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Stochastic Model Specification Search for Gaussian
and Partial Non-Gaussian State Space Models

Sylvia Frühwirth-Schnatter1 and Helga Wagner

Department of Applied Statistics and Econometrics, Johannes Kepler Universität Linz,

Austria

Abstract

Model specification for state space models is a difficult task as one has to decide which

components to include in the model and to specify whether these components are fixed or time-

varying. To this aim a new model space MCMC method is developed in this paper. It is based on

extending the Bayesian variable selection approach which is usually applied to variable selection

in regression models to state space models. For non-Gaussian state space models stochastic

model search MCMC makes use of auxiliary mixture sampling. We focus on structural time

series models including seasonal components, trend or intervention. The method is applied to

various well-known time series.

Key words: auxiliary mixture sampling, Bayesian econometrics, noncentered parameteri-

zation, Markov chain Monte Carlo, variable selection
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1 Introduction

State space models are widely used in time series analysis to deal with processes which

gradually change over time. Model specification, however, is a challenge for these models

as one has to specify which components to include and to decide whether they are fixed

or time-varying. For state space models, like for many other complex models, this often

leads to testing problems which are non-regular from the view-point of classical statistics.

Thus, a classical approach toward model selection which is based on hypothesis testing

such as a likelihood ratio test or information criteria such as AIC or BIC cannot be easily

applied, because it relies on asymptotic arguments based on regularity conditions that

are violated in this context.

Consider, for example, modeling a time series y = (y1, . . . , yT ) through the dynamic

linear trend model, defined for t = 1, . . . , T as:

yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
, (1)

where µt follows a random walk with a random drift starting from unknown initial values

µ0 and a0:

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1) , (2)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) . (3)

A typical specification problem arising for this model is to decide if the drift at is time-

varying rather than constant. However, testing θ2 = 0 versus θ2 > 0 results in a nonregular

testing problem, because the null hypothesis lies on the boundary of the parameter space.

A similar specification problem is deciding which components are present in this times

series model. For instance, is it necessary to include a dynamic drift term at or should at

be removed because the level µt follows a simple random walk? This is another non-regular

problem, because again the null hypothesis can be rephrased as testing a0 = θ2 = 0.

The Bayesian approach is, in principle, able to deal with such non-regular testing

problems. Suppose that K different models M1, . . . , MK are considered to be candidates

for having generated the time series y. In a Bayesian setting each of these models is

assigned a prior probability p(Mk) and the goal is to derive the posterior model probability

p(Mk|y) for each model Mk, k = 1, . . . , K.

1
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There are basically two strategies to cope with the challenge associated with comput-

ing the posterior model probabilities. The traditional approach dating back to Jeffreys

(1948) and Zellner (1971) determines the posterior model probabilities of each model

separately by using Bayes’ rule, p(Mk|y) ∝ p(y| Mk)p(Mk), where p(y| Mk) is the

marginal likelihood for model Mk. An explicit expression for the marginal likelihood

exists only for conjugate problems like linear regression models with normally distributed

errors, whereas for more complex models numerical techniques are required. For Gaus-

sian state space models, marginal likelihoods have been estimated using methods such as

importance sampling (Frühwirth-Schnatter, 1995; Durbin and Koopman, 2000), Chib’s

estimator (Chib, 1995), numerical integration (Shively and Kohn, 1997) and bridge sam-

pling (Frühwirth-Schnatter, 2001). Recently, Frühwirth-Schnatter and Wagner (2008)

considered estimation of the marginal likelihood for non-Gaussian state space models and

demonstrated that the resulting estimators can be pretty inaccurate.

The modern approach to Bayesian model selection is to apply model space MCMC

methods by sampling jointly model indicators and parameters, using e.g. the reversible

jump MCMC algorithm (Green, 1995) or the stochastic variable selection approach (George

and McCulloch, 1993, 1997). The stochastic variable selection approach is commonly ap-

plied to model selection for regression models and aims at identifying non-zero regression

effects, but it is useful far beyond this problem. It allows parsimonious covariance mod-

elling for longitudinal data as shown by Smith and Kohn (2002) and covariance selection

in random effects models as shown by Chen and Dunson (2003) and Frühwirth-Schnatter

and Tüchler (2008).

Shively, Kohn, and Wood (1999) present a variable selection approach to non-parametric

regression using priors for the unknown functions that are expressed in state space form,

however, they did not deal explicitly with time series models. In the present paper we

show that such a variable selection approach is useful for dealing with model selection

problems in more general state space models.

To perform stochastic model specification search for the dynamic linear trend model

defined in (1) to (3), for instance, we introduce three binary stochastic indicators in such

a way that the unconstrained model corresponds to setting all indicators equal to 1.

Reduced model specifications result by setting certain indicators equal to 0. One of those

models, for instance, is the local level model, where the drift component at completely

2
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disappears:

µt = µt−1 + ω1t, ω1t ∼ N (0, θ1) . (4)

Another interesting special case is the linear trend model, where

yt = µ0 + ta0 + εt, εt ∼ N
(
0, σ2

ε

)
. (5)

The practical implementation of this approach is innovative in two respects. First, we

employ a new prior for the process variances of the state space model by assuming that

the square root of each process variance follows a normal distribution centered at 0. It is

well-known that variable selection is, in general, sensitive to the choice of the prior, see

e.g. Fernández, Ley, and Steel (2001). We show both for simulated as well as for real data

that this prior is less influential on posterior inference when the true process variance is

close to 0 than the usually applied inverted Gamma prior. This is in line with Gelman

(2006) who came to similar conclusions for the related random-effects model.

Second, we derive an MCMC method for Gaussian as well as partially Gaussian state

space models that performs stochastic model specification search by sampling the indica-

tors simultaneously with the models parameters. The sampler is based on a noncentered

parameterization of the state space model which generalizes previous work in this area

such as Pitt and Shephard (1999) and Frühwirth-Schnatter (2004). In combination with

the normal prior on the square root of each process variance this leads to Gibbs sampler

that is easily implemented. This is in contrast to Shively et al. (1999) who consider a

data-based prior which is motivated by the BIC criterion and leads to a sampling scheme

where numerical integration has to be performed for each sweep of the MCMC scheme in

order to sample indicators and parameters jointly.

To implement this approach for non-Gaussian state space modeling of times series of

count data or binary, categorical, or multinomial data we make use of auxiliary mixture

sampling (Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth,

2007; Frühwirth-Schnatter, Frühwirth, Held, and Rue, 2009) which is a simple MCMC

method for estimating a broad class of discrete-valued models.

Throughout the paper we focus on structural time series models including seasonal

components, trend and an intervention effect and apply the method to various well-known

time series.

3
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2 The Dynamic Linear Trend Model

Our method is based on a noncentered parameterization of the dynamic linear trend model

which is discussed in the next subsection.

2.1 A Noncentered Parameterization

Define two independent random walk processes µ̃t and ãt with standard normal indepen-

dent increments as well as an integrated process Ãt:

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1) , (6)

ãt = ãt−1 + ω̃2t, ω̃2t ∼ N (0, 1) ,

Ãt = Ãt−1 + ãt−1, (7)

which all are assumed to start at zero: µ̃0 = ã0 = Ã0 = 0. Combine the state equations

(6) to (7) with following observation equation:

yt = µ0 + ta0 +
√

θ1µ̃t +
√

θ2Ãt + εt, εt ∼ N
(
0, σ2

ε

)
, (8)

where µ0 and a0 are equal to the initial values for the level and the drift component and

θ1 and θ2 are equal to the variances in the dynamic linear trend model defined in (1) to

(3). The resulting state space model is a noncentered parameterization of the dynamic

linear trend model. To verify this define

at = a0 +
√

θ2ãt,

µt = µ0 + ta0 +
√

θ1µ̃t +
√

θ2Ãt.

Then

at − at−1 =
√

θ2(ãt − ãt−1) =
√

θ2ω̃2t = ω2t, ω2t ∼ N (0, θ2) ,

µt − µt−1 =
√

θ1(µ̃t − µ̃t−1) + a0 +
√

θ2(Ãt − Ãt−1)

=
√

θ1ω̃1t + a0 +
√

θ2ãt−1 = ω1t + at−1, ω1t ∼ N (0, θ1) ,

which corresponds to the state equations (2) and (3).

4
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The noncentered parameterization of the dynamic linear trend model has a represen-

tation as a state space model with a state vector of dimension 3:

xt = Fxt−1 + wt, wt ∼ N (0,Q) , (9)

yt = Hxt + zf
t α + εt, εt ∼ N

(
0, σ2

ε

)
, (10)

where x0 = 03×1 and

xt =




µ̃t

ãt

Ãt


 , F =




1 0 0

0 1 0

0 1 1


 , Q =




1 0 0

0 1 0

0 0 0


 ,

H =
( √

θ1 0
√

θ2

)
, zf

t =
(

1 t
)

, α =
(

µ0 a0

)′

.

This state space form could be used to perform Kalman filtering and to compute the

integrated likelihood p(y|ϑ) for ϑ = (
√

θ1,
√

θ2, σ
2
ε , µ0, a0).

