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Abstract—Cyclo-Static DataFlow (CSDF) is a powerful model
for the specification of DSP applications. However, as in any
asynchronous model, the synchronization of the different com-
municating tasks (processes) is made through buffers that have
to be sized such that timing constraints are met. In this paper,
we want to determine buffer sizes such that the throughput
constraint is satisfied. This problem has been proved to be of
exponential complexity. Exact techniques to solve this problem
are too time and/or space consuming because of the self-timed
schedule needed to evaluate the maximum throughput. Therefore,
a periodic schedule is used. Each CSDF actor is associated with
a period that satisfies the throughput constraint and sufficient
buffer sizes are derived in polynomial time. However, within a
period, an actor phases can be scheduled in different manners
which impacts the evaluation of sufficient buffer sizes.

This paper presents a Min-Max Linear Program that derives
an optimized periodic phases scheduling per CSDF actor in order
to minimize buffer sizes. It is shown through an MP3 Playback
and an H.263 Encoder that this Min-Max Linear Program allows
to obtain close to optimal values while running in polynomial
time. The impact of phases scheduling on periodic schedulability
of applications with critical cycles is also highlighted on a
Channel Equalizer.

Index Terms—Cyclo-Static DataFlow, Buffer Capacity, Min-
Max Linear Program, Digital Signal Processing, High-Level
Synthesis.

I. INTRODUCTION AND RELATED WORKS

Dataflow paradigm is a powerful Model of Computation
(MoC) for timing analysis of system behavior. This process-
based MoC represents computation as a set of concurrent
processes performing treatments on data streams that are
exchanged through buffered channels. Therefore, it is widely
used for modelling digital signal processing (DSP) applica-
tions. These applications are often associated with real-time
constraints. In this paper, we want to determine buffer sizes
such that throughput constraints are satisfied.

Initially, Synchronous DataFlow Graphs [1] (SDFG) were
adopted. Processes are represented by nodes called actors and
buffers are modelled by arcs. Actors consume and produce a
constant and fixed number of data. Then, to increase the scope,
Cyclo-Static DataFlow graphs (CSDFG) were introduced [2].
In this model, the number of data consumed and produced
by an actor is allowed to vary from a firing to the next in a
cyclic pattern. This pattern is constant and known at compile
time. Its length defines the number of actor phases. Phases
can be seen as iterations of a for loop that is represented

by the actor. In this for loop, a condition that depends on
the iteration number determines the transfer rate towards a
buffer. Now, this entire loop can also be modelled by an SDF
actor. The resulted single phase of this SDF actor has then
for transfer rate the cumulative transfer rates from the pattern.
This modelling results in a significant overestimation of buffer
capacities as all the necessary data are consumed/produced
in one atomic fashion respectively at the start/end of the
actor execution [3]. Besides, modelling some processes by an
SDF actor may introduce deadlock situation when the actor is
involved in a cycle even if the CSDF model is deadlock-free
[2], [4]. Furthermore, [5] proves that CSDF modelling enlarge
the scope of channels that can be considered. For instance,
an extension is provided for shared buffers (under condition)
with multiple consumers and producers.

An accurate CSDFG of an application can be obtained
through an automatic extraction from the Cycle Accurate
Model (CAM) delivered by the synthesis tool at the Register-
Trasfer Level (RTL). An approximate modelling at higher level
such as the Transactional-Level Modelling (TLM) can also be
used under condition of bounding the Worst Case Execution
Time (WCET) of actors. This would allow performance eval-
uation of a design at a higher level without having to generate
the RTL.

Another issue related to buffers is preloading feedback
buffers, i.e. to determine the number of data that should be
initially in a feedback buffer. A feedback buffer creates a
cycle (closed loop) from the forward and the feedback paths.
An empty feedback buffer results in deadlock situation if
buffers on the forward path are not sufficiently initialized.
In addition, an under-preloaded feedback buffer results in
insufficient throughput. Indeed, the first access to the feedback
buffer determines the number of data in the cycle just created
(closed) and thus the throughput. Non-blocking read can
overcome this issue as data are read only when available
in the buffer. However, dataflow semantic supposes blocking
read. Furthermore, in some High-Level Synthesis tools that
need to simulate C code against RTL for verification purpose,
insufficiently prefilled feedback buffers cause C and/or RTL
simulation to deadlock or stutter [6].

The capacity of a buffer is defined as the maximum number
of data that the buffer can store at a time. We associate a cost
per unit of storage and we limit our study to buffers for which
all data stored are of the same cost. This cost may be related to
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the width of the buffer (size of data) or the technology/location
of the memory allocated to the buffer. Then, the cost of a buffer
is given by its capacity times the cost of one data. Both cost
and size are used indifferently in this paper to refer to a buffer
cost.

Contribution: The principal contribution of this paper is
a Min-Max Linear Program (LP) that derives an optimized
periodic phases scheduling per CSDF actor in order to min-
imize buffer sizes. This is a major improvement to some
techniques based on periodic schedules [7], [8] to minimize
the overall buffer sizes that satisfies a fixed throughput. While
these techniques considered a phases scheduling that takes into
account only phases execution times, the Min-Max LP will
enable to consider in addition phases transfer rates, resulting
then in a better estimation of sufficient buffer sizes.

This is accomplished as follows. First, the throughput con-
strained buffer sizes minimization problem is formulated by
an Integer Linear Program (ILP). The built ILP accepts any
valid phases scheduling. Then, it is shown that the lower bound
on the capacity of a buffer computed by this ILP is closely
related to the phases schedulings of its consumer and producer.
Furthermore, it is proved that the analytical approach presented
in this paper enables to optimize separately these two phases
schedulings. This leads to the conclusion that an actor phases
scheduling optimization can be performed in isolation from the
other actors. An actor may have several adjacent buffers and
the cost per unit of storage may differ from an adjacent buffer
to another. These constraints are taken into account and the
actor phases scheduling optimization problem is modelled by
a Min-Max LP. Once all actors phases scheduling optimization
done, they are reported into the ILP to derive the start time
of the first execution of each actor with the objective of
minimizing sufficient buffer sizes. As it will be demonstrated
in the experimental results section, the computed values for
buffer sizes are much better than those computed in [7], [8]
while the temporal impact due to the additional Min-Max LP
calculation remains limited.

Related Works: The problem tackled in this paper has
been addressed in [3]. A polynomial heuristic is presented
that schedules actor phases periodically with a period that
satisfies the throughput constraint. The approach used in [3]
is close to network calculus [9] in the way that it uses (linear)
upper/lower bounds on the token production / consumption
times to derive sufficient buffer capacities. It is shown that
the buffer capacity is proportional to the delay between the
upper bound on the data production times and the lower
bound on the data consumption times. Then, the producer and
the consumer phases schedulings are optimized such that this
delay is minimized. These linear bounds are defined per buffer
in isolation, so are the derived phases schedulings and thus the
delays. Indeed, such a technique hides the fact that optimizing
a phases scheduling can be done per actor in isolation as it
is proved in this paper. Therefore, the technique presented in
[3] results, for an actor, in as much phases schedulings as the
number of adjacent buffers to this actor. Authors do not specify
the technique used to combine these schedulings to derive one
phases scheduling per actor. Moreover, it is not clear how
the impact of different costs for the adjacent buffers may be

integrated, as the technique by construction cannot consider
buffer costs. In the experimental results section, it is shown
that our algorithm results in a more accurate estimation of
sufficient buffer capacities compared to [3].

Exact techniques compute optimal buffer capacities that
satisfy the throughput constraint. In such techniques the self-
timed execution is used to evaluate the maximum throughput
that can be accomplished by a solution. The self-timed ex-
ecution, called also the as soon as possible (in short asap)
schedule, consists in executing actors as soon as there are
enough data in their input buffers. No polynomial algorithm
exists to evaluate the maximum throughput for SDFGs and
thus for CSDFGs. The consequence is that related optimization
problems are probably not in NP. In [10], it is proved that
buffer sizes minimization problem under throughput constraint
is NP-complete for Single Rate DataFlow graphs (SRDFG),
i.e. SDFGs with all transfer rates equal 1. Thus, the problem
is NP-Hard for general SDFGs and CSDFGs.

Exact techniques can be of two classes depending on how
the maximum throughput is evaluated. One way to evaluate
this throughput for a CSDFG is through a translation to the
equivalent Single Rate DataFlow graph (in short SRDFG) [2].
The Maximum Cycle Ratio analysis [11] can then be applied.
However, the obtained SRDF graph is of exponential size on
the size of the initial CSDF graph. Thus, techniques based
on this approach are too space and time consuming to handle
real-life DSP applications.

