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Well-posed Stokes/Brinkman and Stokes/Darcy problems
for coupled fluid-porous viscous flows
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Université de Provence Aix-Marseille & LATP - CMI, UMR CNR&3B, 39 rue F. Joliot Curie,
13453 Marseille Cedex 13 - France. (Email: angot@cmi.umis-fr)

Abstract.

We present a well-posed model for the Stokes/Brinkman problem witm#yfaf jump embedded boundary conditions
(J.E.B.C.)on animmersed interface with weak regularity assumptions. It is issoeddigeneral framework recently proposed
for fictitious domain problems. Our model is based on algebraic tranemisenditions combining the stress and velocity
jumps on the interfac& separating the fluid and porous domains. These conditions, well chogen the coercivity of the
operator, are sufficiently general to get the usual immersed bopedaditions on> when fictitious domain methods are
concerned: Stefan-like, Robin (Fourier), Neumann or Dirichlet..tédwer, the general framework allows to prove the global
solvability of some models with physically relevant stress or velocity jumpmbaty conditions for the momentum transport
at a fluid-porous interface. The Stokes/Brinkman problem Withoa-Tapia & Whitaker (1995hterface conditions and the
Stokes/Darcy problem witBeavers & Joseph (196 €pnditions are both proved to be well-posed by an asymptotic analysis.
Up to our knowledge, only the Stokes/Darcy problem v@tffman (197 1approximate interface conditions was known to be
well-posed.
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coupled flows; well-posedness analysis; asymptotic arglyanishing viscosity; singular perturbation.
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1. COUPLED FLUID-POROUS VISCOUS FLOWS

Notations. Letthe domair2 ¢ RY (d=2 or 3 in practice) be an open bounded and Lipschitz contisidomain.
Let an interfac& ¢ RY9-1, Lipschitz continuous, separateinto two disjoint connected subdomains: the fluid domain
Qy and the porous on@,, such thad = Qs UXUQp,; see Fig. 1. For any quantity defined all ovef, the restrictions
on Q¢ andQ, are denoted byy’ and ¢P respectively. For a functio in HY(Qf UQy), let ¢~ and ¢+ be the
traces ofL,U|Qp andyjq, on each side of respectivelyf,ﬁ‘z = (YT + ¢~)/2 the arithmetic mean of traces @f and
[@ls = (g™ —y¢~) the jump of traces ofy on Z oriented byn.

FIGURE 1. Configuration for fluid-porous flows inside the dom&ln= Q¢ UZUQp.

1 ©2010 American Institute of Physics (AlP) Conference Prooegs— 8th ICNAAM 2010, Rhodes (Greece), 19-25 sept. 2018;8P1281, pp.
2208-2211, 2010.



There exist in the literature different models with phy#iceelevant stress or velocity jump boundary conditions
for the tangential momentum transport at the fluid-porotsrfacez, see e.g. [20, 14, 18]. When the homogeneous
porous flow is to be governed by the Brinkman equation, cf2[B, 10, 15], the interface condition below linking the
jump of shear stress with a continuous velocity was derivigd wlume averaging techniques by Ochoa-Tapia and
Whitaker [19] instead of the usual stress and velocity caitirboundary conditions at the interface [2]:

(uva-n—ZDvp-n> -r:”5°Kinz~r and vi=vP=vs ong, (1)
s

where the dimensionless parameBgyy is of order one; see [14, 12, 22] for its characterization.shew below, as a
by-product of our general framework [5] recalled in the nggttion that stress jump interface conditions of this type
yield a well-posed fluid-porous Stokes/Brinkman problenatelier the dimensionless parameigy, > 0; see [6] for
more details. This was not already stated up to our knowledge

When the porous flow is governed by the Darcy equation, sefl&lgthe well-known Beavers and Joseph interface
condition [9] must be used. It links the shear stress at ttezface with the jump of tangential velocity:

f

-t and v'-n=vP.n=v.ny onZ, %)

(MDV )z 1= H b, (Vi —vP)