The noncentered parameterization of the dynamic linear trend model, however, is not

identified, because in the observation equation (8), the sign of
√

θ1 and the sequence

{µ̃t}T
1 may be changed by multiplying all elements with –1 without changing the dis-

tribution of y1, . . . , yT . If we define a state vector x⋆
t = (−µ̃t, ãt, Ãt)

′ and a parameter

ϑ⋆ = (−
√

θ1,
√

θ2, σ
2
ε , µ0, a0), then ϑ⋆ and ϑ, although being different, define the same

integrated likelihood:

p(y|ϑ) =

∫
p(y|x1, . . . ,xT ,

√
θ1,
√

θ2, σ
2
ε , µ0, a0)p(x1, . . . ,xT )d(x1, . . . ,xT )

=

∫
p(y|x⋆

1, . . . ,x
⋆
T , −

√
θ1,
√

θ2, σ
2
ε , µ0, a0)p(x⋆

1, . . . ,x
⋆
T )d(x⋆

1, . . . ,x
⋆
T ) = p(y|ϑ⋆).

Similarly, the sign of
√

θ2 and the sequences {ãt}T
1 and {Ãt}T

1 may be changed without

changing the distribution of y1, . . . , yT and ϑ⋆ = (
√

θ1, −√
θ2, σ

2
ε , µ0, a0) and ϑ define the

same integrated likelihood, p(y|ϑ) = p(y|ϑ⋆).

As a consequence, the likelihood function p(y|ϑ) is symmetric around 0 in the direction

of
√

θ1 and
√

θ2 and therefore multimodal. If the data are generated by a dynamic linear

trend model with true parameters (θtr
1 , θtr

2 , ξtr), where ξtr = (σ2,tr
ε , µtr

0 , atr
0 ), then with

increasing number of observations T , the modes of the likelihood function will be close to

(
√

θtr
1 ,
√

θtr
2 , ξtr), (−

√
θtr
1 ,
√

θtr
2 , ξtr), (

√
θtr
1 , −

√
θtr
2 , ξtr), and (−

√
θtr
1 , −

√
θtr
2 , ξtr). If the

true variances θtr
1 and θtr

2 are positive, then the likelihood function concentrates around

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

four modes. If one the true variances is equal to 0 while the other is positive, two of those

modes collapse and the likelihood is bimodal with increasing T . If both variances θtr
1 and

θtr
2 are equal to zero, then the likelihood function becomes unimodal as T increases.

For illustration, Figure 1 shows contour and surface plots of the (scaled) likelihood

function p(y| √
θ1,

√
θ2, σ

2,tr
ε , µtr

0 , atr
0 ) for a time series of length T = 1000 simulated from

a dynamic linear trend model with µtr
0 = 0.3, atr

0 = −0.1 and σ2,tr
ε = 1 and four different

combinations of θtr
1 and θtr

2 . There are clearly four modes, if both process variances are

positive, two modes, if one of the variances is restricted to zero and a single mode, if both

variances are restricted to 0.

Thus by considering the non-centered parameterization and allowing for nonidentifia-

bility we gain important information about the hypothesis whether the variances of the

state space model are zero.

2.2 The Parsimonious Dynamic Linear Trend Model

The noncentered parameterization of the dynamic linear trend model is very useful for

model selection both for the components and the dynamics. The observation equation

(8) of the noncentered parameterization represents the level of the time series yt as a

superposition of the components at time t = 0 and the random processes µ̃t and Ãt. Note

that neither µ̃t nor Ãt degenerate to a static component. A static component is obtained

by setting the appropriate variance equal to 0. For instance, if the variance θ1 is equal to

0, then
√

θ1 = 0 and µ̃t is not used to explain yt. Similarly, if the variance θ2 is equal to

0, then
√

θ2 = 0 and Ãt is not used to explain yt. This suggests to consider the choice of

the variances θ1 and θ2 as a variable selection problem in regression model (8).

To this aim we introduce two binary indicators γ1 and γ2, where
√

θi, and consequently

θi, is equal to 0, if γi = 0. If γi = 1, then
√

θi is an unconstrained unknown parameter

which is estimated from the data under a suitable prior. Evidently, the indicators γ1 and

γ2 decide if a certain component of the state vector is fixed or changes over time. If both

γ1 = 0 and γ2 = 0, then the model reduces to a regression model with a linear trend,

given by (5).

To include or delete the trend, an additional indicator δ is introduced which decides, if

the initial slope a0 is equal to 0 or not. If δ = 0, then a0 is equal to 0; otherwise, if δ = 1,

6
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then a0 is an unknown parameter which is estimated from the data under a suitable prior.

This leads to the following parsimonious dynamic linear trend model:

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1) , (11)

ãt = ãt−1 + ω̃2t, ω̃2t ∼ N (0, 1) , (12)

Ãt = ãt−1 + Ãt−1, (13)

yt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + εt, εt ∼ N

(
0, σ2

ε

)
. (14)

For a direct comparison with the usual dynamic linear trend model it is useful to rewrite

the parsimonious model in the centered parameterization. Define

at = δa0 +
√

θ2ãt, (15)

µt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt. (16)

Then (11) to (14) may be rewritten as:

µt = µt−1 + δa0 + γ2(at−1 − δa0) + γ1ω1t, ω1t ∼ N (0, θ1) , (17)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) , (18)

yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
. (19)

Evidently, (δ, γ1, γ2) = (1, 1, 1) corresponds to the unrestricted dynamic linear trend model

(2). The combination (δ, γ1, γ2) = (0, 1, 0) leads to the local level model (4) which is

also known as exponential smoothing, the combination (δ, γ1, γ2) = (1, 0, 0) leads to a

regression model with a deterministic linear trend, given by (5) and (δ, γ1, γ2) = (0, 0, 0)

leads to i.i.d. normal data, yt ∼ N (µ0, σ
2
ε).

The indicators δ, γ1 and γ2 have to be introduced carefully into the centered parametriza-

tion. Consider the following alternative choice which appears more natural than (17) and

(18), but leads to nonindentifiability:

µt = µt−1 + δat−1 + γ1ω1t, ω1t ∼ N (0, θ1) ,

at = at−1 + γ2ω2t, ω2t ∼ N (0, θ2) .

After recursive substitution we get following representation of the model as a normal

linear mixed model:

yt = µ0 + δta0 + γ1

t∑

j=1

ω1j + δγ2

t−1∑

j=1

(t − j)ω2j + εt,

7
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with fixed effects (µ0, a0) and random effects (ω1j , ω2j), j = 1 . . . , t. Only 6 models among

the 8 possible combinations of the indicators (δ, γ1, γ2) are identifiable, because γ2 is not

identified, if δ = 0. In contrast to that, model (17) to (19) has the representation

yt = µ0 + δta0 + γ1

t∑

j=1

ω1j + γ2

t−1∑

j=1

(t − j)ω2j + εt.

Evidently, all 8 combinations of the indicators (δ, γ1, γ2) are identifiable.

The noncentered parameterization of the parsimonious dynamic linear trend model

given by (11) to (14) has the following representation as a state space model:

xt = Fxt−1 + wt, wt ∼ N (0,Q) , (20)

yt = H(γ1, γ2)xt + zf
t (δ)α + εt, εt ∼ N

(
0, σ2

ε

)
,

where xt, F, Q and α are the same as in (9), while H and zf
t depend on the model

indicators:

H(γ1, γ2) =
(

γ1

√
θ1 0 γ2

√
θ2

)
, zf

t (δ) =
(

1 δt
)

.

2.3 Prior Distributions

To perform Bayesian estimation one has to choose a prior distribution p(δ, γ1, γ2) for all

possible combinations of indicators. Subsequently, we assume a uniform distribution over

all 8 combinations of the indicators. A more flexible distribution is discussed in Section 5.

As common for dynamic linear trend models, we assume that apriori µ0 and a0 are

independently normally distributed, µ0 ∼ N (y1, P0,11σ
2
ε ) and a0 ∼ N (0, P0,22σ

2
ε ). Fur-

thermore we assume an inverted Gamma prior G −1 (c0, C0) for the observation variance

σ2
ε .

In contrast to previous work, we do not use the usual inverted Gamma priors θ1 ∼
G −1 (d0,1, D0,1) and θ2 ∼ G −1 (d0,2, D0,2). We employ a new prior for the process variances

of the state space model by assuming that the square root of each process variance follows

a normal distribution centered at 0, i.e.
√

θ1 ∼ N (0, B0,1σ
2
ε) and

√
θ2 ∼ N (0, B0,2σ

2
ε).

It be should noted that the two priors are equivalent only under the limiting case of

8
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following improper priors: an inverted Gamma prior where d0,i = −0.5 and D0,i = 0, i.e.

p(θi) ∝ √
θi, and a normal prior where B−1

0,i = 0, i.e. p(
√

θi) ∝ constant.

It is well-known, that the hyperparameters of the inverted Gamma prior θi ∼ G −1 (d0,i, D0,i)

strongly influence the posterior density of θi, if the true value of θi is close to 0. In contrast

to that, the normal prior appears to be less influential and more suitable under model

specification uncertainty than the inverted Gamma prior.