To the best of our knowledge, [12] proposes the only
technique of the second class; the class of techniques that do
not need a translation of the CSDFG to the equivalent SRDFG.
Using a state-space exploration technique, authors determine
the Pareto space of the bi-criterion problem throughput-buffer
capacities for marked CSDFGs. Marked CSDFGs are graphs
for which the initial number of data in known for all buffers.
Thus, uninitialized feedback buffers are not considered. The
maximum throughput calculation consists of finding a cycle
in the state space to which corresponds a self-timed execu-
tion pattern that can be repeated infinitely. The maximum
throughput of an actor equals the number of executions in this
pattern divided by the duration of the pattern. The number
of states to visit before finding a cycle can be exponentially
large, especially if the number of actor phases is large. Thus,
this maximum throughput analysis has an exponential worst-
case complexity. Furthermore, the set of storage distributions
to explore is of exponential size on the number of buffers
to be sized and is closely related to the values of transfer
rates. Therefore, the exact technique presented in [12] has an
exponential complexity, which, as a consequence, limits the
CSDFG instances that can be treated. Authors propose an ap-
proximation technique to reduce the set of storage distributions
to be explored, and thus lowers run-times. Moreover, they raise
a thought about the usefulness that may have fast heuristics, as
the one proposed in this paper, in speeding-up the techniques
proposed in [12]. In fact, both the exact and the approximation
techniques can start exploring from the result of a heuristic,
which may lead to a better solution than the heuristic in
much less run-time than the exact technique. This idea can be
pushed further in the growing context of high-level synthesis
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and design exploration [13], [14]. The ability of high-level
synthesis to deliver an RTL quickly enough enables to iterate
(explore) over several variations of a design until finding the
most suitable solution that satisfies a specified feature (metric).
The throughput constitutes one of the most common metrics
used during the exploration. A fast heuristic that sizes buffers
under a throughput constraint can be of great help in this
decision process as it provides a sufficiently fast evaluation
tool to allow to go through several designs. Once the design
is fixed, exact techniques can be used to obtain optimal values.
In fact, potentially excessive run-times of exact techniques do
not allow their use during the design exploration process. Thus,
heuristics and exact techniques complement each other.

The paper is organized as follows: CSDF graphs are pre-
sented in Section II. Conditions for a valid periodic schedule
are recalled in Section III. Section IV is dedicated to our actors
isolation technique and the constraints linearization step; a
necessary steps for our ILP formulation of the buffer sizes
minimization problem presented in Section V. The principal
contribution, that consists in a Min-Max LP formulation of
the phases scheduling optimization problem, is presented in
Section VI. Section VII is dedicated to experimental results.
We conclude in Section VIII.

II. CYCLO-STATIC DATAFLOW GRAPHS

A Cyclo-Static DataFlow Graph G = (T,A) is a directed
graph where the set of nodes T models actors and the
set of arcs A corresponds to buffers. Every actor t ∈ T
is decomposed into ϕ(t) ∈ N − {0} distinct phases that
constitute a periodic execution sequence. As described in the
introduction, t can be viewed as a loop of ϕ(t) iterations
while every phase represents an iteration. For every value
k ∈ {1, · · · , ϕ(t)}, the kth phase of t is denoted by tk and
has a constant duration `t(k) ∈ Q+. Notice that, by analogy
to an execution of a loop, one execution of the actor t ∈ T
will refer to the ordered execution of all its phases (iterations)
t1, · · · , tϕ(t). We denote by 〈t, n〉, n ∈ N − {0}, the nth
execution of t. Similarly, for every phase k ∈ {1, · · · , ϕ(t)},
〈tk, n〉 denotes the nth execution of the kth phase of t. For
every couple (k, n) ∈ {1, · · · , ϕ(t)} × N − {0}, Pred〈tk, n〉
is the preceding execution phase of 〈tk, n〉. More formally,

Pred〈tk, n〉 =

{
〈tk−1, n〉 if k > 1
〈tϕ(t), n− 1〉 if k = 1.

The execution 〈tϕ(t), 0〉 is fictitious and is only introduced to
simplify the definition of Pred.

Every arc a = (t, t′) ∈ A represents a buffer b(a)
of unbounded capacity from the actor t to the actor t′.
∀k ∈ {1, · · · , ϕ(t)}, wa(k) data are produced in b(a) at
the end of an execution of tk. To enable the execution
of the phase t′k′ ,∀k′ ∈ {1, · · · , ϕ(t′)}, va(k′) data are
needed to be available in b(a). They are consumed before
t′k′ starts its execution. We define the cumulative number
of data produced on a by one execution of the actor t as
wa · 1 =

∑ϕ(t)
k=1 wa(k). Similarly, we define the cumulative

number of data consumed from a by one execution of
the actor t′ as va · 1 =

∑ϕ(t′)
k=1 va(k). In a DataFlow

Graph, data are represented by tokens. Their initial number

for each buffer b(a) is reported by M0(a) ∈ N. An arc
a = (t, t′) models the synchronization introduced by a buffer
b(a) between the actors t and t′. However, this forward
arc cannot by itself model the limited capacity of b(a).
To model the bounded capacity of b(a) a backward arc
a′ = (t′, t) is added that models the free space. Hence,
M0(a′) reports the number of empty containers initially in
b(a). For every k ∈ {1, · · · , ϕ(t)}, va′(k) = wa(k) and for
every k′ ∈ {1, · · · , ϕ(t′)}, wk′(a′) = vk′(a). The capacity of
the buffer b(a) equals the sum M0(a)+M0(a′) (see. Figure 1).

t

ℓt = [2, 4]

t′

ℓt′ = 3

t t′wa = [3, 5]

M0(a) = 0

va = 2

M0(a
′)

Fig. 1. A bounded buffer b(a) of capacity M0(a)+M0(a′). ϕ(t) = 2 and
ϕ(t′) = 1.

Two phases or two successive executions of an actor are
not supposed to overlap. To prevent such a behaviour, a self-
arc (t, t) with one token is added for every actor t ∈ T to
guarantee that at most only one phase is running at a time.
These arcs are not pictured, but their effect is taken into
account when constructing a schedule (see. Subsection III-B).

Without loss of generality, it is assumed that the application
is modelled using a connected CSDFG. It is also assumed that
all the actors are connected by buffers with limited capacity,
thus the graph is strongly connected. A path of G of length

p ∈ N−{0} is defined by a list of actors
−→
t1tp= (t1, t2, · · · , tp)

such that for any k ∈ {1, · · · , p− 1}, (tk, tk+1) ∈ A. A cycle

is a path such that tp = t1. The weight of a path
−→
t1tp defines

a relation between the cumulative transfer rates of the actors
and is given by the ratio

W (
−→
t1tp) =

∏
a∈
−→
t1tp

wa · 1
va · 1

.

A feasible (valid) schedule of a CSDFG is a function
s that associates, for every triple (t, k, n) with t ∈ T ,
k ∈ {1, · · · , ϕ(t)} and n ∈ N − {0}, a start time s(tk, n)
for the nth execution of tk such that the number of token in
every arc a ∈ A remains non negative, i.e. no data is read
before it is available. The start times of an actor coincide with
those of its first phase, i.e. s(t, n) = s(t1, n).

Consistency is a necessary (not sufficient) condition for the
existence of a valid schedule within bounded memory [15].
Two methods exist to check consistency. In [2], Bilsen et al.
extend the condition for the consistency of SDFGs [15] to
the case of CSDFGs by considering the cumulative number
of tokens produced/consumed by actors. Let us consider the
pre-post |A| × |T | matrix Γ defined by

Γat =

 wa · 1 if a = (t, t′), t′ ∈ T
−va · 1 if a = (t′, t), t′ ∈ T
0 Otherwise.

The CSDFG is consistent if the rank of Γ is |T |−1. Then, the
rank of solutions space of the balance equation Γ ·r = 0 is not
null. The smallest non trivial (∀i ∈ {1, · · · , |T |}, r(i) 6= 0)
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positive integer solution is called the repetition vector. This
vector determines the number of executions per actor in a
periodic execution pattern that brings back the CSDFG to a
state (i.e. the number of tokens per arc) identical to its initial
state. In terms of phases, for an actor ti, r(i)× ϕ(ti) phases
are executed within this execution pattern.

Another way to check consistency is to prove that all paths
that connect a couple of actors have the same weight, other-
wise the graph is inconsistent [7]. By analogy to Weighted
Event Graph [16], a subclass of PetriNets that is equivalent
to SDFG, these graphs are called unitary. A unitary graph
is a graph in which all cycles have a weight of one. This
property can be checked in O(|T |×|A|) using the shortest path
Bellman-Ford algorithm, which, in general, performs faster
than solving the system of linear equations Γ · r = 0 that is
in O(|T |3) [17].

In the following, we restrict our study to consistent strongly
connected CSDFGs as inconsistent graphs will either deadlock
or need unbounded buffers.

We consider the existence of an input or output actor t? ∈ T
for which a minimum throughput (frequency) of value νt? is
required. The throughput of the CSDFG for a schedule s is
defined as

ν(s) = lim
n→∞

n

s(t?, n)
and must then verify ν(s) ≥ νt? . For any infinite valid
schedule achieved within bounded memory, to ensure no
tokens lack/overflow, throughputs of two adjacent actors t and
t′ with a = (t, t′) ∈ A must verify

νt =
va · 1
wa · 1

νt′ .

