, PennCNV uses a more sophisticated model than QuantiSNP. Both algorithms provide a confidence value to filter CNVs. For QuantiSNP, the confidence value is the Log Bayes Factor (LBF). All algorithms were used with their default options and CNV calls from QuantiSNP with a LBF lower than 10 were filtered out as recommended whereas no filter was applied on CNVpartition and PennCNV calls.

Each of the 1,029,591 probes of the Illumina 1M array corresponding to the autosomal chromosomes was assigned with an estimated number of copies if were included in a CNV and with two copies otherwise. This procedure was applied to each of the 186 experiments performed in this study and for each of the algorithms.

Reliability analysis

The calling agreement between duplicates was evaluated for each of the algorithms to determine presence of CNV and number of copies. First, we assessed the agreement in detecting the presence of an aberration by estimating the kappa index (KI) between duplicates. KI compared the observed agreement against the agreement expected by chance in all the probes [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF]. For probes in which the algorithm was concordant in detecting an aberration, we computed the agreement in assessing the number of copies by estimating the weighted Kappa Index (KI w ). This was done by applying quadratic weights that decreased while increasing differences in copy numbers (Supp. Figure S2). A total of 96 KI and KI w values were obtained for each algorithm. Summary statistics (mean, median, standarddeviation, and quartiles) were computed and differences between algorithms were tested using paired t-tests.

To further limit the number of false positive CNV callings from SNP-array platforms, Itsara genotyped SNPs included in the CNV [START_REF] Itsara | Population analysis of large copy number variants and hotspots of human genetic disease[END_REF]. The LRR intensities were transformed into standard normal measurements (Z-scores) and the B-deviation value for each probe was estimated. Putative CNVs were classified into two categories (small and large)

according to a cut-off of 100 probes and 1 Mb length. Large CNVs were manually curated.

Small CNVs were subject to automated filtering. Homozygous deletions were required to comply with: 1) ≥ 3 probes, median LRR Z-score ≤ -4, and mean B-deviation ≥ 0.1 or 2) ≥ 3 probes and median LRR Z-score ≤ -8. Heterozygous deletions were required to span ≥10

probes, have LRR Z-score ≤ -1.5, and less than 10% of probes called as heterozygous. To define duplications, the requirements were: ≥ 10 probes, LRR Z-score ≥ 1.5, and B-deviation among heterozygote probes ≥ 0.075. The reliability of applying the Itsara's filter was assessed, too.

We analyzed the calling agreement of paired samples depending on the DNA source by stratifying the data according to whether the DNA was from blood (N=63) or saliva (N=33).

In addition, we assessed whether the number of SNPs included in each CNV influenced the agreement rate by comparing the CNV calling performance between replicates by filtering for the number of SNPs in the CNVs. The reliability results were plotted for the three algorithms and the number of CNVs called according to the number of SNPs.

Select commercial SNP genotyping platforms contain monomorphic probes in regions of known common CNVs to facilitate analysis, particularly when prior analyses in HapMap indicated a substantial problem of fitness with Hardy Weinberg proportions. The overall percentage of monomorphic probes in the 1M Illumina Infinium platform in autosomal chromosomes is 1.4% (14,716/1,029,591). To test the impact of the type of probe (monomorphic or polymorphic) on the reliability of the calling, we compared for these two types of probes the ratio of concordant vs. discordant probes included in CNVs. We excluded the regions with a concordant result for the absence of CNV because the density of the monomorphic probes in those regions was lower according to the design of the SNP-array, hence not being comparable.

Validity Study

Multiplex ligation-dependent probe amplification (MLPA) assay is a standard laboratory approach to assess differences in the number of alleles copies at a particular locus. It is based on hybridization, specific probe ligation, amplification and capillary migration, and it was used as the gold-standard method to assess the number of copies of a given sequence. Regions were selected for validation with MLPA if at least one algorithm detected a minimum of 8 individuals carrying a CNV to avoid performing experiments in regions where no CNV exist.

Commercial probe mixes (kits P070 and P036 covering the selected regions (MRC-Holland Amsterdam, The Netherlands) and custom designed probes (Supp. Table S2) were used.

MLPA reactions were carried out as described previously [START_REF] Schouten | Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[END_REF] with slight modifications when custom probes were used [START_REF] Rodriguez-Santiago | Association of common copy number Deleted: 29/09/2010 variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia[END_REF]. The relative peak height (RPH) method recommended by MRC-Holland was used to determine the copy number status. Theoretically, heterozygous deletions and duplications showed a relative peak height of approximately 0.5 and 1.5, respectively. Only blood samples were considered for this analysis.

