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Abstract.
We present a well-posed model for the Stokes/Brinkman problem with a family of jump embedded boundary conditions

(J.E.B.C.)on an immersed interface with weak regularity assumptions. It is issued from a general framework recently proposed
for fictitious domain problems. Our model is based on algebraic transmission conditions combining the stress and velocity
jumps on the interfaceΣ separating the fluid and porous domains. These conditions, well chosento get the coercivity of the
operator, are sufficiently general to get the usual immersed boundary conditions onΣ when fictitious domain methods are
concerned: Stefan-like, Robin (Fourier), Neumann or Dirichlet... Moreover, the general framework allows to prove the global
solvability of some models with physically relevant stress or velocity jump boundary conditions for the momentum transport
at a fluid-porous interface. The Stokes/Brinkman problem withOchoa-Tapia & Whitaker (1995)interface conditions and the
Stokes/Darcy problem withBeavers & Joseph (1967)conditions are both proved to be well-posed by an asymptotic analysis.
Up to our knowledge, only the Stokes/Darcy problem withSaffman (1971)approximate interface conditions was known to be
well-posed.
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1. COUPLED FLUID-POROUS VISCOUS FLOWS

Notations. Let the domainΩ ⊂ R
d (d=2 or 3 in practice) be an open bounded and Lipschitz continuous domain.

Let an interfaceΣ ⊂R
d−1, Lipschitz continuous, separateΩ into two disjoint connected subdomains: the fluid domain

Ω f and the porous oneΩp such thatΩ= Ω f ∪Σ∪Ωp; see Fig. 1. For any quantityψ defined all overΩ, the restrictions
on Ω f and Ωp are denoted byψ f and ψ p respectively. For a functionψ in H1(Ω f ∪Ωp), let ψ− and ψ+ be the
traces ofψ|Ωp andψ|Ω f

on each side ofΣ respectively,ψ |Σ = (ψ++ψ−)/2 the arithmetic mean of traces ofψ, and
[[ψ]]Σ = (ψ+−ψ−) the jump of traces ofψ on Σ oriented byn.

FIGURE 1. Configuration for fluid-porous flows inside the domainΩ = Ω f ∪Σ∪Ωp.
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There exist in the literature different models with physically relevant stress or velocity jump boundary conditions
for the tangential momentum transport at the fluid-porous interfaceΣ, see e.g. [20, 14, 18]. When the homogeneous
porous flow is to be governed by the Brinkman equation, cf. [1,2, 8, 10, 15], the interface condition below linking the
jump of shear stress with a continuous velocity was derived with volume averaging techniques by Ochoa-Tapia and
Whitaker [19] instead of the usual stress and velocity continuity boundary conditions at the interface [2]:

(

µ∇v f ·n− µ
φ

∇vp·n
)

Σ
·τ =

µ βotw√
K

vΣ·τ and v f = vp = vΣ on Σ, (1)

where the dimensionless parameterβotw is of order one; see [14, 12, 22] for its characterization. Weshow below, as a
by-product of our general framework [5] recalled in the nextSection that stress jump interface conditions of this type
yield a well-posed fluid-porous Stokes/Brinkman problem whatever the dimensionless parameterβotw ≥ 0; see [6] for
more details. This was not already stated up to our knowledge.

When the porous flow is governed by the Darcy equation, see e.g.[15], the well-known Beavers and Joseph interface
condition [9] must be used. It links the shear stress at the interface with the jump of tangential velocity:

(µ∇v f ·n)|Σ·τ =
µ αb j√

K

(

v f −vp)

Σ ·τ and v f ·n = vp·n = v·nΣ on Σ, (2)

where the dimensionless parameterαb j = O( 1√
φ ) depends on the porosityφ and may vary between 0.1 and 4. The

approximate Saffman interface condition [21], derived by homogenization techniques in [16], is also written when the
porous filtration velocity can be neglected with respect to the fluid velocity at the interface:|vp

Σ·τ | ≪ |v f
Σ·τ |, i.e. for

a permeability valueK or Darcy number Da= K/H2 sufficiently small. The global solvability of the Stokes/Darcy
problem with the Saffman condition forvp