This relationship is subsequently used to compute all tasks
throughputs. Starting from t? for which the throughput νt?
is set, the throughput of every actor t can be computed
by a Depth-First Search algorithm [17]. Consistency ensures
that whatever the path used to reach t ∈ T − {t?}, the
computed throughput νt is always the same, thus the following

∀t ∈ T − {t?}, νt = νt?/W (
−→
tt?)

where
−→
tt? is a path of G from t to t?.

In the next section, some already established results for
the feasibility of periodic schedules are presented to enhance
understanding of the contributions of this paper.

III. VALID SCHEDULES

Let us consider a bounded buffer b(a) modelled by the
couple of arcs a = (t, t′) and a′ = (t′, t). Let us consider
also the phases tk and t′k′ . The fact that an execution 〈t′k′ , n′〉
has to wait until an execution 〈tk, n〉 has finished is called a
precedence constraint from 〈tk, n〉 to 〈t′k′ , n′〉. The Dataflow
semantic imposes a blocking read; an execution cannot start
until enough data on input buffers are available. The forward
arc a under this semantic induces then an infinite number of
precedence constraints from tk executions to t′k′ executions.
To prevent data from being overwritten we will also suppose a
blocking write semantic; an execution cannot start until enough
empty space on output buffers are available. This semantic is
equivalent to a blocking read from the backward arc a′ on
which the number of tokens represents the number of empty

containers. As mentioned, a schedule is valid if the number
of tokens remains non negative all the time. Then, a valid
schedule should respect all the precedence constraints for all
the couple of phases. Otherwise, some tokens are consumed
before they are available and the number of tokens becomes
negative which invalidates the schedule.

A. Precedence constraint

Formally, an arc a induces a precedence constraint from the
execution 〈tk, n〉 to the execution 〈t′k′ , n′〉 if
1. 〈t′k′ , n′〉 can be executed at the completion of 〈tk, n〉,
2. Pred〈t′k′ , n′〉 can be executed before the end of 〈tk, n〉 but
not 〈t′k′ , n′〉.

Let us denote by D+
a 〈tk, n〉 (resp. D−a 〈t′k′ , n′〉) the cu-

mulative number of tokens produced (resp. consumed) by t
(resp. t′) in the arc a from the first execution until 〈tk, n〉
(resp. 〈t′k′ , n′〉) included. Lemma 1, proved in [7], defines
a necessary and sufficient condition for the existence of a
precedence constraint from 〈tk, n〉 to 〈t′k′ , n′〉 in terms of
D+
a 〈tk, n〉 and D−a 〈t′k′ , n′〉.
Let us denote for every arc a = (t, t′) ∈ A,

gcda = gcd(wa · 1, va(1), · · · , va(ϕ(t′))),
gcd′a = gcd(va · 1, wa(1), · · · , wa(ϕ(t))),

where gcd is the greatest common divisor of a given list
of non negative integers. For every integer α ∈ Z and
γ ∈ {gcda, gcd′a}, we also set

bαcγ =

⌊
α

γ

⌋
· γ and bαcγ =

{
α− γ if α is a multiple of γ
bαcγ otherwise.

Lemma 1 ([7]). Let a = (t, t′) ∈ A and the couple of
executions 〈tk, n〉 and 〈t′k′ , n′〉. Then there exists a precedence
constraint from 〈tk, n〉 to 〈t′k′ , n′〉, iff:
min{Hmax(k), H

′
max(k, k

′)} ≥ D+
a 〈tk, n〉 −D−a 〈t′k′ , n

′〉 ≥ Hmin(k, k
′)

with
Hmax(k) =

⌊
−M0(a)−D+

a Pred〈tk, 1〉
⌋
gcda

+D+
a 〈tk, 1〉,

H ′max(k, k′) =
⌊
−M0(a) +D−a 〈t′k′ , 1〉

⌋
gcd′a
−D−a 〈t′k′ , 1〉+wa(k)

and Hmin(k, k′) = max{0, wa(k)− va(k′)} −M0(a).

B. Periodic schedules

Periodic schedules are a mean to overcome the exponential
complexity of the self-timed execution analysis. In counterpart
to an overestimation of sufficient buffer capacities, the analysis
can be made in polynomial time. In a periodic schedule s, each
actor and its phases must be fired periodically with a period
that ensures the actor consumes/produces an average amount
of data per time units that is necessary and sufficient to satisfy
the throughput constraint ν(s). Thus, every actor t ∈ T is fired
periodically with a period µt = 1/νt ≥ `t · 1 such that
1. ∀n > 0, s(t, n) = s(t, 1)+(n−1)µt = s(t1, 1)+(n−1)µt.
2. ∀k ∈ {1, · · · , ϕ(t)}, s(tk, n) = s(t, n) + ζt(k).
3. ζt(1) = 0; ∀k ∈ {2, · · · , ϕ(t)}, ζt(k) ≥ ζt(k−1)+`t(k−1)
and ζt(ϕ(t)) + `t(ϕ(t)) ≤ µt.
Condition 1 expresses the periodicity of the executions of t.
Condition 2 defines the phases scheduling ζt that is used
to determine the start times of phases in relation to the
start time of the current execution of t. Condition 3 on the
phases scheduling ζt ensures that two successive phases do
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not overlap and that the last phase finishes before the next
execution of t, i.e. 〈t, n+ 1〉, starts.

A periodic schedule is then completely defined by providing
for each actor t ∈ T , the start time of its first execution s(t, 1),
its period µt and its phases scheduling ζt. In [7], a periodic
schedule is constructed that fixes ζt(k) to

∑k−1
l=1

`t(l)
`t·1 µt. This

phases scheduling satisfies the previous conditions as ζt(k)−
ζt(k − 1) = `t(k−1)

`t·1 µt ≥ `t(k − 1) if µt ≥ `t · 1. However, it
introduces an additional overestimation of the sufficient buffer
sizes as it does not take into account phases transfer rates. The
main goal of this paper is to compute an optimized phases
scheduling to derive a better estimation of sufficient buffer
sizes. Initially, we will assume that the values of ζt(k) are
arbitrary fixed so we can generalize results from [7] to any
phases scheduling. Later, in Section VI, a Min-Max LP is
proposed to fix these values.

A precedence constraint induces a delay between the con-
sidered executions in any valid schedule. Furthermore, it has
been proved [7] in the case of a periodic schedule that the set
of precedence constraints per couple of phases is respected if
a delay exists between the start times of the first executions
of t and t′.

Lemma 2 ([7]). Let a = (t, t′) ∈ A. The set of precedence
constraints from tk to t′k′ is respected if:
s(t′, 1)−s(t, 1) ≥ f(k, k′)+ µt

wa·1
min

{
bg(k, k′)cgcda , bg(k, k

′)cgcd′a
}

with f(k, k′) = ζt(k) + `t(k)− ζt′ (k′)
g(k, k′) = −M0(a)−D+

a Pred〈tk, 1〉+D−a 〈t′k′ , 1〉.

Proof: This is a generalization of the proof in [7] to the
case of any valid phases scheduling.

Let us suppose that a = (t, t′) induces a precedence
constraint from 〈tk, n〉 to 〈t′k′ , n′〉 with k ∈ {1, · · · , ϕ(t)},
k′ ∈ {1, · · · , ϕ(t′)} and (n, n′) ∈ (N−{0})2. Then, it induces
a delay between these two executions,

s(tk, n) + `t(k) ≤ s(t′k′ , n′).
Since we consider periodic schedules, this inequality can be
written in terms of the start times of the first executions of t
and t′:

s(t′, 1)− s(t, 1) ≥ f(k, k′) + (n− 1)µt − (n′ − 1)µt′

with f(k, k′) = ζt(k) + `t(k)− ζt′(k′).
Now, we want to derive a delay that satisfies all the set of

precedence constraints from tk to t′k′ , i.e. for all the couples
(n, n′) such there exists a precedence constraint from 〈tk, n〉
to 〈t′k′ , n′〉.

By definition of D+
a and D−a ,

D+
a 〈tk, n〉 −D−a 〈t′k′ , n′〉 = D+

a 〈tk, 1〉+ (n− 1)wa · 1
−D−a 〈t′k′ , 1〉 − (n′ − 1)va · 1.

We deduce then
n− 1 = 1

wa·1 (D+
a 〈tk, n〉 −D−a 〈t′k′ , n′〉+ (n′ − 1)va · 1

−D+
a 〈tk, 1〉+D−a 〈t′k′ , 1〉) .

If we replace n − 1 in the inequality by this value, we get
s(t′, 1) − s(t, 1) ≥ f(k, k′) − (n′ − 1)

(
µt′ − va·1

wa·1µt
)

+
µt

wa·1 (D+
a 〈tk, n〉 −D−a 〈t′k′ , n′〉 −D+

a 〈tk, 1〉+D−a 〈t′k′ , 1〉) .
As mentioned before, for any infinite valid schedule

achieved within bounded memory, throughputs of t and t′ must
verify

νt =
va · 1
wa · 1

νt′ .