Consider, for example, a local level model,

µt = µt−1 + ω1t, ω1t ∼ N (0, θ1) ,

yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
, (21)

where θ1 is unknown and σ2
ε is assumed to be known.

To compare the inverted Gamma prior to the normal prior we consider the posterior

density of the parameter ±
√

θ1 which is obtained from θ1 by multiplying the square root of

θ1 with a random sign. We added the ± sign to emphasize that the sign of this parameter

is not identified. The posterior of ±√
θ1 allows to explore the hypothesis that θ1 = 0.

Due to the symmetry of the likelihood discussed in Subsection 2.1, the posterior density

of ±
√

θ1 is symmetric around zero as long as the prior is also symmetric around 0. If

the unknown variance θtr
1 is significantly different from zero, then the posterior density

of ±√
θ1 is likely to be bimodal with the modes being close to ±

√
θtr
1 . Otherwise, if θtr

1

is close to or equal to zero, then the posterior density of ±
√

θ1 is likely to be centered

around zero.

For illustration, we consider posterior inference for T = 100 observations simulated

from the local level model (21) with σ2
ε = 0.01 and two different values for θ1, namely

θtr
1 = 0.01 and θtr

1 = 0. For any type of prior distribution, the posterior distribution of

±√
θ1 is derived using numerical integration. For both values of θtr

1 , the posterior of ±√
θ1

is plotted in Figure 2 under the inverted Gamma prior θ1 ∼ G −1 (0.5, D0) as well as under

the normal prior ±
√

θ1 ∼ N (0, B0σ
2
ε ) for various scale parameters D0 and B0.

Whereas the posterior is fairly robust to the choice of the hyperparameter B0 in the

normal prior, it turns out to be rather sensitive to the hyperparameter D0 of the inverted

Gamma prior. Both posteriors are roughly the same for θtr
1 = 0.01 and clearly indicate

that θtr
1 > 0. A remarkable difference, however, occurs if θtr

1 = 0. Under the normal prior,

9
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the posterior of ±
√

θ1 is centered at 0 strongly supporting the hypothesis that θtr
1 = 0.

The inverted Gamma density, however, shrinks the posterior of ±√
θ1 away from 0, falsely

indicating that θtr
1 > 0.

2.4 MCMC Estimation

An MCMC approach is implemented to sample jointly the indicators (δ, γ) = (δ, γ1, γ2),

the unrestricted elements of the parameter β = (µ0, a0,
√

θ1,
√

θ2), the observation vari-

ance σ2
ε , and the latent state process x = (x1, . . . ,xT ), where xt is the state vector defined

in (9).

When sampling the indicators (δ, γ) we marginalize over the parameters for which

variable selection is carried out, as suggested by Geweke (1996) and Smith and Kohn

(1996), see also George and McCulloch (1997). To make this feasible, we use the non-

centered parameterization of the dynamic linear trend model. Conditional on the state

process x = (x1, . . . ,xT ), the observation equation (14) defines a standard regression

model

yt = zδ,γ
t βδ,γ + εt, εt ∼ N

(
0, σ2

ε

)
. (22)

If all indicators take the value one, then βδ,γ = β and zδ,γ
t = zt, where zt = (1, t, µ̃t, Ãt).

Otherwise the restricted parameter βδ,γ and the corresponding predictors zδ,γ
t contain

only those elements of β and zt, respectively, for which the corresponding indicator is

equal to 1. Under the conjugate prior

βδ,γ ∼ N
(
aδ,γ

0 ,Aδ,γ
0 σ2

ε

)
, σ2

ε ∼ G −1 (c0, C0) , (23)

the posterior p(δ, γ|x,y) is obtained from Bayes’ theorem:

p(δ, γ|x,y) ∝ p(y|δ, γ,x)p(δ, γ), (24)

where p(y|δ, γ,x) is equal to the marginal likelihood of the regression model (22):

p(y|δ, γ,x) =
1

(2π)T/2

|Aδ,γ
T |1/2

|Aδ,γ
0 |1/2

Γ(cT )Cc0
0

Γ(c0)(C
δ,γ
T )cT

. (25)

Here Aδ,γ
T , cT and Cδ,γ

T denote the posterior moments of βδ,γ and σ2
ε given below in (26)

to (28). It should be noted that such a closed form expression for p(y|δ, γ,x) is not

10
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available if any of the indicators γ1 and γ2 is equal to 1 and an inverted Gamma prior is

chosen for θ1 and θ2. The MCMC scheme reads:

(a) Sample the indicators (δ, γ) = (δ, γ1, γ2), the initial values µ0 and a0, all variance

parameters
√

θ1 and
√

θ2 and the observation variance σ2
ε jointly in one block:

(a1) Sample the indicators from p(δ, γ|x,y) given in (24);

(a2) sample σ2
ε from G −1

(
cT , Cδ,γ

T

)
, and, conditional on σ2

ε , sample µ0, a0 (if unre-

stricted), and all unrestricted variance parameters
√

θ1 and
√

θ2 jointly from

the normal posterior N
(
aδ,γ

T ,Aδ,γ
T σ2

ε

)
where

Aδ,γ
T =

(
(Zδ,γ)

′
Zδ,γ + (Aδ,γ

0 )−1
)−1

, (26)

aδ,γ
T = Aδ,γ

T

(
(Zδ,γ)

′
y + (Aδ,γ

0 )−1aδ,γ
0

)
,

cT = c0 + T/2, (27)

Cδ,γ
T = C0 +

1

2

(
y′y + (aδ,γ

0 )
′
(Aδ,γ

0 )−1aδ,γ
0 − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

)
, (28)

and Zδ,γ is the regressor matrix with rows equal to zδ,γ
t ;

(a3) set all restricted initial values and all restricted variances equal to 0.

(b) Sample x = (x1, . . . ,xT ) from the state space form (20).

(c) Perform a random sign switch for
√

θ1 and {µ̃t}T
1 . Thus with probability 0.5 the

draws of these parameters remain unchanged, while they are substituted by −
√

θ1

and { −µ̃t}T
1 with the same probability. Perform another random sign switch for

√
θ2, {ãt}T

1 and {Ãt}T
1 .

A few comments are in order. The dimension of the normal distribution appearing in step

(a2) depends on the number of unrestricted components and is equal to 1 + δ + γ1 + γ2.

In step (b), forward-filtering-backward-sampling (FFBS, Frühwirth-Schnatter (1994);

Carter and Kohn (1994); De Jong and Shephard (1995)) is used to sample x = (x1, . . . ,xT ).

To speed up sampling, a reduced state space form is used if γ1 or γ2 is 0. If, for instance,

γ1 = 0, then the observation equation is independent of {µ̃t}T
1 . FFBS is applied to the re-

duced state vector xt = (ãt, Ãt)
′, while µ̃1, . . . , µ̃T is sampled from (11). A similar method

11
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applies, if γ2 = 0, with reduced state vector xt = µ̃t. If both indicators γ1 and γ2 are

equal to 0, then no FFBS is needed, as sampling of x from the prior is straightforward.

Sampling of the state process in step (b) is based on the noncentered parameteriza-

tion. The unknown components at and µt in the centered parameterization are easily

reconstructed from the MCMC draws using (15) and (16).

We found it useful to start from an unrestricted model and to run the first say 1000

draws of burn-in without variable selection. This allows to generate sensible starting

values for the state process and the parameters of the unrestricted model before variable

selection actually sets in.

3 Extension to the Basic Structural Model

3.1 The Parsimonious Basic Structural Model

In the basic structural model, a seasonal component is added to the dynamic linear trend

model discussed in Section 2, see e.g. Harvey (1989):

st = −st−1 − · · · − st−S+1 + ω3t, ω3t ∼ N (0, θ3) , (29)

yt = µt + st + εt, εt ∼ N
(
0, σ2

ε

)
, (30)

where µt is the same as in (2) and (3) and S is the number of seasons. The initial seasonal

pattern is given by s0 = (s−S+1, . . . , s0) with s−S+1 + . . . + s0 = 0. In addition to the

model specification problems discussed in Section 2, a decision has to be made if a seasonal

pattern is present and if this pattern is fixed or dynamic. To this aim, two additional

binary stochastic indicators δ3 and γ3 are introduced. δ3 decides, if the initial seasonal

pattern is equal to 0, whereas γ3 controls if it changes over time. As before, the indicators

are introduced into the noncentered version of the model.

Combine the following stochastic difference equation:

s̃t = −s̃t−1 − · · · − s̃t−S+1 + ω̃3t, ω̃3t ∼ N (0, 1) , (31)

where s̃−S+1 = . . . = s̃0 = 0 with the state equations (6) to (7) and following observation

equation:

yt = µt + δ3s0,q(t) + γ3

√
θ3s̃t + εt, εt ∼ N

(
0, σ2

ε

)
, (32)

12
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where θ3 is equal to the variance of the error term in (29), µt is the same as in (16) and

s0,q(t) with q(t) = 1 + (t − 1) mod S is the seasonal component corresponding to time t.

The resulting state space model is a noncentered parameterization of the basic structural

model.