Leukocyte DNA from 56 individuals was analyzed twice by MLPA, providing a concordance rate of 97.25%. Among the discordant assays, 10 showing a "non-calling" rate greater than 70% were re-analyzed. Since the results of four of them slightly improved after the 2 nd MLPA run they were included in the validity study and data were updated.

To assess the validity of each algorithm, sensitivity, specificity, and positive and negative CNV regions each algorithm assigns, respectively. These estimates are given as proportions with a 95%CI for the overall aberration assessment and for each type of CNV. The validity analysis considered those probes and individuals that provided agreement in detecting CN event according to each algorithm.

Statistical analyses were performed in R version 2.9.0 (http://www.r-project.org) with the epiR package (Mark Stevenson, http://epicentre.massey.ac.nz). Significance was declared when the p-value was smaller than 0.05.

RESULTS

The number of CNVs detected per individual varied substantially according to the calling algorithm (Table 1). CNVpartition identified an average of 28.0 CNVs per individual whereas the two algorithms based on the HMM, PennCNV and QuantiSNP, identified a median CNV number of 58.5 and 56.0, respectively. The number of CNVs per individual detected in saliva DNA was higher than in leukocyte DNA, regardless of the algorithm used (Table 1).

Reliability analysis

The SNP calling provided by the genotyping platform showed a very high agreement with a mean Kappa Index (KI) of 99.99 (95%CI, 99.94 -100) (Figure 1a). The distribution of this KI was similar for experiments using blood or saliva DNA. Regarding CNV assessment in duplicate samples, PennCNV, QuantiSNP, and CNVpartition presented a lower agreement with mean KI values of 65.10, 63.09, and 57.24, respectively. The KI distribution based on CNVpartition callings significantly differed from that based on PennCNV and QuantiSNP callings (p=2.68x10 -10 and p=7.28x10 -5 , respectively) (Figure 1b). Once a region of CNV was detected, the algorithms also showed differences in the KI distribution when assessing the number of copies (Figure 1c). PennCNV appeared to be the most reliable algorithm with an average KI w (weighted KI) = 98.96 for the 96 pairs of replicates, and regardless the type of CNV (gain or loss). However, QuantiSNP and CNVpartition performed differently and poorly (Supp. Figure S3). This figure was significantly higher than those of CNVpartition (KI w =94.55, p= 5.18x10 -5 ) and QuantiSNP (KI w =92.88, p=7.43x10 -8 ). Applying the Itsara filtering method, we did not observe an improvement of the agreement neither at the CNV detection level nor at the level of copy number (Supp. Figure S4).

Regardless of the algorithm applied, the agreement observed in detecting CNV was always higher in blood than in saliva samples (Figure 2), although the difference of the mean KI was only significant for CNVpartition and PennCNV callings (p=3.93x10 -7 and p=8.16x10 -5 , respectively). The distribution of KI w when assessing the number of copies, according to the DNA source, was similar for all algorithms (data not shown).

The number of probes selected by each algorithm to identify CNVs varied widely: 1,742 for CNVpartition, 2,361 for PennCNV, and 4,591 for QuantiSNP (Table 2). The percentage of probes showing agreement for the presence of a CNV was significantly different for the three algorithms: 37.7%, 50.7%, and 55.5% for CNVpartition, PennCNV, and QuantiSNP, respectively, (p=2.43 x10 -35 ). The ratio between discordant/concordant probes was higher for monomorphic than polymorphic probes: 2.17 vs. 1.61 for CNVpartition (p=0.09), 1.78 vs.

0.94 for PennCNV (p=4.34x10 -4 ), and 1.51 vs. 0.72 for QuantiSNP (p=1.31x10 -17 ).