Since, for any periodic schedule that satisfies the thoughput
constraint µt = 1/νt and µt′ = 1/νt′ , then

µt′ =
va · 1
wa · 1

µt.

Hence,
µt′ −

va · 1
wa · 1

µt = 0.

Thus,
s(t′, 1)− s(t, 1) ≥ f(k, k′) + µt

wa·1 (D+
a 〈tk, n〉 −D−a 〈t′k′ , n′〉

−D+
a 〈tk, 1〉+D−a 〈t′k′ , 1〉) .

According to Lemma 1, D+
a 〈tk, n〉 − D−a 〈t′k′ , n′〉 ≤

min{Hmax(k), H ′max(k, k′)} for any couple (n, n′) such
there exists a precedence constraint from 〈tk, n〉 to
〈t′k′ , n′〉. Then, if we replace D+

a 〈tk, n〉 − D−a 〈t′k′ , n′〉 by
min{Hmax(k), H ′max(k, k′)} in the inequality, the obtained
delay between s(t′, 1) and s(t, 1) satisfies all the precedence
constraints from tk to t′k′ :
s(t′, 1)−s(t, 1) ≥ f(k, k′)+ µt

wa·1 (min{Hmax(k), H ′max(k, k′)}
−D+

a 〈tk, 1〉+D−a 〈t′k′ , 1〉
)
.

Since D−a 〈t′k′ , 1〉 (resp. D+
a Pred〈tk, 1〉 ) is a multiple of

gcda (resp. gcd′a),
Hmax(k)−D+

a 〈tk, 1〉+D−a 〈t′k′ , 1〉 =
b−M0(a)−D+

a Pred〈tk, 1〉+D−a 〈t′k′ , 1〉cgcda
and
H ′max(k, k′)−D+

a 〈tk, 1〉+D−a 〈t′k′ , 1〉 =
b−M0(a)−D+

a Pred〈tk, 1〉+D−a 〈t′k′ , 1〉cgcd′a
Hence,
s(t′, 1)−s(t, 1) ≥ f(k, k′)+ µt

wa·1
min

{
bg(k, k′)cgcda , bg(k, k

′)cgcd′a
}

with f(k, k′) = ζt(k) + `t(k)− ζt′(k′)
g(k, k′) = −M0(a)−D+

a Pred〈tk, 1〉+D−a 〈t′k′ , 1〉.

Then a minimum delay βa, that is the maximum of the
delays computed per couple of phases, can be derived to ensure
that no data is consumed by t′ before it is available.

Lemma 3 ([7]). Let a = (t, t′) ∈ A. All the precedence
constraints caused by a are fulfilled if:

s(t′, 1)− s(t, 1) ≥ βa
with
βa = maxk,k′

{
f(k, k′) + µt

wa·1
min

{
bg(k, k′)cgcda , bg(k, k

′)cgcd′a
}}

.

Lemma 3 defines a set of potential constraints, one per
arc, that prunes all the precedence constraints between the
executions of adjacent actors. It is then sufficient that a
periodic schedule satisfies this set of potential constraints to
be valid.

Theorem 1 ([7]). A periodic schedule that verifies:
∀a = (t, t′) ∈ A, s(t′, 1)− s(t, 1) ≥ βa

is feasible.

The next step is to build an Integer Linear Program based on
this set of potential constraints to determine the start times of
first executions of actors (i.e. s(t, 1), t ∈ T ) while minimizing
buffer sizes. However, when M0(a) is unknown, the non-
linearity of βa on M0(a) prevents such an ILP formulation.
The following section constitute the first contribution of this
paper. It is dedicated to the linearization of βa on M0(a). This
will lead, by a restriction on the values taken by M0(a), to
the computation of a sufficient delay that is linear on M0(a).
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IV. LINEARIZATION OF THE DELAY βa

A. Actors Isolation

The first disturbing part in the current formula of the
minimum delay βa is the impossibility to decouple terms
depending on the phase tk from those depending on the phase
t′k′ . It disables any treatment per actor in isolation, particularly
the optimization of phases scheduling as we will see in Section
VI. It may also increase significantly run-times in the case of
large numbers of phases.

The idea to isolate t from t′ is as follows. We analyse
the function bxcγ for different values of γ in order to break
the coupling due to min(bg(k, k′)cgcda , bg(k, k′)cgcd′a) in the
formula of βa. If we can figure out which of bg(k, k′)cgcda
or bg(k, k′)cgcd′a is more likely to coincide with
min(bg(k, k′)cgcda , bg(k, k′)cgcd′a), then we can decide
which of β1

a = maxk,k′{f(k, k′) + µt

wa·1bg(k, k′)cgcda}
or β2

a = maxk,k′{f(k, k′) + µt

wa·1bg(k, k′)cgcd′a}
should substitute for βa.

Both β1
a and β2

a are greater than or equal to βa. Then, all
the precedence constraints induced by a are still respected if
s(t′, 1)− s(t, 1) ≥ β1

a or s(t′, 1)− s(t, 1) ≥ β2
a. However, the

choice between these two values to substitute for βa needs to
be the more accurate possible, as the accuracy of computed
buffer sizes depends on. Once the substitution done, terms
in k and k′ can be decoupled. Indeed, as D−a 〈t′k′ , 1〉 (resp.
D+
a Pred〈tk, 1〉) is a multiple of gcda (resp. gcd′a):

β1
a = maxk F (k,M0(a)) + maxk′ G(k′)

with
F (k,M0(a)) = ζt(k) + `t(k) + µt

wa·1

⌊
−M0(a)−D+

a Pred〈tk, 1〉
⌋
gcda

G(k′) = µt
wa·1D

−
a 〈t′k′ , 1〉 − ζt′(k′)

and
β2
a = maxk F

′(k) + maxk′ G
′(k′,M0(a))

with
F ′(k) = ζt(k) + `t(k)− µt

wa·1D
+
a Pred〈tk, 1〉

G′(k′,M0(a)) = −ζt′(k′) + µt
wa·1

⌊
−M0(a) +D−a 〈t′k′ , 1〉

⌋
gcd′a

.

Therefore, only ϕ(t) + ϕ(t′) steps are needed to compute β1
a

(resp. β2
a).

x

min(⌊x⌋γ1
, ⌊x⌋γ2

)

0

0 γ2 γ1 2γ2 2γ1

γ2

γ1

2γ2

2γ1

2
3γ1

1
2γ2

Fig. 2. The case 2γ1 = 3γ2. The curve bxcγ1 in blue line , bxcγ2 in green
line and min(bxcγ1 , bxcγ2 ) in dashed red line.

Figure 2 shows three curves: bxcγ1 in blue, bxcγ2 with
γ2 = 2

3γ1 in green and min(bxcγ1 , bxcγ2) in dashed red line.
We can restrict the analysis to the interval [0, 2γ1[ as 2γ1 is
the least common multiple for both γ1 and γ2. A first look
shows that neither bxcγ1 or bxcγ2 is dominated (in the sense of
minimization) entirely on the whole interval. However, bxcγ1
coincides with min(bxcγ1 , bxcγ2) on more than 83% of the
interval while it is only 50% for bxcγ2 . The function bxcγ2
is strictly dominated by bxcγ1 on 50% of the interval and the
difference bxcγ2−bxcγ1 attains 2

3γ1. In general, we can prove
the following lemma.

Lemma 4. Let us suppose ρ · gcd′a = σ · gcda with ρ > σ
(i.e. gcda > gcda′ ). Then, bxcgcda is strictly dominant on
(1 − σ+1

2ρ ) · 100% of an interval of σ · gcda and coincides
with bxcgcd′a on 1

ρ · 100%. Moreover, the difference bxcgcd′a −
bxcgcda attains ρ−1

ρ gcda.

Therefore, the more gcda is greater than gcd′a, the more
the interval on which bxcgcda is dominant is wider. Thus, if
gcda > gcd′a, we are more inclined to substitute
min(bg(k, k′)cgcda , bg(k, k′)cgcd′a) in the formula of βa with
bg(k, k′)cgcda . In the following, without loss of generality,
we will suppose gcda > gcd′a. Then, the sufficient delay
considered after this step of isolation is:

β1
a = maxk F (k,M0(a)) + maxk′ G(k′).