If γ3 = 0, we define θ3 = 0 and the resulting seasonal pattern is fixed. If δ3 = 0, we

set the initial seasonal pattern to zero, s0 = 0. If both indicators are equal to 0, then no

seasonal pattern is present in the time series and the model reduces to the dynamic linear

trend model studied in Section 2.

The non-centered parameterization (32) could be written as

yt = µ0 + δta0 + δ3s0,q(t) + γ1

t∑

j=1

ω1j + γ2

t−1∑

j=1

(t − j)ω2j + γ3

t∑

j=1

ω3j + εt,

with fixed effects µ0, a0 and s0,q(t) and random effects ω1j , ω2j and ω3j . Evidently, all

25 = 32 combinations of indicators are identifiable.

As before, the noncentered model is not identified, as the sign of
√

θ3 and the sequence

{s̃t}T
1 may be changed without changing the likelihood function. As a consequence, the

likelihood function p(y|ϑ) where ϑ = (
√

θ1,
√

θ2,
√

θ3, µ0, a0, s0, σ
2
ε) is symmetric around 0

in the direction of
√

θi, i = 1, 2, 3. With an increasing number of observations T , the modes

of the likelihood function will be close to all combinations of (±
√

θtr
1 , ±

√
θtr
2 , ±

√
θtr
3 , ξtr),

where ξtr = (µtr
0 , atr

0 , str
0 , σ2,tr

ε ). Thus with an increasing number of observations, the

likelihood function has eight modes as long as in the data generating process the true

variances θtr
1 , θtr

2 and θtr
3 are positive. If one of the true variances is equal to 0 while the

others are positive, half of those modes are identical leaving four modes. If two of the true

variances are equal to 0 while the other is positive, only two modes are different leaving

a bimodal likelihood with an increasing number of observations T . If all variances are

equal to zero, then the likelihood function will be unimodal with an increasing number of

observations T .

It is easy to verify that in the centered parameterization the parsimonious model is

equivalent to combining (2) and (3) with state equation (29) and following observation

equation:

yt = µt + δ3s0,q(t) + γ3(st − δ3s0,q(t)) + εt, εt ∼ N
(
0, σ2

ε

)
. (33)

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3.2 MCMC Sampling Scheme

An MCMC approach is implemented to sample the indicators δ = (δ, δ3) and γ =

(γ1, γ2, γ3), the model parameters β = (µ0, a0, s0,
√

θ1,
√

θ2,
√

θ3), the observation vari-

ance σ2
ε , and the latent state process x = (x1, . . . ,xT ), where xt is following state vector:

xt =
(

µ̃t ãt Ãt s̃t . . . s̃t−S+2

)′

.

The MCMC sampling scheme introduced in Subsection 2.4 is easily modified to deal

with a basic structural model. Conditional on the state process x = (x1, . . . ,xT ), the

observation equation (32) of the non-centered parameterization of the basic structural

model is a standard regression model as in (22) with appropriate regressors zδ,γ
t . Under

the same conditionally conjugate prior for βδ,γ and σ2
ε as in (23), the marginal likelihood

p(y|δ, γ,x) and all posterior moments are then computed exactly as in Subsection 2.4.

This leads to following MCMC scheme:

(a) Sample the indicators (δ, γ), the observation variance σ2
ε and the initial values µ0,

a0, and s0 and all variance parameters
√

θ1,
√

θ2 and
√

θ3 jointly in one block as in

Subsection 2.4.

(b) Sample x = (x1, . . . ,xT ) from the state space form corresponding to (32).

(c) Perform two random sign switches as in step (c) in Subsection 2.4. Perform a third

random sign switch for
√

θ3 and {s̃t}T
1 .

As in Subsection 2.4, FFBS is applied to a reduced state vector, if any of the indicators

γi = 0 is equal to 0, while the remaining components are sampled from the prior.

3.3 Prior Specification

To run the MCMC schemes, prior distributions have to be defined. As before, we assume

a uniform prior distribution over all possible indicators δ and γ.

For the observation variance σ2
ε we choose a hierarchical prior where σ2

ε ∼ G −1 (c0, C0)

and C0 ∼ G (g0, G0) with c0 = 2.5, g0 = 5 and G0 = g0/(0.75Var(y)(c0 − 1)). For this

hierarchical prior it is necessary to add an additional sampling step were C0 is sampled

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

conditional on σ2
ε from the conditional Gamma posterior C0|σ2

ε ∼ G (g0 + c0, G0 + 1/σ2
ε)

at each sweep of the sampler.

Prior (23) assumes normality not only for the initial values µ0, a0, and s0, but also

for all remaining parameters. For the same reasons as in Subsection 2.3, we do not use

inverted Gamma priors for the variances θ1, . . . , θ3 as usual in the basic structural model,

but assume that the parameters ±√
θ1, ±√

θ2 and ±√
θ3 follow a normal prior.

In our case studies, we found the following prior choices useful for variable selection.

First, we use a partially proper prior which combines the improper prior p(µ0) ∝ 1 for µ0

with a proper prior N
(
0,Bδ,γ

0 σ2
ε

)
on the remaining unrestricted elements of βδ,γ, where

Bδ,γ
0 = B0I. This prior corresponds to choosing aδ,γ

0 = 0 and

(
Aδ,γ

0

)−1

=

(
0

(Bδ,γ
0 )−1

)
. (34)

Under this prior, the sampling scheme described above has to be changed slightly, because

the marginal likelihood p(y|δ, γ,x) and the posterior parameter cT read:

p(y|δ, γ,x) =
1

(2π)(T −1)/2

|Aδ,γ
T |1/2

|Bδ,γ
0 |1/2

Γ(cT )Cc0
0

Γ(c0)(C
δ,γ
T )cT

,

cT = c0 + (T − 1)/2.

Another prior commonly used in model selection is the fractional prior (O’Hagan, 1995).

In the present context, this is a conditional fractional prior for regression model (22) which

depends on the state vector x and is defined as

p(βδ,γ |σ2
ε) ∝ p(y|βδ,γ, σ2

ε)
b =

(
1

2πσ2
ε

)Tb/2

exp

(
− b

2σ2
ε

(y − Zδ,γβδ,γ)′(y − Zδ,γβδ,γ)

)
.

The fractional prior can be interpreted as posterior of a non-informative prior and a

fraction b of the data y. It reads

βδ,γ |σ2
ε ∼ N

(
aδ,γ

T ,Aδ,γ
T σ2

ε/b
)

,

where aδ,γ
T and Aδ,γ

T are the posterior moments under a non-informative prior:

Aδ,γ
T =

(
(Zδ,γ)

′
Zδ,γ

)−1

, aδ,γ
T = Aδ,γ

T (Zδ,γ)
′
y. (35)
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In the MCMC sampling scheme all posterior moments as well as the marginal likelihood

p(y|δ, γ,x) have to be modified according to:

cT = c0 +
(1 − b)

2
T, Cδ,γ

T = C0 +
(1 − b)

2
(y′y − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T ),

p(y|δ, γ,x) =
bq/2Γ(cT )Cc0

0

(2π)T (1−b)/2Γ(c0)(C
δ,γ
T )cT

,

where q is the dimension of βδ,γ, while aδ,γ
T and Aδ,γ

T are the same as in (35).

3.4 UK coal consumption data

We reconsider the series of UK coal consumption, analyzed in Harvey (1989), Frühwirth-

Schnatter (1994) and Frühwirth-Schnatter (1995), among others. Data are quarterly from

1/1960 to 4/1982, see Figure 3, panel (a). We model the series on the log scale by a basic

structural model.

All subsequent implementation are carried out using Matlab (Version 7.2.0) on a

notebook with a 2.0 GHz processor.

3.4.1 Bayesian Inference for the Unrestricted Basic Structural Model

For illustration, we start with inference for the unrestricted basic structural model without

variable selection and compare the priors θi ∼ G −1 (−0.5, 10−7) with the priors ±√
θi ∼

N (0, 1). The remaining priors are µ0 ∼ N (0, 100σ2
ε) and σ2

ε ∼ G −1 (0, 0).

Estimated state components are plotted for the inverted Gamma prior in Figure 3.

The posterior densities of the transformed process variances ±
√

θi, i = 1, . . . , 3 are plotted

in Figure 4. Evidently, the posterior density of any parameter ±√
θi has to be symmetric

around zero. If the unknown variance θi is systematically different from zero, then the

posterior density of ±
√

θi is likely to be bimodal; otherwise, if θi is close to zero, the

posterior density of ±√
θi will be centered around zero. This should allow to explore the

hypothesis that θi = 0.

For the normal prior ±√
θi ∼ N (0, 1), the posterior densities of ±√

θ1 and ±√
θ3

are unimodal and centered at 0, while the posterior of ±
√

θ2 is bimodal. This indicates
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that θ1 and θ3 are equal to 0, while θ2 > 0. This finding is confirmed by stochastic

model selection search in Subsection 3.4.2. Under the inverted Gamma prior, all posterior

densities are bimodal and ±√
θi is bounded away from 0, providing spurious evidence for

an unrestricted model.