The correlation between the calling agreement and the number of probes or the length of a given CNV region is shown in Figure 3. A direct relationship between agreement and the number of probes included in the CNVs was observed suggesting that reliability is greater for CNVs containing more probes. This effect was observed for all algorithms but it was higher for PennCNV. Our results also suggested that filtering CNVs by QuantiSNP for length, by 

Validity analysis

Sensitivity (SE) and Specificity (SP) estimates for the presence and the type of CNV were estimated according to each algorithm (Figure 4). When considering the presence of CNVs (first line in Figure 4), we found that none of the algorithms used identified known CNV well (0.19 ≤ SE ≤ 0.28]). In contrast, SP was very high (0.97 ≤ SP ≤ 0.99]), indicating that algorithms rarely assigned a CNV in a region where it did not exist. QuantiSNP showed the best SE (0.28) with a SP of 0.97, similar to that of the other two algorithms. Nonetheless, the false positive (FP) calling rate for this algorithm (FP=34) was 2.8-fold higher compared to CNVpartition (FP=12), the latter showing the highest SP (0.99) and the lowest SE (0.19) (Supp. Table S3). PennCNV presented intermediate values of SE (0.23) and SP (0.98), yielding 22 false positive CNVs out of 1319 true "non-CNV".

We also aimed at assessing whether copy number was well estimated when a CNV was identified. Since MLPA is prone to misclassify copy number states >3, we classified CNVs in the following categories, instead: "duplications", "homozygous deletions", and "heterozygous deletions"; for specific purposes, we used the combined category "deletions" including both homozygous and heterozygous deletions. Once a CNV was identified, gene copy number was usually well estimated, the overall SEs for all types of CNVs being >0.62. As expected, SP estimates remained very high (SP>0.87). PennCNV and CNVpartition performed better than QuantiSNP, the latter showing the highest rates of FP and FN callings. QuantiSNP performed especially poorly when calling homozygous deletions (SE=0.68 and SP=0.92). When the Itsara filter was used, SE estimates were significantly decreased to values of 0.05, 0.07, and 0.08 for CNVpartition, PennCNV, and QuantiSNP, respectively; SP increased up to 0.997 for all algorithms (Supp. Table S3). 

DISCUSSION

In the past few years, the genomics community has began to annotate a CNV genome wide map that provides better information on the contribution of structural genomic variation to genetic diversity in humans. SNP-array based-methods have allowed their association with disease susceptibility. However, the tools to carry out this task are still relatively rudimentary and the approach applied until now has mainly been based on reporting and validating individual CNVs located in candidate genes rather than assessing disease risk using genome wide analyses. This is primarily because of issues related to the accuracy of the available CNV calling algorithms. Which is, then, the most suitable method to identify CNVs for association studies using data from SNP-arrays?

The early comparisons have focused on evaluations using simulations or data from a few

HapMap or CEPH samples [START_REF] Kidd | Mapping and sequencing of structural variation from eight human genomes[END_REF][START_REF] Korbel | Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome[END_REF][START_REF] Redon | Global variation in copy number in the human genome[END_REF][START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF]). Here we provide, for the first time, a direct comparison of the accuracy (reliability and validity) of 3 CNV calling algorithms (PennCNV, QuantiSNP, and CNVpartition) using MLPA as a gold standard and therefore eliminating some of the concerns for the validity when using simulation or resequencing data. We also investigated a more stable platform, Illumina Infinium 1M array that may not suffer from the same clustering biases as the former ones.

The algorithms used displayed wide variation in the number of CNV events. Overall, we conclude that the reproducibility of the algorithms is less than optimal. Accuracy Ms (30/09/2010) 14 [START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF]. One explanation for the unsatisfactory concordance in experimental replicates for CNV detection and breakpoint identification relates to the different signal to noise tolerance for SNP genotyping and CNV assessment. While the background signal of SNP-arrays does not significantly affect SNP genotyping, it may affect CNV assessment due to the need of different normalization approaches for the latter [START_REF] Curtis | The pitfalls of platform comparison: DNA copy number array technologies assessed[END_REF][START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF].

Importantly, the three tools used performed poorly regarding their sensitivity to detect CNVs when using MLPA experimental results as the gold standard, the percentage of missed CNV ranging from 72-81%. Therefore, improved sensitivity of algorithms is a must in order to use genome wide chip data for CNV detection and disease association studies. When the analysis was restricted to concordant CNVs according to the applied algorithms, these estimated adequately gene copy number. This result supports the notion of performing a two-stage calling to increase accuracy. That is, to assess first the identification of CNVs and second, to characterize those already detected.