B. Linearization of the Sufficient Delay β1
a

Due to the maxk function and b cgcda in the formula of F ,
β1
a is non-linear and discontinuous on M0(a). To linearize β1

a

(i.e. maxkF ) on M0(a), we must first determine the critical
phase k? = arg maxk F (k,M0(a)). However, if M0(a) is
unknown, such in the case of a backward arc or a forward
arc of a feedback buffer, it is not always possible to identify
a phase k? of t such that:

∀M0(a) ∈ N,∀k, F (k,M0(a)) ≤ F (k?,M0(a)).
Such a phase may not exist. Indeed, because
b−M0(a)−D+

a Pred〈tk, 1〉cgcda can have two different val-
ues depending on whether −M0(a) − D+

a Pred〈tk, 1〉 is a
multiple or not of gcda, there may exist two values x1 and x2
for M0(a) for which, there exists a couple of phases (tk1 , tk2)
such that: ∀k 6= k1, F (k1, x1) > F (k, x1)
and ∀k 6= k2, F (k2, x2) > F (k, x2).
Of course, there may exist more than two critical phases. In the
example of Figure 3, both k1 and k2 are critical as they are not
dominated (in the sense of maximization) on the entire interval
of M0(a) values. Phase k1 is dominated by k3 for some values
of M0(a), however, k3 is always strictly dominated by k2 and
thus it is not critical.

The concept of useful tokens allows to overcome this issue.
In the context of buffer capacities minimization, this concept
states that only some values are relevant for M0(a); some extra
tokens have no effect on the value of the delay β1

a. First, the
case of a unique critical phase is studied. The set of useful
tokens is identified and β1

a is linearized. In case of several
critical phases, only one critical phase can be considered for
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Fig. 3. An example of three phases. Phases k1 and k2 are critical. Phase
k3, strictly dominated by k2, is not critical. In yellow, the staircase made of
points of jump discontinuity of critical phases. Its height within an interval
of length gcda is H = µt

wa·1
gcda.

the linearization of β1
a. The set of useful tokens must then

correspond to intervals on which the selected phase is critical.
a) The critical phase is unique: Let us fix

arbitrary the value of M0(a). Then, F (k,M0(a))
can be computed for every phase k and the unique
critical phase k? = arg maxk F (k,M0(a)) can be
identified in ϕ(t) steps. Let us define for every phase
k, quot(a, k) = b−D+

a Pred〈tk, 1〉c
gcda

0 ≤ rem(a, k) = −D+
a Pred〈tk, 1〉 − quot(a, k) < gcda,

respectively the quotient and the remainder in the euclidean
division of −D+

a Pred〈tk, 1〉 by gcda. Let us also define
m0(a, k) such that

m0(a, k) · gcda = −b−M0(a) + rem(a, k)cgcda − gcda.
m0(a, k) belongs to N ∪ {−1} (for M0(a) = 0 and
rem(a, k) 6= 0, m0(a, k) = −1). By definition of b cgcda , we
can prove that m0(a, k) · gcda + rem(a, k) ≤M0(a).
For the example of Figure 3, let us ignore the phase k1, then
the unique critical phase is k2. If we suppose that M0(a) = x2,
then m0(a, k2) · gcda + rem(a, k?) equals X2, which is the
first point of (jump) discontinuity to the left of x2. Since
the function F is right continuous, F (k2, x2) = F (k2, X2).
Then, the value of β1

a is still the same if we replace the value
of M0(a) by m0(a, k2) · gcda + rem(a, k2). The following
lemma formalizes this idea.

Lemma 5. M0(a) can be replaced by the less or equal
quantity m0(a, k?)·gcda+rem(a, k?), with m0(a, k?)·gcda =
−b−M0(a) + rem(a, k?)cgcda−gcda, without influencing the
value of β1

a.

Proof:
Since k? is the critical phase, then

maxk F (k,M0(a)) = F (k?,M0(a)).
Now, in the formula of F (k?,M0(a)), since quot(a, k?) is a
multiple of gcda, then⌊
−M0(a)−D+

a Pred〈tk? , 1〉
⌋
gcda

= b−M0(a) + rem(a, k?)cgcda + quot(a, k?).

However, the substitution of M0(a) with the less or equal
quantity m0(a, k?) · gcda + rem(a, k?) in
b−M0(a) + rem(a, k?)cgcda gives the same value:
b− (m0(a, k?) · gcda + rem(a, k?)) + rem(a, k?)cgcda

=
⌊
b−M0(a) + rem(a, k?)cgcda + gcda

⌋
gcda

= b−M0(a) + rem(a, k?)cgcda .
Thus, F (k?,M0(a)) = F (k?,m0(a, k?) · gcda + rem(a, k?)).
Moreover, for the other phases k 6= k?, since we supposed
that k? is the unique critical phase, then
F (k,m0(a, k?) · gcda + rem(a, k?))

< F (k?,m0(a, k?) · gcda + rem(a, k?)) .
Therefore,
maxk F (k,m0(a, k?) ·gcda+rem(a, k?))

= F (k?,m0(a, k?) · gcda + rem(a, k?))
= maxk F (k,M0(a)).

Then, the substitution does not change the value of β1
a.

Now, if M0(a) is unknown, it follows from the previous
lemma that only values such that M0(a) − rem(a, k?) is a
multiple of gcda deserve to be sought for M0(a) (points of
discontinuity). These values define the set of useful tokens.
The following lemma provides the linear formula of β1

a, i.e.
β1
a restricted to the set of useful tokens.

Lemma 6. The linear formula of the sufficient delay is given
by:
β1
a = maxk δa(k) + maxk′ ψa(k′) + µt

wa·1 (−m0(a) · gcda − gcda)

with δa(k) = ζt(k) + `t(k) + µt
wa·1quot(a, k)

and ψa(k′) = G(k′) = −ζt′(k′) + µt
wa·1D

−
a 〈t′k′ , 1〉.

Then, the critical phase k? is the phase that maximizes δa(k)
and the set of useful tokens is defined by
M0(a) ∈ {0} ∪ {m0(a) · gcda + rem(a, k?)|m0(a) ∈ N} .

Proof: As a consequence of Lemma 5, for any phase k
that may be the unique critical phase, M0(a) should be of
the form m0(a) · gcda + rem(a, k) with m0(a) a variable
∈ N ∪ {−1} that is independent of any phase. Then,⌊
−M0(a)−D+

a Pred〈tk, 1〉
⌋
gcda

= quot(a, k)−m0(a) · gcda − gcda .
As a result, F (k,M0(a)) = ζt(k) + `t(k) + µt

wa·1quot(a, k)

+ µt
wa·1 (−m0(a) · gcda − gcda)

= δa(k) + µt
wa·1 (−m0(a) · gcda − gcda) .

Thus the linear formula of β1
a. The critical phase k?, that is

equal to arg maxk F (k,M0(a)), is then equal to arg maxk δa(k).

b) There are more than one critical phase: Let us
denote by Sa the set of critical phases. Let us suppose the
interval M0(a) ∈ [y · gcda, (y + 1) · gcda[, y ∈ N (see.
Figure 3). Each phase from Sa behaves as the unique critical
phase on a part of this interval. The points of discontinuity
within the interval happen at m0(a, k) · gcda + rem(a, k)
with m0(a, k) = y,∀k. Then,
∀k, F (k, y · gcda + rem(a, k)) = δa(k) + µt

wa·1 (−y · gcda − gcda) .

Therefore, it is sufficient to compare the values δa(k)
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to identify the critical phases (for clarity, the values
on the vertical axis in Figure 3 were reduced by
µt

wa·1 (−y · gcda − gcda)). Intuitively, the points of
discontinuity of the critical phases forms a staircase
(see. yellow staircase in Figure 3). The other points of
discontinuity that are below and/or to the left of that
staircase belong to phases that are not critical. The point of
discontinuity at the top and to the extreme left of the staircase
(within the interval) belongs to the critical phase k? such that
δa(k?) = maxk δa(k). For the example of Figure 3, k? is k1.
It is the critical phase with the smallest remainder. Indeed,
any phase k that has a smaller remainder and δa(k) ≤ δa(k?)
is dominated (in the sense of maximization) by k? and thus it
is not critical. More formally, a critical phase ki must verify
two conditions:
1. δa(k?)− µt

wa·1gcda < δa(ki) ≤ δa(k?).
2. ∀kj ∈ Sa−{ki}, rem(a, ki) < rem(a, kj)⇔ δa(ki) > δa(kj).
The first condition states that a point of discontinuity that is
more than µt

wa·1gcda below the highest point of discontinuity
is too below to be on the staircase, thus its phase is not critical.
Indeed, the height of the staircase, within any interval of
length gcda, is H = µt

wa·1gcda. The second condition ensures
that all dominated phases are excluded from Sa − {k?}. This
is the case of k3, it verifies the first condition, however,
rem(a, k3) < rem(a, k2) and δa(k3) < δa(k2). Then, it is
dominated by k2 and does not belong to Sa.

Only one critical phase can be considered for the
linearization of β1

a. The critical phase we consider in the
following is k? such that δa(k?) = maxk δa(k), which is
k1 for our example. This phase is critical on the interval
[y · gcda + maxk∈Sa rem(a, k), (y + 1) · gcda[, i.e. starting
from the point of discontinuity of the critical phase with
the greatest remainder until the end of the interval (for our
example, k2 is the critical phase with the greatest remainder,
i.e. k2 = arg maxk∈Sa rem(a, k)). Then, on this interval

maxk F (k,M0(a)) = F (k?,M0(a)).