The MCMC draws underlying Figure 4 were obtaining by running MCMC sampling

for 40,000 iterations after a burn-in of 10,000. For the normal prior we use the new MCMC

scheme presented in Subsection 3.2 which is based on the non-centered parameterization

of the basic structural model. For the inverted Gamma prior we use the usual two-step

Gibbs sampler which is based on the centered parameterization, see e.g. Durbin and

Koopman (2001). MCMC draws for ±√
θi are obtained by multiplying the square root of

the MCMC draws θ
(m)
i with a random sign.

An interesting difference between the centered and the non-centered parameteriza-

tion lies in the mixing properties of the corresponding MCMC draws. If some variances

are equal to or close to 0, the corresponding MCMC draws mix badly under the cen-

tered parameterizaton, while mixing is perfect under the noncentered parameterizaton,

see Figure 5.

3.4.2 Stochastic Model Specification Search

Stochastic model specification search is carried out using the prior described in Sub-

section 3.3. We compare partially proper priors with different prior variances B0 with

fractional priors with different fractions b. For each prior, MCMC sampling was carried

out for M = 100, 000 draws after a burn-in of 20, 000 draws. The first 1000 draws of the

burn-in were drawn from the unrestricted model, model selection began after these first

1000 draws. Depending on the prior, running MCMC takes between 43 and 52 minutes,

see also Table 2.

Results of the variable selection procedure are summarized in Table 1 and 2. The most

frequently visited model in Table 1 is robust against the prior choice, only the frequency

with which this model is selected varies. The same model results for all priors, if in Table 2

an indicator is estimated to be 1, if the corresponding posterior inclusion probability is

greater than or equal to 0.5.
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As expected from panel (a) and (d) in Figure 3, a seasonal pattern is present in the

selected model (δ3 = 1), but it is fixed and does not change over time (γ3 = 0). The

drift at is stochastic (γ2 = 1), but the initial value a0 is selected to be 0 (δ = 0). This is

plausible from panel (c) in Figure 3, where the pointwise confidence band covers at = 0 at

t = 0, but does not contain the restricted line where at = 0 for all t. Finally, no additional

noise ω1t is added in (2), since γ1 = 0.

3.4.3 Comparison to Marginal Likelihood Computation

For this case study, it is possible to compare variable selection to the more traditional ap-

proach of computing marginal likelihoods p(y| M) of all 32 models M = (δ, δ3, γ1, γ2, γ3),

obtained by all possible combinations of indicators. Because we are dealing with a linear

Gaussian state space model it is possible to integrate out all states and the initial values

by running a Kalman filter and we are left with a low dimensional integration over the

parameter (θM, σ2
ε) where θM contains all unconstrained variances θ1, θ2 and θ3 present

in model M.

Each marginal likelihood p(y| M) is computed by importance sampling with 20000

draws from the following importance density. For each model, MCMC for the noncentered

parameterization with fixed indicators (δ, γ) was run for 40, 000 iterations after a burn-in

of 10, 000 draws. The density of a tν(m, S)-distribution with ν = 10 was fitted to the

MCMC draws of (log(θM), log(σ2
ε)) by matching moments, i.e. m is equal to the mean of

the transformed MCMC draws, while S is equal to the covariance matrix times (ν − 2)/ν.

Computation time for a single model lies between 15 and 16 CPU minutes. Computation

for all 32 models took 494 CPU minutes.

The resulting estimators, together with their standard errors, are reported in Table 3

and indicate that importance sampling yields very precise estimates of the marginal like-

lihood.

Marginal likelihood computations are based on following priors. We choose the same

hierarchical prior on the observation variance σ2
ε as in Subsection 3.4.2 and marginalize

over the random hyperparameter C0 to facilitate computation of the marginal likelihood:

p(σ2
ε |c0, g0, G0) =

Gg0
0 Γ(c0 + g0)

Γ(c0)Γ(g0)(σ2
ε)

c0+1
(G0 + 1/σ2

ε)
−(c0+g0).
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Since marginal likelihood computation is not possible for improper priors, we modify

the partially proper used in Subsection 3.4.2 for variable selection slightly by assuming

µ0 ∼ N (0, 10000σ2
ε), whereas we use the same N (0, B0σ

2
ε ) prior with B0 = 1 and B0 =

100, respectively, for the initial value of all other components and the process standard

deviations. We did not consider the fractional prior, because it is defined as a conditional

prior given the all states, which makes it impossible to integrate out the high-dimensional

state vector in the fashion described above.

The same prior is used for the stochastic model specification search algorithm which

was run for 100,000 iterations after a burn-in of 20000. Computation time for running

variable selection is about 52 CPU minutes which is considerably faster than computing

the marginal likelihood for all models.

Table 3 reports the number h(M) of times the model M was visited during the 100,000

MCMC iterations. We find that the relative frequency h(M)/100, 000 is close the model

probability p̂(M |y) which is estimated from the marginal likelihood p̂(y| M) under the

uniform prior p(M) = 1/32 underlying variable selection.

In Table 1 we found that changing the prior had no effect on the best model, however,

the ranking of the remaining models changed. From Table 3 we see that this effect is also

present for the marginal likelihood. This sensitivity of the marginal likelihood to prior

choice was even more pronounced when we considered the conventional inverted Gamma

prior for the process variances θi.

4 Model Selection for Non-Gaussian State Space Mod-

els

The investigations in Shively et al. (1999) show that variable selection in state space

models is also feasible for binary data. In this section we show how the variable selection

approach developed in Section 2 and Section 3 for Gaussian state space model may be

extended to nonnormal state space models using auxiliary mixture sampling (Frühwirth-

Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007; Frühwirth-Schnatter

et al., 2009). This allows variable selection for state space modelling of times series of

small counts based on the Poisson distribution and of binary as well as categorical time
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series based on the logit transform. We provide an illustrative application to two time

series of small counts.

4.1 A Basic structural model for Count Data including Inter-

vention

For count data the basic structural model reads (Harvey and Durbin, 1986):

yt ∼ P (etλt) ,

log λt = µt + st, (36)

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1) (37)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) , (38)

st = −st−1 − · · · − st−S+1 + ω3t, ω3t ∼ N (0, θ3) . (39)

To account for the intervention at t = tint, equation (38) is modified in the following way:

µt = µt−1 + at−1 + ∆ + ω1t.

4.1.1 Stochastic model specification search

Indicators δ, δ3, γ1, γ2 and γ3 are introduced as in Section 3 to select the structural com-

ponents, and an additional indicator δ4 is introduced for the intervention effect. In the

centered parameterization, equations (36) and (37) are modified in the following way:

log λt = µt + δ3s0,q(t) + γ3(st − δ3s0,q(t)), (40)

µt = µt−1 + δa0 + γ2(at−1 − δa0) + δ4I{t=tint }∆ + γ1ω1t, (41)

while (38) and (39) are unaffected. For MCMC estimation, the noncentered version of

this model is required which reads:

log λt = µ0 + δta0 + δ3s0,q(t) + δ4I{t≥tint }∆ + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + γ3

√
θ3s̃t,

where µ̃t and Ãt are defined as in (11) to (13), while s̃t is defined as in (31).
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4.1.2 MCMC Estimation

MCMC estimation is implemented using auxiliary mixture sampling for count data. For

each t, the distribution of yt|λt is regarded as the distribution of the number of jumps of

an unobserved Poisson process with intensity etλt, having occurred in the time interval

[0, 1]. Frühwirth-Schnatter and Wagner (2006) create such a Poisson process for each

observation yt and introduce the (yt + 1) interarrival times of this Poisson process as

latent variables, yielding a total of T +
∑T

t=1 yt latent variables.

Frühwirth-Schnatter et al. (2009) suggest a more efficient method based on introducing

for each observation yt at most two latent variables, namely the interarrival time τt1

between the ytth jump and the next one and, if yt > 0, the arrival time τt2 of the ytth

jump. Since τt1 ∼ E (etλt) and τt2 ∼ G (yt, etλt) we have for j = 1, 1 + min(yt, 1):

− log τtj = log et + log λt + εtj ,

where εtj = − log ξtj and ξtj ∼ G (νtj , 1) with integer shape parameter equal to νtj =

max(1, (j − 1)yt). The distribution of the negative log Gamma distribution is approxi-

mated in Frühwirth-Schnatter et al. (2009) for each integer value ν by a mixture of normal

distributions with component indicator rtj :

pε(εtj; νtj) =
exp(−νtjεtj − e−εtj)

Γ(νtj)
≈

R(νtj)∑

rtj=1

wrtj
(νtj) fN(εtj ; mrtj

(νtj), s
2
rtj

(νtj)). (42)

The number of components R(ν) depends on ν, as do the weights wr(ν), the means mr(ν)

and the variances s2
r(ν), see Frühwirth-Schnatter et al. (2009, Appendix A) for more

details.

Introducing the auxiliary variables u = (u1, . . . ,uT ), where ut = (τtj , rtj , j = 1, 1 +

min(yt, 1)), leads to a conditionally Gaussian state space model:

− log τtj = log et + µ0 + δta0 + δ3s0,q(t) + δ4I{t≥tint }∆ (43)

+ γ1

√
θ1µ̃t + γ2

√
θ2Ãt + γ3

√
θ3s̃t + mrtj

(νtj) + εtj, εtj ∼ N
(
0, s2

rtj
(νtj)

)
.