VK

where the dimensionless parametgf = ﬁ(%) depends on the porosity and may vary betweenDand 4. The
approximate Saffman interface condition [21], derived bynlegenization techniques in [16], is also written when the
porous filtration velocity can be neglected with respectisftuid velocity at the interfacevy. 1| < |v£- 1, i.e.for

a permeability valu& or Darcy number Da= K /H? sufficiently small. The global solvability of the Stokes#tda
problem with the Saffman condition fm’z’- T ~ 0 is proved with a mixed hybrid formulation in [17] whatevéet
dimensionless parametep;j > 0, and then by many others with various formulations, seetleegrecent review [13].
The only result of well-posedness for the full form of Beavand Joseph condition is recently established in [11]
for ag- sufficiently small. We show further by a singular perturbatin our general framework with a vanishing
viscosity that the above Beavers and Joseph interface ttamgliield a well-posed Stokes/Darcy problem whatever
the parameteay; > 0; see [6] for more details. Here, the main difficulty lies mhto give a sense to the tangential
trace of the porous velocity on the interface with minimaularity assumptions. This is particularly relevant fanth
fluid layers as for conducting fractures in porous media flfy41].

b2

2. WELL-POSED MODELS FOR COUPLED FLUID-POROUS VISCOUS FLOWS

We first describe the general framework with jump embeddesh@ary conditions proposed and studied in [5] which
is also useful for fictitious domain methods in a similar wayra[4]. It is derived by a generalization to vector elliptic
systems of a previous model stated for scalar problems [3, 4]

2.1. Stokes/Brinkman transmission problem with jump embedéd boundary conditions

Leta(v,p) = —pl +2f1d(v) denote the Newtonian stress tensor defined with the eféeeiseosityfl in the porous

: L . : : 1 : . .
domainQp, with fI = y1 in the fluid domairQ¢ andd(v) = = (Ov+ Ov') being the strain rate tensor. We consider the

following Stokes/Brinkman problem includijgmp embedded boundary conditions (J.E.B[6]on the interface
which link the trace jumps of both the stress veadv, p)-n and the velocity vectov through the interfac:

—0-a(v,p) =f in Qg, 3
—O-a(v,p)+uKtv=f in Qp, (4)
O-v=0 inQfUQp, (5)

v=0 onlsUlp, (6)

[o(v,p)-nls =MVs onz, @)

a(v,p)-n;s =S[v]s onz. 8



Here, the viscosity coefficient and effective viscosityil in the porous medium are bounded positive functions such
that tp = min(p, ft) > 0, the symmetric permeability tenskir= (Kjj)1<i j<d is uniformly positive definite, and the
transfer matricess, M on 2 are measurable, bounded and uniformly semi-positive oggtriwith usual notations for
Sobolev spaces, we now define the Hilbert spaces:

Hgr, (Q1)4 = {W € HY(Qp)% wyr, =0 on Ff}, ngp(Qp)d = {W € HL(Qp)% Wi, =0 on Fp},
W= {W € LZ(Q)d, Wi, € H&rf(Qf)d andw|Qp c Holl'p(Qp)d; O-w=0in Qs UQp}

equipped with the natural inner product and associated ok (Q¢ UQp)d. The model with the J.E.B.C. (7-8) also

allows a possible pressure jurfip]ls # 0 in H-2 (%) with additional regularity assumptions.
Then, as a consequence of the general framework stated,ithfsproblem (3-8) satisfies i the nice weak
formulation belowFind v € W such thatvw € W, a(v,w) = | (w) with

alv.w) =2 [ ud(w):d(w)dx+-2 Qpﬁd(v):d(w)dx+/quK‘1v~wdx+/zMV‘Z~W‘st+/28[[v]]z~[[w]]zds

I(w):/ f.wdx )
Q
Then, we proved in [5, Theorem 1.1] that the problem (3-8hviit L2(Q)? has a unique solutiofv, p) €
W x L?(Q) satisfying the weak form (9) for all € W.
2.2. Stokes/Brinkman problem with Ochoa-Tapia & Whitaker interface conditions

We now consider thafi = p/¢, whereg €]0,1] is the porosity of the porous medium, and stress jump interfa
conditions of Ochoa-Tapia & Whitaker’s type [19] like in (Ihe original ones reading witB; = Borw and, = 0:

[o(v,p)-n]s = MV withM,—,—f‘/%,jl,.--,dl,Mddf‘/% and [vy=0 onZ,  (10)

whereM is a positive diagonal matrix witl;, 3, > 0 a.e. onZ and K;,K, permeability coefficients. Then, as a
consequence of the general framework stated in [5], thelgmokB3-6,10) satisfies i@ the weak formulation below:
Findv € V = {u € H}(Q)%; O0-u = 0} such that