Another important finding of our work relates to the source of DNA. Many studies have shown that buccal cell and blood DNA provide similar calling rates for SNP. By contrast, we found that leukocyte DNA is more reliable for CNV detection and that buccal cell DNA yields a higher CNV calling rate. These findings are compatible with the idea that the abundance of bacterial DNA in buccal samples can interfere with the performance of genotyping bi-alleles as well, notably demonstrated by the higher discordance rates and lower completion rates. Furthermore, while tissue-related differences in genome architecture leading to variation in the number of CNVs may be real, other technical explanations such as DNA quality should also be considered. allowed accurate SNP genotyping using TaqMan assays as well as Illumina technology. For the latter, the calling agreement for leukocyte and buccal DNA was 99.99%. In the absence of other studies providing similar information, caution is needed when analyzing buccal cell DNA and new methodological studies specifically addressing these issues are needed.

Select commercial SNP-array platforms have included monomorphic probes to improve coverage of CNV analyses. We have analyzed whether monomorphic and polymorphic probes performed differently in assessing CNV. Surprisingly, we observed that, regardless of the algorithm used, CNVs showing discordance between duplicates contained a higher proportion of monomorphic probes than CNVs that were concordant. The difference was greater for QuantiSNP. Hence, our findings indicate that polymorphic probes deliver more robust information than monomorphic probes, at least using the current CNV calling tools.

Alternatively, it is possible that monomorphic probes may concentrate in a small number of large CNVs being difficult to call since they are not homogenously distributed across the genome and are placed in those regions suspected of harbouring CN changes [START_REF] Iafrate | Detection of large-scale variation in the human genome[END_REF][START_REF] Redon | Global variation in copy number in the human genome[END_REF]. Nevertheless, there is no evidence that CNVs in these regions are larger that those elsewhere.

Despite the limitations described above, SNP-arrays offer important advantages over other techniques to assess CNV at a genome wide level, including the possibility of analyzing a large number of samples because of their relatively low cost and the small amount of DNA required. CNV detection largely depends on the coverage of the platform. The low reliability that we have observed may be partially due to the fact that the localization of the CNV breakpoints depends on the position of the markers. While the Illumina 1M platform is one of the densest arrays offering a genome wide coverage, the average distance between two probes is around 3kb, larger than the smallest CNVs which are defined as having 1kb length. We have found that the average distance between surrounding probes was greater for discordant than for concordant CN events. This effect was stronger for PennCNV and QuantiSNP than for CNVpartition (results not shown). Small CNVs containing a small number of probes were less reliable than large CNVs that are generally called based on more probes. Furthermore, because the algorithms discard CNVs containing <3 probes, there was also an inherited disadvantage to small CNVs as compared to larger ones. By applying the filter proposed by Itsara et al [START_REF] Itsara | Population analysis of large copy number variants and hotspots of human genetic disease[END_REF], agreement did not improve while sensitivity decreased dramatically.

The relatively poor agreement between algorithms increases the heterogeneity in CNV detection, raising the chance of false positive results in association studies. Furthermore, current algorithms lack sensitivity for CNV identification, mainly when they are small. To partially overcome this limitation, some authors have proposed to use the normalized intensity obtained from the SNP-arrays, without performing the calling, and compare its distribution at the individual probe level between cases and controls [START_REF] Ionita-Laza | Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis[END_REF][START_REF] Mccarroll | Copy-number variation and association studies of human disease[END_REF]. Although this strategy has not been formally evaluated and power is probably limited because of lack of biological meaning, it constitutes an alternative exploratory approach to assess association of CNVs and phenotypes. Others have suggested performing the calling and the association test simultaneously to take into account the uncertainty of the calling in the test [START_REF] Barnes | A robust statistical method for case-control association testing with copy number variation[END_REF][START_REF] Gonzalez | Accounting for uncertainty when assessing association between copy number and disease: a latent class model[END_REF]. However, these methods require a priori definition of CNVs.

We used MLPA as the gold standard technique to estimate sensitivity and specificity of the algorithms used. MLPA is reproducible, allows the detection of small differences in gene copy number, requires low amounts of DNA, can be applied for mid-throughput studies, and has a low cost. Among its limitations are the fact that it only detects CNVs in targeted/selected genes and the results are bound to be affected by sequence polymorphisms and by the occurrence of gene copy number changes in mosaicism Despite careful probe design, we cannot rule out that an incomplete overlapping between probes and CNVs may contribute to the low sensitivity for CNV detection found.