In (43) we are dealing with a state space model that is conditionally Gaussian with the

state vector xt being the same as in Subsection 3.2. The MCMC scheme introduced in

Subsection 3.2 for Gaussian state space models needs only a few modifications. First, an
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additional step has to be added to draw the auxiliary variables u. Second, conditional

on the state vector, we are dealing with a regression model with heteroscedastic normal

errors with known error variance:

ỹ = Zδ,γβδ,γ + ε, ε ∼ N (0,Σ) , (44)

where ỹ denotes the collection of the auxiliary variables (− log τtj − mrtj
(νtj) − log et)

and Σ is a diagonal matrix with elements s2
rtj

(νtj). Under the normal prior βδ,γ ∼
N
(
aδ,γ

0 ,Aδ,γ
0

)
, the marginal likelihood in this regression model defines p(y|δ, γ,x,u):

p(y|δ, γ,x,u) (45)

=
|Σ| −1/2|Aδ,γ

T |1/2

(2π)T/2|Aδ,γ
0 |1/2

exp

(
− 1

2

(
ỹ′Σ−1ỹ + (aδ,γ

0 )
′
(Aδ,γ

0 )−1aδ,γ
0 − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

))
,

where

(Aδ,γ
T )−1 = ((Zδ,γ)

′
Σ−1Zδ,γ + (Aδ,γ

0 )−1), (46)

aδ,γ
T = Aδ,γ

T ((Zδ,γ)
′
Σ−1ỹ + (Aδ,γ

0 )−1aδ,γ
0 ). (47)

The MCMC scheme reads:

(a1) Sample δ and γ from p(δ, γ|x,u,y) ∝ p(y|δ, γ,x,u)p(δ, γ) conditional on the state

process x and the auxiliary variables u using the marginal likelihood (45) obtained

from regression model (43).

(a2) Sample all unrestricted elements of the initial values of x0 and all unrestricted vari-

ance parameters
√

θi jointly from the multivariate normal distribution N
(
aδ,γ

T ,Aδ,γ
T

)

conditional on x and u using the moments (46) and (47); set all remaining initial

values of x0 and all remaining variances equal to 0.

(b) Sample x = (x1, . . . ,xT ) from an appropriate state space form;

(c) Perform random sign switches as in step (c) in Subsection 3.2.

(d) Sample the auxiliary variables u conditional on the current risk λ1, . . . , λT as in

Frühwirth-Schnatter et al. (2009) for each t = 1, . . . , T :

(d1) Sample ξt ∼ E (etλt). If yt = 0, set τt1 = 1 + ξt. If yt > 0, sample τt2 from a

B (yt, 1)-distribution and set τt1 = 1 − τt2 + ξt.
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(d2) Sample the component indicator rtj for j = 1, 1+min(yt, 1) from the following

discrete distribution where k = 1, . . . , R(νtj)

Pr(rtj = k|τtj , λt) ∝ wk(νtj) fN(− log τij − log λt − log et; mk(νtj), s
2
k(νtj)).

Note that in step (a) marginalizing over the variables and components which are subject

to model selection would not be possible for non-Gaussian state space models without

the use of auxiliary mixture sampling or another augmentation scheme that leads to a

conditionally Gaussian model. Such data augmentation schemes which enable variable

selection in non-Gaussian models have been applied earlier by Holmes and Held (2006)

for binary and multinomial regression model and by Tüchler (2008) for binary and multi-

nomial regression models with random effects.

The partially proper normal prior and the fractional prior considered in Subsection 3.3

are easily adjusted for non-Gaussian state space models. A partially proper normal prior

combines p(µ0) ∝ 1 with a proper prior N
(
0,Bδ,γ

0

)
on the remaining unrestricted ele-

ments of βδ,γ where Bδ,γ
0 = B0I corresponds to aδ,γ

0 = 0 and Aδ,γ
0 being the same as in

(34). The marginal likelihood for this prior reads

p(y|δ, γ,x,u) =
|Σ| −1/2|Aδ,γ

T |1/2

(2π)(T −1)/2|Bδ,γ
0 |1/2

· exp

(
− 1

2

(
ỹ′Σ−1ỹ − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

))
.

For a fractional prior, derived as in Subsection 3.3, the marginal likelihood is given as

p(y|δ, γ,x,u) = bq/2

( |Σ| −1

(2π)T

)(1−b)/2

· exp

(
− (1 − b)

2
(ỹ′Σ−1ỹ − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T )

)
,

(48)

where (Aδ,γ
T )−1 = (Zδ,γ)

′
Σ−1Zδ,γ and aδ,γ

T = Aδ,γ
T (Zδ,γ)

′
Σ−1ỹ.

4.2 Road Safety Data

We analyze a time series consisting of monthly counts of killed or injured pedestrians, aged

6-10, from 1987-2005 in Linz, which is the third largest town in Austria.2 The observations

are a series of small counts not exceeding 5, see Figure 6. A new law intended to increase

2A shorter version of this time series ranging from 1987-2002 was analyzed in Frühwirth-Schnatter

and Wagner (2006).
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road safety came into force in Austria on October 1, 1994, since when pedestrians who

want to use a pedestrian crossing have to be allowed to cross. Of interest is the effect of

this law on the (monthly) risk of being killed or seriously injured in a road accident as a

child living in Linz.

The basic structural model with intervention effect for Poisson counts defined in Sub-

section 4.1 is fitted to the number yt of children killed or seriously injured in time period

t, yt ∼ P (etλt), where et is the number of children living in Linz. Model specification

search is carried out to identify an appropriate model.

4.2.1 Bayesian Inference for the unrestricted basic structural model with

intervention

For illustration, we start with Bayesian inference without variable selection for the un-

restricted basic structural model with intervention. For these data, we were not able to

estimate the model under the completely centered parameterization as MCMC did not

converge. For this reason, we compare a parameterization where only the season is non-

centered (Frühwirth-Schnatter and Wagner, 2006) under the priors θi ∼ G −1 (0.1, 0.001) , i =

1, 2, ±
√

θ3 ∼ N (0, 1) with a fully noncentered model with priors ±
√

θi ∼ N (0, 1) , i =

1, 2, 3. For both parameterizations we assume that µ0 ∼ N (log(y1/e1), 1) = N (−9.0084, 1)

and that the unknown initial values of the other components and the intervention effect

follow a standard normal prior distribution.

Figure 8 shows histograms of the MCMC draws for ±
√

θi, i = 1, . . . , 3 for both priors.

For the normal prior the posterior of all parameters ±√
θi, i = 1, . . . , 3 is clearly centered

at 0, suggesting that the state space model is overfitting and the data may be explained

by a simply Poisson regression model. This finding is confirmed by stochastic model

specification search in Subsection 4.2.2. As in Subsection 3.4.1 the inverted Gamma

density is very influential and shrinks the posterior densities of ±√
θ1 and ±√

θ2 away

from 0, spuriously suggesting that θ1 > 0 and θ2 > 0.

Figure 9 shows the various components of the unconstrained model like the smoothed

level µt with pointwise 95% credibility intervals. The estimated monthly risk λt for a child

to be seriously injured or killed seems to decrease at the time of intervention. The drift

at is not significantly different from 0 over the whole observation period. The seasonal
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component has significantly lower values than the annual average in the holiday months

July and August and higher values in June and October.

We used 20,000 iterations after a burn-in of 5,000 for each parameterization. As in

Subsection 3.4.1, we observe much better mixing behavior of the MCMC sampler under

the non-centered parametrization, see Figure 7.

4.2.2 Stochastic Model Specification Search

Stochastic model specification search is carried out using the prior described in Sub-

section 3.3. We compare partially proper priors with different prior variances B0 with

fractional priors with different fractions b. For each prior, MCMC sampling was carried

out for M = 100, 000 draws after a burn-in of 20, 000 draws. The first 1000 draws of the

burn-in were drawn from the unrestricted model, model selection began after these first

1000 draws. Depending on the prior, running MCMC takes between 125 and 165 minutes,

see also Table 5.

Results of the variable selection procedure are summarized in Table 4 and 5. The

most frequently visited model is fairly robust against the choice of the prior, only the

partially proper prior with the largest B0 and the fractional prior with the smallest b lead

to a more parsimonious model. No trend is present in the selected model, because δ = 0

and γ2 = 0 imply that at = a0 = 0 for the whole observation period. The initial seasonal

pattern is significant (δ3 = 1), but does not change over time (γ3 = 0). The level of the

model is constant before and after intervention, because γ1 = 0. Most importantly, the

intervention effect is significant, because δ4 = 1 is selected. Interestingly, the selected

model is no longer a state space model (γ1 = γ2 = γ3 = 0), but a simple Poisson

regression model with monthly seasonal dummies and an intervention effect. This finding

is confirmed by the marginal likelihoods computed in Frühwirth-Schnatter and Wagner

(2008).