Since F (k?, .) is right-continuous and constant on
[y · gcda + rem(a, k?), (y + 1) · gcda[, then

F (k?,M0(a)) = F (k?, y · gcda + rem(a, k?))

= maxk δa(k) + µt
wa·1 (−y · gcda − gcda) .

Therefore,
∀M0(a) ∈ [y · gcda + maxk∈Sa rem(a, k), (y + 1) · gcda[,

maxkF (k,M0(a)) = maxk δa(k) + µt
wa·1 (−y · gcda − gcda) .

Then, it is sufficient to limit the number of tokens to the
minimum y ·gcda+maxk∈Sa rem(a, k), which defines useful
tokens for the interval [y · gcda, (y + 1) · gcda[, y ∈ N.

From the previous discussion, the following lemma holds.

Lemma 7. A linear formula of the sufficient delay is given
by:
β1
a = maxk δa(k) + maxk′ ψa(k′) + µt

wa·1 (−m0(a) · gcda − gcda)

with
M0(a) ∈ {0} ∪ {m0(a) · gcda + maxk∈Sa rem(a, k)|m0(a) ∈ N}.

Remark 1. In the case gcd′a > gcda, the actors isolation step
results in the sufficient delay β2

a. The issue is then on the deter-
mination of the critical phase k′? = arg maxk′ G

′(k′,M0(a)).
By the same procedure we get to the following results: let
us define quot′(a, k′) = bD−a 〈t′k′ , 1〉c

gcd′a and rem′(a, k′) =

D−a 〈t′k′ , 1〉 − quot′(a, k′), then
β2
a = maxk δ

′
a(k) + maxk′ ψ

′
a(k′) + µt

wa·1 (−m0(a) · gcd′a − gcd′a)

with δ′a(k) = ζt(k) + `t(k)− µt
wa·1D

+
a Pred〈tk, 1〉

and ψ′a(k′) = −ζt′(k′) + µt
wa·1quot

′(a, k′).
Then, the selected critical phase k′? is the phase that maxi-
mizes ψ′a(k′) and the set of useful tokens is defined by
M0(a) ∈ {0}∪{m0(a)·gcd′a+maxk′∈S′a rem

′(a, k′)|m0(a) ∈ N}
with S ′a the set of critical phases.

This concludes the linearization step of the minimum delay
βa. The following corollary is a consequence of Theorem
1 and both actors isolation and sufficient delay linearization
steps.

Corollary 1. A periodic schedule that verifies,
∀a = (t, t′) ∈ A such that gcda > gcd′a, s(t

′, 1)− s(t, 1) ≥ β1
a

∀a = (t, t′) ∈ A such that gcd′a > gcda, s(t
′, 1)− s(t, 1) ≥ β2

a

is feasible.

V. BUFFER SIZES MINIMIZATION

Let us suppose an application modelled by a consistent
strongly connected CSDFG G = (T,A). Each bounded buffer
b(a) of this application is modelled by a forward arc a and a
backward arc a′. The capacity of b(a) that is defined as the
maximum number of data that b(a) can store at a time is then
given by M0(a) + M0(a′). All the storage units of b(a) are
of the same size (cost) θ(a), then the size of b(a) is equal to
θ(a)× (M0(a) +M0(a′)).

The throughput constrained buffer sizes minimization prob-
lem consists in computing a feasible schedule s such that:
1. The overall buffer sizes

∑
a∈A θ(a)M0(a) is minimized,

2. The throughput of s, i.e. ν(s), is greater or equal to some
predefined throughput.

In [7], using a periodic schedule and a phases scheduling
ζt(k) =

∑k−1
l=1

`t(l)
`t·1 µt, this problem is formulated as an

Integer Linear Program (ILP). In this section, a generalized
version of this ILP that accepts any valid phases scheduling
is presented. This is allowed by the linearization step and the
useful tokens concept developed in the previous section.

At this stage we consider that actors phases schedulings
ζt, t ∈ T have already been fixed. Then, both the set of critical
phases and the set of useful tokens per arc can be identified.
In the previous section, it has been established that a periodic
schedule is feasible if sufficient delays exist between the start
times of first executions of adjacent actors (see. Corollary 1);
the throughput constrained buffer sizes minimization problem
defined above can then be formulated by the following Integer
Linear Program Π(G):

min
∑
a∈A θ(a)M0(a) subject to

∀a = (t, t′) ∈ A such that gcda ≥ gcd′a,
s(t′, 1)− s(t, 1) ≥ maxk δa(k) + maxk′ ψa(k′)

+ µt
wa·1 (−m0(a) · gcda − gcda)

M0(a) ≥ m0(a) · gcda + maxk∈Sa rem(a, k).
∀a = (t, t′) ∈ A such that gcd′a > gcda,

s(t′, 1)− s(t, 1) ≥ maxk δ
′
a(k) + maxk′ ψ

′
a(k′)

+ µt
wa·1 (−m0(a) · gcd′a − gcd′a)

M0(a) ≥ m0(a) · gcd′a + maxk′∈S′a rem
′(a, k′).

∀a ∈ A, m0(a) ∈ N ∪ {−1}
M0(a) ≥ 0.

∀t ∈ T, s(t, 1) ≥ 0.
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Solving an ILP has exponential-time worst-case performance.
We consider the LP-relaxation of the ILP by ignoring the
integrity constraints on m0(a), a ∈ A. A solution that satisfies
all the constraints of the ILP is then obtained by rounding
the fractional elements of the LP-relaxation solution to their
nearest higher integer.

VI. PHASES SCHEDULING OPTIMIZATION

This section describes the principal contribution of this
paper. An optimized phases scheduling per CSDF actor is
derived such that the evaluation of sufficient buffer sizes made
by the ILP Π(G) is more accurate. For an actor t, the goal
is to fix ζt(k), k ∈ {1, · · · , ϕ(t)− 1}. In practice, the phases
scheduling optimization step is applied before the construction
of the ILP, however, to be able to motivate the usefulness of
this optimization step, the ILP has been presented before. First,
to introduce the approach, the case of a graph of two actors
and one buffer is studied. It is shown that the producer and
the consumer phases schedulings have an impact on the lower
bound of the buffer capacity computed by the ILP. A Min-Max
Linear Program (LP) is derived to optimize an actor phases
scheduling with the aim of reducing this lower bound. Then,
the approach is generalized to the case of an actor with several
input/output buffers.

Let us consider a CSDFG G of one buffer b(a) modelled by
a forward arc a = (t, t′) and a backward arc a′ = (t′, t). Let us
suppose that gcda > gcd′a. It follows that gcd′a′ > gcda′ since
gcd′a′ = gcda and gcda′ = gcd′a. The throughput constrained
buffer size minimization problem is formulated by the ILP
Π(G):

min M0(a) +M0(a′) subject to
s(t′, 1)− s(t, 1) ≥ maxk δa(k) + maxk′ ψa(k′)

+ µt
wa·1 (−m0(a) · gcda − gcda)

s(t, 1)− s(t′, 1) ≥ maxk′ δ
′
a′(k

′) + maxk ψ
′
a′(k)

+ µt
wa·1 (−m0(a′) · gcda − gcda)

(obvious constraints are not represented). The first remark is
that the cost (size) per unit of storage θ has been dropped
from the objective function. Indeed, both arcs represent
the same buffer and thus have the same cost per unit of
storage, i.e. θ(a) = θ(a′). The capacity of b(a) given by
M0(a) +M0(a′) verifies
M0(a) +M0(a′) ≥

(
m0(a) +m0(a′)

)
· gcda + max

k∈Sa
rem(a, k)

+ max
k∈S′a′

rem(a′, k) .

Now, by summing the potential constraints of Π(G), a
lower bound for (m0(a) +m0(a′)) · gcda can be derived:(
m0(a) +m0(a′)

)
· gcda ≥

wa · 1
µt

(max
k

δa(k) + max
k′

ψa(k′)

+ max
k′

δ′a′(k
′) + max

k
ψ′a′(k))− 2 · gcda.

It follows that to optimize the capacity of b(a), we have
to minimize maxk δa(k) + maxk′ ψa(k′) + maxk′ δa′(k

′) +
maxk ψa′(k) which is a linear function of ζt and ζt′ .
Since terms in k and k′ can be decoupled, the actor t phases
scheduling optimization can be performed independently from
that of the adjacent actor t′. This is enabled by the actors
isolation step described in Subsection IV-A. Impacts of the
remainders maxk∈Sa rem(a, k) and maxk∈S′a′ rem(a′, k)
are not taken into account during the optimization. It would
increase considerably the complexity and run-times while the
impact on the accuracy should be limited.