The algorithms used here are those that model both LRR and BAF to assess CNV, a practice that allows the correction for bias effects and minimizes noise in the intensity measures [START_REF] Yau | CNV discovery using SNP genotyping arrays[END_REF]. In addition, these algorithms are widely applied for CNV assessment using Illumina derived data. Other CNV calling softwares are also available, such as Circular Binary Segmentation [START_REF] Olshen | Circular binary segmentation for the analysis of array-based DNA copy number data[END_REF], GADA originally developed for array-CGH data and adapted for SNP-array [START_REF] Pique-Regi | Sparse representation and Bayesian detection of genome copy number alterations from microarray data[END_REF], DchipSNP [START_REF] Lin | dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data[END_REF], Tri Typer [START_REF] Franke | Detection, imputation, and association analysis of small deletions and null alleles on oligonucleotide arrays[END_REF] and SCIMM [START_REF] Cooper | Systematic assessment of copy number variant detection via genome-wide SNP genotyping[END_REF]. However, they do not jointly incorporate both LRR and BAF information, their strengths and weaknesses have been reviewed elsewhere [START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF]. Nevertheless, none of them has proven to be superior to the ones used here. Winchester et al [START_REF] Winchester | Comparing CNV detection methods for SNP arrays[END_REF] CNVs, some authors have proposed to look at some specific markers located within these regions and use reported deletion and duplication frequencies as prior probabilities in the calling. Such models are implemented in two widely used approaches, namely Canary [START_REF] Korn | Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs[END_REF] and PennCNV-validation packages in which they have been shown to substantially increase the sensitivity of calling CNV in these known regions. Efforts are also made to improve technologies such as CGH-arrays and [START_REF] Park | Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing[END_REF] and next generation sequencing. Hopefully, these will improve the detection of rare or novel CNVs in the near future.

In conclusion, there is a need for better assays and tools to identify CNVs at the genome wide level and test for their association with disease in large samples of cases and controls. The main current limitations are the low reliability and sensitivity. Sensitivity showed differences according to the algorithm applied and the type of change. The use of leukocyte DNA, polymorphic probes, and a high number of probes per CNV should contribute to increase reliability and PennCNV algorithm yield higher concordance rates.

The annotation of large CNVs across the genome has opened a new scenario to explore genetic variation and its association with complex diseases and traits. While a few studies support a major contribution of CNV to disease, there is an urgent need to develop and refine better techniques and algorithms to assess CNVs at a genome wide level as diseasepredisposing variants.
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 12 Figure 1. Box plots of the distribution of kappa index estimates comparing duplicated pairs for A) the SNP callings, B) the detection of CNVs according to the different algorithms, and C) the number of copies assigned by the different algorithms in the regions where a CNV was detected.
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 3 Figure 3. Average Kappa Index for the agreement in detecting CNVs (first row) and median number of CNVs across the 92 individuals (second row) for each algorithm while filtering the called CNVs according the number of probes in the CNV (first column) and the length of the CNV (second column).

Figure 4 .

 4 Figure 4. Sensitivity (SE) and Specificity (SP) estimates for the presence and for the typespecific CNV according to each algorithm.

  Box plots of the distribution of kappa index estimates comparing duplicated pairs for A) the SNP callings, B) the detection of CNVs according to the different algorithms, and C) the number of copies assigned by the different algorithms in the regions where a CNV was detected. 114x266mm Box plots of the distribution of kappa indexes comparing the callings on duplicated samples by the different algorithms depending on the source of DNA. 304x133mm (200 x 200 DPI) Average Kappa Index for the agreement in detecting CNVs (first row) and median number of CNVs across the 92 individuals (second row) for each algorithm while filtering the called CNVs according the number of probes in the CNV (first column) and the length of the CNV (second column). 279x190mm (200 x 200 DPI) ) and Specificity (SP) estimates for the presence and for the type-specific CNV according to each algorithm. 304x190mm (200 x 200 DPI)

  

  

  

  

  

  

  

  

  

  . CNVpartition was developed by Illumina and is available as a plug-in in the Beadstudio software. It is based on the assumption that the

	majority of CNV vary between 0 and 4 copies (i.e. AAAA, AAAB, AABB …) thus yielding
	five options (homozygous deletion, heterozygous deletion, dizygous (normal state), trizygous
	(one extra copy), and tetrazygous (two extra copies). CNVpartition model LRR and BAF as
	simple bivariate Gaussian distributions for each of the fourteen possible copy genotypes. A
	preliminary copy number estimate is computed for each assayed locus by comparing its
	observed LRR and BAF to values predicted from each of the fourteen genotypes. Specifically,
	the likelihood of observing a given LRR and BAF under each of the fourteen models is
	computed and the number of copies is estimated by maximizing the likelihood. Once each
	probe is assigned a number of copies, breakpoints are determined by a partitioning method

  et al proposed to filter the called CNVs according to the type of aberration and the number of
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  In the Spanish Bladder Cancer/EPICURO Study, saliva was obtained after a buccal rinse with Listerine® as a fixative. Saliva was then frozen until DNA extraction. This simple and costless procedure yielded substantial amounts of DNA and
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Table 1 :

 1 Median number of CNVs detected in the 92 individuals included in this study. The results are displayed according to the algorithm applied and the source of DNA. One of the replicates was randomly selected to obtain these estimates.