2 ud(v):d(w)dx+2/ Hd(v):d(w)dx+/ uK‘lv-wdx+/Mv-wds:/f-wd>g Yw e V. (11)
Qs Q@ Qp b2 Q

Theorem 2.1(Global solvability of Stokes/Brinkman problem with OT-WIf usual ellipticity assumptions hold, the
problem (3-6,10) withi € L?(Q)% has a unique solutiofv, p) € V x L?(Q) satisfying the weak form (11) for alt € V

and such that p= p(f) +Ct/2and P = p§ —C!/2with p € L3(Q) and the constant Edefined by:

cl— i ([o(v,po)-nls —Mv,n)_15.

We can also interpret this solution as the limit solutiontod problem (3-8) with penalized velocity jumps &n
when the penalty parameter> 0 tends to zero; see [6] for the detalils.

2.3. Stokes/Darcy problem with Beavers & Joseph interface cwlitions

We consider the problem (3-8) with the Dirichlet boundarydition (6) onl",, replaced by the stress boundary
condition of Neumann where is the outward unit normal vector dr, andq H-3 (Fp)d given, e.gq = —peV:

v=0 onl¢ and o(vP,pP).v=—pPv+QlvP-v=q onl,. (12)



Let us define the Hilbert spady equipped with the natural inner product and nornti{ Qs UQp)d:
W = {w € LX(Q)%, wiq, € Hjr, (Q1)? andw|q, € HY(Qp)%; O-w=01in Qf UQp}.

Then, as a corollary of [5, Theorem 1.1], see also [5, The®elh the problem (3-5,7-8,12) has a unique solution
(v, p) € Wy x L2(Q).

For anye > 0, let us now consider the solutigue, ps) € Wy x L2(Q) of the problem (3-5,7-8,12) with a vanishing
viscosity i = ¢ for the Brinkman problem if2,. The condition (12) avoids the creation of a spurious boontdger
along [, for the Darcy problem whes — 0. The J.E.B.C. (7-8) are also calibrated as follows to obiatierface
conditions of Beavers & Joseph’s type [9] with a jump of tamiggd velocity (2) allowing a possible pressure jump:

_ . . M Bn
ag(v,p)-ns =MV with  M;; =0, j=1,---.d—1, Myq= onz, 13
[a(v,p)-n]s = ji j =" (13)
o(v,p)-ns =S[v]s with §jj= Ly d—1, Syu= 1 onx (14)
ap ‘Z - > ) — m? J ) ) ) d— € )

whereM, S are positive diagonal matrices with = apj, B > 0 a.e. onz andK;, K, permeability coefficients.
Let us define the Hilbert spaces

Wsp = {W e LAQ)%, wio, € Hr, (Q1)%, wig, € LA(Qp)"; D-w=0in Qs UQp}
equipped with the natural inner product and normii( Q)9 x L2(Qp)? and
_ . 2 2(5\d —
Ws o= {weWsp; D-we LAQ), [w]; € LA2)°, [w-n]; =0}
equipped with the norm defined byw|ffy , = [WIIZ o, + WG, + I0-WIIg o + W] 1§ =-

We prove in [6] the following convergence result which alss@res the well-posedness of the Stokes/Darcy pro-
blem with Beavers & Joseph’s type interface conditions3pythatever the coefficients;, 3, > 0 a.e. or>.

Theorem 2.2(Convergence to Stokes/Darcy problem with B-With the dataf € L?(Q)? andq = 0, the solution
(Ve, Pe) in Wy x L2(Q) for anye > 0 of the problem (3-5,12,13,14) with a vanishing viscofity € weakly converges
to the solution(v, p) in Wg/p x L?(Q) of the Stokes/Darcy problem with the interface conditidh43) onZ when
€ — 0. Indeed, in the porous domai®,, vP and P satisfy the Darcy equatiomng. Eq. (4) withjt = 0, and P belongs
to HY(Qp) such that B=0onT .

With additional regularity assumptions such théte Hl(Qp)d, thenv € Ws p "Wy and we have the global error
estimate with C> 0 depending on the daté[Iv|joq,, [|{/[loz andy defined as the weak limit @ffve-n]l; in L2(2):

[IVe = Vl1.0; + VE[IVe = V1.0, +|[Ve — V|

[Ve-nlsllox <Cllylloz Ve

1
0.0, 1 [/ Pos — Pol o,mL%II
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