In Table 6 and Figure 10, we compare posterior inference for the intervention effect for

the unconstrained basic structural model and the model obtained by variable selection.

We observe here an impressive gain of statistical efficiency for this parameter of interest.

For the unconstrained basic structural model, making the level dynamic before and after
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the intervention causes quite a loss of information, leading to an intervention effect that

is not significant.

The seasonal pattern disappears, if B0 is rather large in the partially proper prior and

if b is rather small in the fractional prior, see Table 4 and 5. Increasing B0 and decreasing

b forces more parsimonious models. Not surprisingly the seasonal pattern disappears first

in a more parsimonious model, because in the selected model only a few seasonal dummies

are different from 0, see also Figure 9.

4.3 Purse snatching in Hyde Park, Chicago

For further illustration, we reanalyze a time series of cases of purse snatching yt in the

Hyde park neighborhood in Chicago (Harvey, 1989) reported for the period from January

1968 to September 1973. We consider a simplified version of the model introduced in

Subsection 4.1, where no seasonal and no intervention effect is present and the exposures

et are equal to 1.

First, Gibbs sampling was run without variable selection for 15,000 iterations after a

burn-in of 10,000. We selected the normal prior N (0, 10) both for µ0 and a0 and compare

the inverted Gamma prior θi ∼ G −1 (−0.5, 0.0001) with the normal prior ±√
θi ∼ N (0, 1),

for i = 1, 2. Figure 11 shows histograms of ±√
θi under both priors. The posterior for

±
√

θ1 is roughly the same under both priors and clearly indicates that θ1 > 0. Again,

the inverted Gamma density is too influential for θ2 and shrinks the draws away from 0,

while for the normal prior the posterior is clearly centered at 0, suggesting that θ2 = 0.

Second, stochastic model specification search is carried out using the prior described in

Subsection 3.3. We compare partially proper priors with different prior variances B0 with

fractional priors with different fractions b. For each prior, MCMC sampling was carried

out for M = 100, 000 draws after a burn-in of 20, 000 draws. The first 1000 draws of the

burn-in were drawn from the unrestricted model, model selection began after these first

1000 draws. Depending on the prior, running MCMC takes between 25 and 28 minutes,

see also Table 8.

Results of the variable selection procedure are presented in Table 7 and 8. Model

selection is extremely robust to the prior choice and clearly picks a local level model. The

26



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

drift disappears because δ = 0 and γ2 = 0 imply that at ≡ a0 = 0 for all t. This finding

confirms model selection by the marginal likelihoods in Frühwirth-Schnatter and Wagner

(2008).

5 Concluding remarks

The model space MCMC approach discussed in this paper could be easily adapted to other

state space models. An important extension we are investigating currently is searching

for fixed and time-varying coefficients in a regression model.

It is possible to extend our approach to several other non-Gaussian time series models.

The method works for any partial Gaussian state space model in the sense of Shephard

(1994), i.e. for any state space model that is conditionally Gaussian given a set of auxiliary

latent variables. Thus it is straightforward to extend the approach to robust state space

modeling based on the Student-t distribution as discussed e.g. in Carlin, Polson, and

Stoffer (1992) or to modelling binary time series based on probit-link state space models

as considered e.g. in Czado and Song (2008).

Auxiliary mixture sampling as discussed in Frühwirth-Schnatter and Frühwirth (2007)

allows to consider state space modelling of binary and categorical time series based on

the logit link. Frühwirth-Schnatter et al. (2009) shows how to run auxiliary mixture

sampling for data from the negative binomial distribution. In combination with the idea

of the present paper, this allows variable selection for time series of overdispered count

data. Furthermore, Frühwirth-Schnatter et al. (2009) discuss efficient auxiliary mixture

sampling for data from the binomial and the multinomial distribution where the dimension

of the auxiliary variable ut is limited to 2m, with m+1 being the number of alternatives,

even if the number yt of observed counts is increasing. This makes it feasible to extend

variable selection to state space modelling of binomial and multinomial data.

A couple of modifications of our approach are worth being considered. First, the

uniform prior over all models may be substituted by a more flexible prior which is obtained

by assuming that the prior occurrence of δi = 1 and γi = 1 is different:

Pr(δi = 1|αδ) = αδ, Pr(γi = 1|αγ) = αγ.
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In this prior, αδ and αγ may be chosen as fixed values, if prior information on the occur-

rence probabilities is available. If this is not the case, a hyperprior may be put on αδ and

αγ as in Smith and Kohn (2002) and Frühwirth-Schnatter and Tüchler (2008). If both

hyperparameters αδ and αγ are iid Uniform on [0,1], then

p(δ, γ) = B(1 +
∑

i

I{δi=1}, 1 +
∑

i

I{δi=0})B(1 +
∑

i

I{γi=1}, 1 +
∑

i

I{γi=0}),

where B(·, ·) is the Beta function. This prior leads to a uniform distribution over model

size and outperforms the uniform prior over all models in variable selection for large

regression models, see Ley and Steel (2007). In our applications, where model size is

small, posterior inference under both priors is virtually the same.

Second, sampling the indicators could be modified. In our MCMC schemes, the indi-

cators (δ, γ) are sampled jointly from the discrete posterior p(δ, γ|x,y) by evaluating the

right hand side of (25) for all combinations of indicators at each sweep of the sampler. This

multi-move sampling is rather time-consuming and may be substituted by single-move

Gibbs sampling, i.e. sampling recursively from p(δj |δ−j, γ,x,y) and p(γj |γ−j, δ,x,y) as

in George and McCulloch (1993).

An open issue of our approach is the influence the prior on the initial values and the

process variances exercises on final model selection. We demonstrated that the normal

prior put on the signed square root of the process variances is far less influential than

the usual inverted Gamma for the process variances themselves. The sensitivity analysis

carried out for all of our case studies revealed a surprising robustness of the finally selected

model against variation in the normal prior. A concise statement which prior scale leads to

model consistency in the sense of Casella, Girón, Mart́ınez, and Moreno (2009), however,

is far beyond the scope of the present paper.
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Table 1: UK coal consumption; the three most frequently visited models (among 100000

MCMC iterations) for various prior distributions

prior δ δ3 γ1 γ2 γ3 frequency

p(µ0) ∝ 1, B0 = 1 0 1 0 1 0 44825

1 1 1 0 0 16323

0 1 0 1 1 11803

p(µ0) ∝ 1, B0 = 10 0 1 0 1 0 64018

1 1 1 0 0 14267

0 1 1 0 0 10655

p(µ0) ∝ 1, B0 = 100 0 1 0 1 0 74724

0 1 1 0 0 15597

1 1 1 0 0 5784

b = 10−3 0 1 0 1 0 64205

0 1 1 1 0 10780

1 1 0 1 0 9033

b = 10−4 0 1 0 1 0 86097

1 1 0 1 0 4570

0 1 1 1 0 4291

b = 10−5 0 1 0 1 0 92323

0 1 1 0 0 3084

0 1 1 1 0 1717

Table 2: UK coal consumption; posterior inclusion probability for each indicator under

various priors

Prior δ δ3 γ1 γ2 γ3 time (min)

p(µ0) ∝ 1, B0 = 1 0.2933 1.0000 0.3712 0.7500 0.2223 52.2

p(µ0) ∝ 1, B0 = 10 0.1716 1.0000 0.3136 0.7410 0.0328 51.6

p(µ0) ∝ 1, B0 = 100 0.0697 1.0000 0.2344 0.7836 0.0101 52.0

b = 10−3 0.1827 1.0000 0.2154 0.9210 0.0677 43.8

b = 10−4 0.0630 1.0000 0.0736 0.9728 0.0216 43.6

b = 10−5 0.0219 1.0000 0.0600 0.9576 0.0069 43.2
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Table 3: UK coal consumption; log marginal likelihoods log(p̂(y| M)) of all models

M = (δ, δ3, γ1, γ2, γ3) estimated by importance sampling (standard errors in parenthe-

sis); corresponding model probability p̂(M |y) in comparison to the number h(M) of

times the model was visited during 100,000 MCMC iterations; B0 = 1 (left hand side)

and B0 = 100 (right hand side)

Model M log(p̂(y|M)) p̂(M |y) h(M) log(p̂(y|M)) p̂(M |y) h(M)