Let us denote by ∆a = maxk δa(k) and by
Ψ′a′ = maxk ψ

′
a′(k). Phases scheduling optimization

problem for the actor t can be formulated by the following
Min-Max LP:
min (∆a + Ψ′a′) subject to

∀k ∈ {1, · · · , ϕ(t)},
δa(k) = ζt(k) + `t(k) + µt

wa·1quot(a, k) ≤ ∆a

∀k ∈ {1, · · · , ϕ(t)},
ψ′a′(k) = −ζt(k) + µt

wa·1quot
′(a′, k) ≤ Ψ′a′
ζt(1) = 0

∀k ∈ {2, · · · , ϕ(t)}, ζt(k)− ζt(k − 1) ≥ `t(k − 1)
ζt(ϕ(t)) + `t(ϕ(t)) ≤ µt

The variables of the LP are ζt(k)|∀k ∈ {1, · · · , ϕ(t)}, ∆a

and Ψ′a′ . This Min-Max LP will fix ζt while trying to minimize
∆a + Ψ′a′ = maxk δa(k) + maxk ψ

′
a′(k). As it has the same

structure, the Min-Max LP that optimizes the scheduling of t′

phases is not presented.
Now we will extend the optimization technique to the

case t has more than one input/output buffer. Since the
optimization can be done in isolation from the other actors,
the generalization is straightforward. Both the objective
function and the system of linear constraints of the previous
Min-Max LP can be extended to take into account the impact
that a phases scheduling may have on the capacities of
adjacent buffers. This impact is weighted as the adjacent
buffers may have different costs per unit of storage. In the
case of one buffer, the cost does not interfere as the two
arcs involved model the same buffer. As a consequence,
approaches that optimize buffers in isolation [3] cannot, by
construction, consider the impact of a phases scheduling on
adjacent buffers with different costs . The following Min-Max
LP Π(t) extends the previous linear program:
min

∑
(ai=(t,ti),a′i=(ti,t)) θ(ai)(∆ai + Ψ′a′i

) subject to

∀ai = (t, ti), ∀k ∈ {1, · · · , ϕ(t)},
δai(k) = ζt(k) + `t(k) + µt

wai
·1quot(ai, k) ≤ ∆ai

∀a′i = (ti, t), ∀k ∈ {1, · · · , ϕ(t)},
ψ′a′i

(k) = −ζt(k) + µt
wai
·1quot

′(a′i, k) ≤ Ψ′a′i
ζt(1) = 0

∀k ∈ {2, · · · , ϕ(ti)}, ζt(k)− ζt(k − 1) ≥ `t(k − 1)
ζt(ϕ(t)) + `t(ϕ(t)) ≤ µt

As any linear program, Min-Max LPs are solvable in poly-
nomial time. Advanced techniques exist to solve efficiently
Min-Max LPs. Indeed, because of the wide range of domain
applications, Min-Max LPs have been extensively studied
during last decades [18]. In addition to the graph theory, the
game theory constitutes one of the most important applications
area of Min-Max linear programming. Phases scheduling can
be seen as a cooperative game. Phases are then considered
players trying to maximize their own payoffs. The payoffs
matrix can be obtained from the constraint matrix of the Min-
Max LP. When the game converges to an equilibrium an
optimal solution for the Min-Max LP is obtained.

VII. EXPERIMENTAL RESULTS

A. The Impact of Phases Scheduling

In this subsection, the impact of phases scheduling on suf-
ficient buffer sizes evaluation is highlighted on an MP3 Play-
back application. The CSDFG G of this application presented
in [3] is composed of four actors and three buffers. The MP3
actor delivers a 48kHz audio sample stream and the Sample
Rate Converter (SRC) actor converts it to a 44.1kHz stream.



10

The actor APP models an Audio Post-Processing applied to
the stream before it is converted to an analog signal by the
Digital-Analog Converter (DAC). The actor MP3 performs
its task in 39 phases during which 1152 samples are produced.
The number of samples produced by each phase is given by
wMP3 = [0, 0, 18x32, 0, 18x32]. Phases execution times are
`MP3 = [670, 2700, 18x40, 2700, 18x40]µs. The three other
actors have only one phase. The maximum throughput of the
application is imposed by the DAC actor that runs periodically
every µDAC = `DAC = 1

44100s. Periods of the other actors
can be subsequently derived: µAPP = µDAC = 1

44100s,
µSRC = µAPP · 4411 = 10ms and µMP3 = µSRC · 1152480 =
24ms. The capacity of B3 equals 2 that is optimal.

MP3

ℓMP3

SRC

ℓSRC

wMP3 480

B1

APP

1
44100s

441 1

B2

DAC

1
44100s

1 1

B3 = 2

Fig. 4. MP3 Playback application [8].

In the first experiment, three different phases scheduling
are applied to the actor MP3. The first phases scheduling
executes all phases of an occurrence one after the other
without interruption, i.e. ζMP3(k) = ζMP3(k−1)+`MP3(k−
1), k ∈ {2, · · · , 39}. We may call it burst phases scheduling
as it responds to a burst transmission criterion. This phases
scheduling is not to be confused with an SDF modelling of the
MP3 actor. The SDF modelling consumes/produces the 1152
tokens in an atomic fashion at the start/end of execution while
the burst phases scheduling is still consuming/producing data
gradually. See [3] for a comparison between SDF and CSDF
modelling of this application. The second phases scheduling
fixes ζMP3(k) to

∑k−1
l=1

`MP3(l)
`MP3·1 µMP3. We called it Time

Averaged phases scheduling. It was initially used in [8] for
the computation of sufficient buffer capacities. However, the
ILP formulation provided by [7] offers more accurate results
than [8] for this phases scheduling. The last phases scheduling
is determined by our Min-Max LP applied to the 39 phases
of the MP3 actor.

Table I lists B1 capacities obtained for the three different
phases scheduling. The comparison is made for different
execution times of SRC, `SRC ∈ {2.5, 5, 7.5, 10}ms. The
capacities of buffer B2 for this experiment are not reported as
the same results were obtained by all the techniques and this
for the different execution times of SRC. Indeed, SRC and
APP are SDF actors and their single phase is scheduled at
the start of the execution of the actor.

TABLE I
BUFFER B1 CAPACITIES.

`SRC = 10ms 7.5ms 5ms 2.5ms

Burst Transmission 1824 1632 1536 1440
Time Averaged [7] 1344 1248 1152 960

Min-Max LP 960 864 768 672

As might be expected, burst phases scheduling needs the
biggest buffers. The buffer must bear a high bandwidth during

a short time. While the average bandwidth (throughput) is the
same for all the phases scheduling 1152

24 tokens/ms, the burst
transmission bandwidth is 1152

7.51 tokens/ms during 7.51ms.
The Min-Max LP delivers the best phases scheduling resulting
in better buffer capacities estimation. In comparison with the
Time Averaged phases scheduling, results are 40% to 50%
smaller.

TABLE II
BUFFER CAPACITIES FOR THE BUFFER B1 .

`SRC = 10ms 7.5ms 5ms 2.5ms

Paper [3] 1056 928 800 672
Min-Max LP 960 864 768 672

[3]+ILP 960 864 768 672

We compared results obtained by the Min-Max LP with
those obtained by an alternative approach based on periodic
schedules [3] (Table II). This last technique offered the best
known evaluation of sufficient buffer capacities for the MP3
Playback application (5% to 28% larger than the optimum).
Our technique delivers more accurate results then [3] (up to
10%).

The technique proposed in [3] is also performed in two
steps: a phases scheduling optimization step called Start time
postponement and a minimum delay computation step. We
performed an experiment to identify if the accuracy of our
technique for this example is due to the phases scheduling
optimization or the computation of minimum delays. The
experiment consists on using the phases scheduling as de-
scribed in [3] and our minimum delays computation and ILP
formulation. We obtained the same results as those of the Min-
Max LP (see. Table II). This result is not sufficient to derive a
conclusion about the accuracy of the phases scheduling tech-
nique proposed in [3], that is discussed in the next subsection.
However, it can state that our technique to compute minimum
delays, and thus buffer capacities, is more accurate. This can
be explained as follows. Let us suppose a couple of adjacent
actors t, t′ and a buffer b(a) = (t, t′). The approach of [3]
for the computation of the minimum delay uses linear upper
bound on token production times (lub-tpt) and linear lower
bound on token consumption times (llb-tct). A minimum delay
is derived such that the production time of any token according
to the lub-tpt is always less or equal to the consumption
time of this token according to the llb-tct which guarantees
that no token is consumed before it is produced. However,
the smoothing effect introduced by these linear bounds may
increase the real value of the minimum delay. In fact, the phase
that determines the lub-tpt may not be the phase that produces
the tokens that are necessary to activate the execution of the
phase that determines the llb-tct. In addition, the determination
of the lub-tpt needs lcm(ϕ(t), ϕ(t′)) steps which may result
in excessive run-times. To overcome problematic run-times,
authors proposed a conservative heuristic on the computation
of this linear bound that ensures no token is consumed before
it is produced; however, it may overestimate the real value of
the minimum delays and thus sufficient buffer capacities. On
the other hand, our analytical technique for the computation
of the minimum delay runs in ϕ(t) +ϕ(t′) steps and does not
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introduce these overestimations in the computation. Thus, it
will always deliver as good results as [3] if not better.