	Page 29 of 43						
				Number of Copies			
	Algorithm	Source of DNA	0	1	3	4	Total
	CNVpartition	All	10	10	8	1	28
		Blood	8	10	6	1	25
		Saliva	14	12	13	2	51
	PennCNV	All	5	31.5	23	2	58.5
		Blood	5	28	19	1	53
		Saliva	6	40	32	2	101
	QuantiSNP	All	18.5	24	9	2	56
		Blood	18	22	8	1	51
		Saliva	20	30	12	4	90

Table 2 :

 2 Distribution of probes in the two agreement categories (disagree and agree on calling CNV) for each of the algorithms. Results are displayed for all (All), monomorphic(Mono) and polymorphic (Poly) probes.
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Table S2 .

 S2 MLPA probes considered in the MLPA analysis.

	Probe	Chromosome Band	Start	End
	SKI	1	1p36.33	2,150,969	2,151,029
	IL1B	2	2q13	113,306,801 113,306,852
	A_14_P103008	2	2q37.3 242,228,984 242,229,042
	PLCD1	3	3p22.3	38,026,650 38,026,709
	Chr3_46771035	3	3p21.31 46,781,196 46,781,253
	Chr4_69231671	4	4q13.2	69,109,638 69,109,698
	PCDHA9	5	5q31.1 140,208,267 140,208,335
	DOM3Z	6	6p21.32 32,047,183 32,047,228
	HLA-DRB5	6	6p21.32 32,593,310 32,593,379
	FZD9	7	7q11.23 72,294,840 72,294,901
	Chr8_39356595	8	8p11.23 39,401,744 39,401,802
	RXRa	9	9q34.2 136,453,357 136,453,414
	NOTCH1	9	9q34.3 138,523,724 138,523,783
	PPYR1	10	10q11.22 46,507,740 46,507,809
	ADAM8	10	10q26.3 134,933,411 134,933,468
	HRAS	11	11p15.5	523,758	523,813
	A_14_P114204	11	11q13.1 66,952,984 66,953,039
	OR4K2	14	14q11.2 19,414,387 19,414,452
	Chr16_32481309	16	16p11.2 32,516,918 32,516,977
	chr17_415_A	17	17q21.31 41,539,152 41,539,211
	chr17_42061812_42110026_B	17	17q21.31 41,889,427 41,889,486
	NSF	17	17q21.32 42,166,492 42,166,551
	STK11	19	19p13.3	1,171,375	1,171,442
	ENm007_1	19	19q13.42 59,427,206 59,427,263
	ENm007_2	19	19q13.42 59,968,534 59,968,593
	A_14_P105195	20	20q11.21 30,111,471 30,111,530
	GSTT1	22	22q11.23 22,706,190 22,706,250
	Chr22_22690592	22	22q11.23 22,709,442 22,709,496
	Chr22_Pop_1	22	22q13.1 37,684,655 37,684,714
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Supplementary Table S3. Validity estimates for blood samples comparing the calling results with those obtained using MLPA as a reference.

The estimates and their 95% confidence intervals (CI) for sensitivity (SE), specificity (SP), positive predictive value (VPP) and negative predictive value (VPN) are displayed according to the algorithms and the different types of aberrations with and without filtering using the Supplementary Figure S3: Agreement on assessing the number of copies once the type of CNV (loss or gain) was concordant for both replicates. For each type of CNV and each algorithm, we computed 1) the Kappa coefficient for each pair of duplicate and we provided the average Kappa across the 96 pairs, 2) a overall Kappa coefficient computed over all the 96 pairs of replicates and concordant probes, and 3) the classic concordance rate for each pair of duplicate and we provided the average concordance across the 96 pairs. Supplementary Figure S4: Impact of the filtering on PennCNV calling agreement. Box plots before and after filtering for the distribution of A) Kappa Index estimates for CNV detection on duplicated samples, and B) weighted Kappa Index estimates for copy-number assessment when a CNV was detected.