0 0 0 0 0 -87.83(.001) 0.000 0 -87.83(.001) 0.000 0

0 0 0 0 1 -85.65(.001) 0.000 0 -87.95(.001) 0.000 0

0 0 0 1 0 -39.89(.002) 0.000 0 -42.19(.002) 0.000 0

0 0 0 1 1 16.32(.002) 0.000 0 11.83(.002) 0.000 0

0 0 1 0 0 -40.88(.001) 0.000 0 -43.15(.001) 0.000 0

0 0 1 0 1 14.60(.002) 0.000 0 10.30(.002) 0.000 0

0 0 1 1 0 -42.23(.007) 0.000 0 -46.85(.005) 0.000 0

0 0 1 1 1 15.00(.010) 0.000 0 8.25(.006) 0.000 0

0 1 0 0 0 -80.60(.001) 0.000 0 -87.00(.001) 0.000 0

0 1 0 0 1 -83.73(.003) 0.000 0 -92.42(.004) 0.000 0

0 1 0 1 0 28.68(.002) 0.430 44013 26.67(.002) 0.763 75099

0 1 0 1 1 27.42(.006) 0.121 12074 22.06(.008) 0.008 711

0 1 1 0 0 25.93(.001) 0.027 2502 24.97(.002) 0.139 14733

0 1 1 0 1 25.00(.005) 0.011 926 20.56(.005) 0.002 161

0 1 1 1 0 26.99(.006) 0.079 8051 23.04(.006) 0.020 2089

0 1 1 1 1 25.87(.010) 0.026 2660 18.51(.010) 0.000 33

1 0 0 0 0 -37.81(.001) 0.000 0 -40.12(.001) 0.000 0

1 0 0 0 1 8.05(.001) 0.000 0 3.51(.001) 0.000 0

1 0 0 1 0 -42.15(.004) 0.000 0 -46.76(.003) 0.000 0

1 0 0 1 1 14.33(.002) 0.000 0 7.54(.002) 0.000 0

1 0 1 0 0 -39.92(.004) 0.000 0 -44.51(.005) 0.000 0

1 0 1 0 1 16.26(.002) 0.000 0 9.56(.002) 0.000 0

1 0 1 1 0 -44.44(.005) 0.000 0 -51.34(.005) 0.000 0

1 0 1 1 1 13.39(.009) 0.000 0 4.35(.009) 0.000 0

1 1 0 0 0 20.86(.001) 0.000 17 16.70(.001) 0.000 1

1 1 0 0 1 18.63(.004) 0.000 1 11.68(.003) 0.000 0

1 1 0 1 0 26.50(.002) 0.049 4866 22.28(.001) 0.009 907

1 1 0 1 1 25.24(.005) 0.014 1308 17.66(.004) 0.000 8

1 1 1 0 0 27.75(.001) 0.169 16332 24.08(.001) 0.057 6160

1 1 1 0 1 26.69(.006) 0.059 5656 19.60(.007) 0.001 76

1 1 1 1 0 25.05(.007) 0.011 1209 18.96(.006) 0.000 22

1 1 1 1 1 23.98(.010) 0.004 385 14.46(.009) 0.000 0
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Table 4: Road safety data; the three most frequently visited models (among 100,000

MCMC iterations) for various prior distributions

prior δ δ3 δ4 γ1 γ2 γ3 frequency

p(µ0) ∝ 1, B0 = 1 0 1 1 0 0 0 93463

0 1 1 0 0 1 2581

0 1 1 1 0 0 1508

p(µ0) ∝ 1, B0 = 10 0 1 1 0 0 0 93571

0 1 0 0 0 0 4163

0 1 1 0 0 1 773

p(µ0) ∝ 1, B0 = 100 0 0 1 0 0 0 75054

0 0 0 0 0 0 15607

0 0 1 0 0 1 6770

b = 10−2 0 1 1 0 0 0 23349

0 1 1 0 0 1 10035

0 1 1 1 0 0 8564

b = 10−3 0 1 1 0 0 0 48612

1 1 0 0 0 0 9368

0 1 1 0 0 1 7414

b = 10−4 0 1 1 0 0 0 62113

1 1 0 0 0 0 11616

0 1 0 0 1 0 6756

b = 10−5 0 0 1 0 0 0 38446

0 0 1 0 0 1 19121

1 0 0 0 0 0 10108
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Table 5: Road safety data; posterior inclusion probability for each indicator

trend season intervention process variances

prior δ δ3 δ4 γ1 γ2 γ3 time (min.)

p(µ0) ∝ 1, B0 = 1 0.0026 1.0000 0.9775 0.0222 0.0003 0.0269 164.9

p(µ0) ∝ 1, B0 = 10 0.0022 1.0000 0.9491 0.0114 0.0002 0.0090 143.0

p(µ0) ∝ 1, B0 = 100 0.0020 0.0127 0.8316 0.0055 0.0001 0.0738 143.5

b = 10−2 0.3160 1.0000 0.7662 0.3008 0.2804 0.2973 125.7

b = 10−3 0.1982 1.0000 0.7416 0.1443 0.1499 0.1305 125.6

b = 10−4 0.1519 1.0000 0.7111 0.0813 0.1009 0.0433 126.2

b = 10−5 0.1643 0 0.5945 0.0703 0.0958 0.3192 125.6

Table 6: Road safety data; posterior inference for the intervention effect ∆

∆ Mean Std.dev. 95%H.P.D. regions

Basic structural model -0.4035 0.5067 [-1.4024; 0.5855]

Poisson regression model with seasonal dummies -0.3594 0.0967 [-0.5450; -0.1662]

Table 7: Purse snatching; the three most frequently visited models (among 100,000

MCMC iterations) for various prior distributions

δ γ1 γ2 B0 = 1 B0 = 10 B0 = 100 b = 10−3 b = 10−4 b = 10−5

0 1 0 95108 99226 99509 56254 83737 93211

1 1 0 3710 667 403 19750 7630 3301

0 1 1 1117 93 88 18679 8083 3403
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Table 8: Purse snatching; posterior inclusion probability for each indicator

prior δ γ1 γ2 time (min.)

p(µ0) ∝ 1, B0 = 1 0.0377 1.0000 0.0118 27.8

p(µ0) ∝ 1, B0 = 10 0.0068 1.0000 0.0011 27.8

p(µ0) ∝ 1, B0 = 100 0.0040 1.0000 0.0009 27.9

b = 10−3 0.2507 1.0000 0.2400 25.5

b = 10−4 0.0818 1.0000 0.0863 25.5

b = 10−5 0.0339 1.0000 0.0349 25.3
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Figure 1: Contour and surface plots of the (scaled) profile likelihood

l(
√

θ1,
√

θ2)/ max(l(
√

θ1,
√

θ2)), where l(
√

θ1,
√

θ2) = p(y| √
θ1,

√
θ2, σ

2,tr
ε , µtr

0 , atr
0 ) for

simulated data with (θtr
1 , θtr

2 ) = (0.152, 0.022) (first row), (θtr
1 , θtr

2 ) = (0.152, 0) ( second

row), (θtr
1 , θtr

2 ) = (0, 0.022) (third row), and (θtr
1 , θtr

2 ) = (0, 0) (last row)
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Figure 2: Prior and posterior densities for ±√
θ1 under the prior distributions θ1 ∼

G −1 (0.5, D0) (left hand side) and ±
√

θ1 ∼ N (0, B0σ
2
ε) (right hand side). Top: priors,

middle: posterior, if true value of θ1 is equal to θtr
1 = 0.01; bottom: posterior, if true value

of θ1 is equal to θtr
1 = 0
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Figure 3: UK coal consumption; (a) observations 1/1960 to 4/1982 (log scale), posterior

means and point-wise 95% credible regions of (b) the level µt, (c) the drift at and (d) the

seasonal component st in the last three years under the centered parameterization
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Figure 4: UK coal consumption; posterior densities of ±
√

θ1 (left), ±
√

θ2 (middle) and

±
√

θ3 (right) estimated from the MCMC draws under different priors; top: N (0, 1) prior

for ±√
θi; bottom: G −1 (−0.5, 10−7)-prior for θi
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Figure 5: UK coal consumption; MCMC draws for ±√
θ1 (left), ±√

θ2 (middle) and

±√
θ3 (right) under different parameterizations; top: noncentered parameterization with

a N (0, 1)-prior for ±
√

θi; bottom: centered parameterization with a G −1 (−0.5, 10−7)

prior for θi

41



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
0

1

2

3

4

5
Counts

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
7000

7500

8000

8500

9000

Number of exposed

Figure 6: Road safety data; (a) counts of killed or injured children, (b) number of children

exposed
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Figure 7: Road safety data; top: MCMC draws for ±√
θ1 (left), ±√

θ2 (middle) and

±
√

θ3 (right) for the noncentered parameterization; bottom: MCMC draws for θ1 (left),

θ2 (middle) and ±√
θ3 (right) under the partially noncentered parameterization
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Figure 8: Road safety data; histograms of the MCMC draws for ±√
θ1 (left), ±√

θ2 (mid-

dle) and ±√
θ3 (right); top: N (0, 1) prior for ±√

θi, i = 1, 2, 3; bottom: G −1 (0.1, 0.001)-

prior for θ1 and θ2, N (0, 1) prior for ±
√

θ3
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Figure 9: Road safety data; (a) posterior mean of the risk λt; posterior means and point-

wise 95% credible regions of (b) the level µt, (c) the drift at and (d) the seasonal component

st in year 2005 under the centered parameterization
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Figure 10: Road safety data; posterior density of the intervention effect ∆ in comparison

to the prior; left: unrestricted basic structural model, right: Poisson regression model

with seasonal pattern (selected model)
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Figure 11: Purse snatching data; histograms for ±
√

θ1 (left) and ±
√

θ2 (right); top:

N (0, 1) prior for ±√
θ1 and ±√

θ2; bottom: G −1 (−0.5, 0.0001)-prior for θ1 and θ2
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