B. The Impact of CSDF Modelling

1) Min-Max LP vs. Stuijk et al.[12]: We used the SDF 3

tool [19] that implements the exact technique based on model
checking [12] to compute optimal values. Obtained values are
up to 25% better that those of the Min-Max LP. The key
of optimality of [12] lies in the self-timed execution used to
schedule several occurrences of the repetition vector until a
time periodicity is reached. However, as mentioned before,
this technique has an exponential worst case complexity (See
[7] for an example of a version of the MP3 Application with
exponential run-times). On the other hand, periodic schedule
semantic imposes a severe restriction on the periodicity of
actors executions. We recall that an execution of an actor
refers to the execution of all its phases. One of the major
contribution of the Min-Max LP lies in its ability to relax the
periodic schedule semantic by scheduling phases of multiple
consecutive executions of an actor. The second experiment is
devoted to highlight this improvement. We used the Min-Max
LP to schedule all the actor phases involved in the repetition
vector. The repetition vector of the MP3 Playback application
is r = [5, 12, 5292, 5292]. In terms of executed phases, it is
equal to [39 ·5, 1 ·12, 1 ·5292, 1 ·5292] = [195, 12, 5292, 5292].
We apply a transformation on the previous graph G to get a
new CSDFG Gr in which the MP3r actor has 195 phases.
SRCr, APP r and DACr have respectively 12, 5292 and
5292 identical phases. The vector wMP3r (resp. `MP3r ) is
the concatenation of five vectors wMP3 (resp. `MP3). As
a result of this transformation, all the paths in Gr have a
weight of one and all the actors have the same period, i.e.
µrMP3 = µrSRC = µrAPP = µrDAC = µMP3 · 5 = 120ms.

Buffer capacities obtained by applying the Time Averaged
phases scheduling to Gr actors are identical to those obtained
in the first experiment. In fact, we can prove that this phases
scheduling results in the same schedule and thus the same
buffer capacities evaluation. Therefore, the Time Averaged
phases scheduling cannot relax the periodic schedule semantic.
When the phases scheduling obtained by the Min-Max LP is
applied, the evaluated capacity of buffer B1 is up to 60%
smaller (see. `SRC = 5ms). Optimal values are obtained
except in the case `SRC = 7.5ms for which the overestimation
drops to less than 3%.

TABLE III
MIN-MAX LP VS. OPTIMAL[12] VS. [3]

`SRC = 10ms 7.5ms 5ms 2.5ms

Opt [12] (B1/B2) 960/882 576/921 480/662 480/552
[3] (B1/B2) 960/882 960/772 960/662 864/552

MM LP (B1/B2) 960/882 768/772 480/662 480/552
MM LP Overesti 0.00% 2.87% 0.00% 0.00%

Experiments show that running time increases linearly with
the number of adjacent buffers and quadratically with the num-
ber of phases; i.e. the time complexity may be in O(ntϕ(t)2)

TABLE IV
MIN-MAX LP RUN-TIMES (SECONDS).

Phases 5 · 39 50 · 39 500 · 39 5000 · 39

Run-time 1.01 · 10−4 0.0114 1.16 119

with nt the number of t adjacent buffers. Table IV gives an
overview of the Min-Max LP run times.

The ILP (relaxation) runs with a speed of 10−5s per buffer
and thanks to the actors isolation step, several Min-Max LPs
can be executed in parallel to reduce the impact on run time
of the overall treatment of phases scheduling.

2) Min-Max LP vs. Wiggers et al.[3]: This second CSDF
modelling for the MP3 Application reveals an issue with
the phases scheduling technique proposed in [3]. Evaluated
capacity of B1 is up to 28.5% bigger than the capacity
computed with the previous model (see. Table III) and up to
100% bigger than the capacity obtained with the Min-Max
LP phases scheduling. This behaviour can be explained as
follows. The Start time postponement step delays the producer
phases start times starting from a burst phases scheduling.
For time-complexity considerations, only the scheduling of
the phases that produce the multiples of gcda tokens are
optimized. This is because tokens produced by these phases are
potentially tokens that allow to activate the consumer phases.
The other phases of the producer are maximally delayed while
ensuring that two phases do not overlap. There is no additional
mechanism to prevent from delaying too much these phases
which may result in too much accumulation of tokens on the
backward arc a′ = (t′, t) since this scheduling policy delays
their consumption. The number of phases effectively scheduled
is then at most

∑ϕ(t)
k=1 wa(k)/gcda. In practice, for the model

proposed in the first subsection G, 1152
96 = 12 phases out of 39

phases of the MP3 actor are actually optimized. Surprisingly,
in the case of the second model Gr, the number of optimized
phases does not change,

∑ϕ(MP3r)
k=1 wa(k)/gcda = 5760

480 =
12, while the total number of phases increases to 195. That low
ratio of the number of optimized phases to the total number
of phases to schedule explains why the accuracy decreases.
The accuracy of the phases scheduling technique proposed in
[3] is subject to numerical values of transfer rates and we can
easily imagine irreducible patterns of transfer rates for which
the ratio is very low.

C. The Impact on Periodic Schedulability

As mentioned in the introduction, cycles are critical struc-
tures and their initialization may limit the maximum through-
put achieved by an application. When a critical cycle results
from feedback buffers, a solution that initializes sufficiently
these buffers should allow to attain the prefixed throughput.
That is the case of the H.263 Encoder [20], [21], [22].
The specification imposes that this application starts with
only one frame in the feedback buffer between the Motion
Compensation actor to the Motion Estimation actor (the other
buffers are initially empty). While this specification is met
when the application is scheduled with a self-timed execution
or a periodic schedule together with the Min-Max LP phases
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scheduling, two frames are necessary to be able to schedule
this application periodically with the phases scheduling pro-
posed in [3]. Derived buffer sizes are also impacted.

TABLE V
H.263 ENCODER BUFFER SIZES [21] (THROUGHPUT=15FPS).

Technique [3]+ILP MMLP+ILP Optimal
Buffer Sizes (KBytes) 51.25 25.75 25.75

In addition to couples of arcs that represent buffers, arcs
are added to the CSDFG of an application to model mapping
decisions on platforms. In [23], authors provide a detailed
CSDFG of a channel equalizer and its mapping on a multi-
processor system. This application is used to reduce multipath
distortion in an FM signal. Several tasks are mapped to the
same processor and thus dependency arcs are added to model
the fixed order of access to this shared resource. These arcs add
new cycles for which the number of initial tokens is already
fixed. While a solution to attain the prefixed throughput could
be found for cycles that result from feedback buffers, we may
not always be able to modify the initialization of cycles that
result from resource considerations as the obtained graph will
correspond to another mapping decisions.

The use of periodic schedule policy to solve the buffer
sizes minimization problem in polynomial time comes at the
cost of underestimation of the maximum throughput achieved.
We analysed the impact of phases scheduling on periodic
schedualability of the channel equalizer. The low run-time
of our technique allows us to perform a dichotomic search
over the value of the throughput to determine the maximum
achievable throughput by a periodic schedule with different
phases schedulings. The maximum throughput of the self-
timed execution is estimated by a Maximum Cycle Mean
(MCM) analysis applied to the equivalent SRDFG which
has pseudo-polynomial complexity. The throughput is given
in terms of the frequency of the input/output actors of the
application. Results are presented in Table VI.

TABLE VI
CHANNEL EQUALIZER [23] MAXIMUM ACHIEVABLE THROUGHPUT.

Technique [7] [3] MM LP MCM
Maximum Throughput (KHz) 0 0 95.6 146.6

Buffer Sizes (Words) - - 108 108

First, we note that the application is not schedulable peri-
odically with the Time Averaged and the phases scheduling
proposed by [3]. As a result, no buffer capacities can be
derived and no guarantee can be given on the achievable
throughput by this application using these two phases schedul-
ings. Conversely, the Min-Max LP phases scheduling achieves
a maximum throughput of 95.6KHz that is 34.7% from the
maximum throughput achieved by a self-timed execution.
Note also that the same buffer sizes are obtained for both
schedules. This experiment shows that the Min-Max LP not
only contributes on better buffer sizes estimation, but it also
increases periodic schedualability of applications which allows

to build a fast tool to evaluate the achievable performance for
different set of mapping decisions.

VIII. CONCLUSION

In this paper we presented a technique to optimize a CSDF
actor phases scheduling. The aim is to increase the accuracy
of periodic schedule based approaches to solve the throughput
constrained buffer sizes minimization problem. We introduced
the actors isolation step which enabled the formulation of
this problem by a Min-Max Linear Program. We exposed
the ability of this Min-Max Linear Program to relax periodic
schedule semantic and how this relaxation together with our
ILP formulation allow to obtain close to optimal buffer sizes
while running in polynomial time. We also exposed the
impact of the phases scheduling on periodic schedualability
of applications.

We believe that, in the growing context of High-Level Syn-
thesis, the increased accuracy together with the low run-time
of the technique presented in this paper constitute significant
advantages for a use in design exploration.
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