Σ·τ ≈ 0 is proved with a mixed hybrid formulation in [17] whatever the
dimensionless parameterαb j ≥ 0, and then by many others with various formulations, see e.g. the recent review [13].
The only result of well-posedness for the full form of Beavers and Joseph condition is recently established in [11]
for α2

b j sufficiently small. We show further by a singular perturbation in our general framework with a vanishing
viscosity that the above Beavers and Joseph interface conditions yield a well-posed Stokes/Darcy problem whatever
the parameterαb j ≥ 0; see [6] for more details. Here, the main difficulty lies in how to give a sense to the tangential
trace of the porous velocity on the interface with minimal regularity assumptions. This is particularly relevant for thin
fluid layers as for conducting fractures in porous media flows[7, 11].

2. WELL-POSED MODELS FOR COUPLED FLUID-POROUS VISCOUS FLOWS

We first describe the general framework with jump embedded boundary conditions proposed and studied in [5] which
is also useful for fictitious domain methods in a similar way as in [4]. It is derived by a generalization to vector elliptic
systems of a previous model stated for scalar problems [3, 4].

2.1. Stokes/Brinkman transmission problem with jump embedded boundary conditions

Let σ(v, p)≡−pI +2µ̃ d(v) denote the Newtonian stress tensor defined with the effective viscosityµ̃ in the porous

domainΩp, with µ̃ = µ in the fluid domainΩ f andd(v)≡ 1
2
(∇v+∇vt) being the strain rate tensor. We consider the

following Stokes/Brinkman problem includingjump embedded boundary conditions (J.E.B.C.)[5] on the interfaceΣ
which link the trace jumps of both the stress vectorσ(v, p)·n and the velocity vectorv through the interfaceΣ:

−∇·σ(v, p) = f in Ω f , (3)

−∇·σ(v, p)+µ K−1v = f in Ωp, (4)

∇·v = 0 in Ω f ∪Ωp, (5)

v = 0 onΓ f ∪Γp, (6)

[[σ(v, p)·n]]Σ = M v|Σ on Σ, (7)

σ(v, p)·n|Σ = S[[v]]Σ on Σ. (8)



Here, the viscosity coefficientµ and effective viscositỹµ in the porous medium are bounded positive functions such
that µ0 = min(µ , µ̃) > 0, the symmetric permeability tensorK ≡ (Ki j )1≤i, j≤d is uniformly positive definite, and the
transfer matricesS, M on Σ are measurable, bounded and uniformly semi-positive matrices. With usual notations for
Sobolev spaces, we now define the Hilbert spaces:

H1
0Γ f

(Ω f )
d ≡

{

w ∈ H1(Ω f )
d; w|Γ f

= 0 on Γ f

}

, H1
0Γp

(Ωp)
d ≡

{

w ∈ H1(Ωp)
d; w|Γp = 0 on Γp

}

,

W ≡
{

w ∈ L2(Ω)d, w|Ω f
∈ H1

0Γ f
(Ω f )

d andw|Ωp ∈ H1
0Γp

(Ωp)
d; ∇·w = 0 in Ω f ∪Ωp

}

equipped with the natural inner product and associated normin H1(Ω f ∪Ωp)
d. The model with the J.E.B.C. (7-8) also

allows a possible pressure jump[[p]]Σ 6= 0 in H− 1
2 (Σ) with additional regularity assumptions.

Then, as a consequence of the general framework stated in [5], the problem (3-8) satisfies inΩ the nice weak
formulation below:Find v ∈ W such that∀w ∈ W, a(v,w) = l(w) with

a(v,w) = 2
∫

Ω f

µ d(v) :d(w)dx+2
∫

Ωp

µ̃ d(v) :d(w)dx+
∫

Ωp

µ K−1v·wdx+
∫

Σ
M v|Σ·w|Σ ds+

∫

Σ
S[[v]]Σ· [[w]]Σ ds

l(w) =
∫

Ω
f·wdx. (9)

Then, we proved in [5, Theorem 1.1] that the problem (3-8) with f ∈ L2(Ω)d has a unique solution(v, p) ∈
W ×L2(Ω) satisfying the weak form (9) for allw ∈ W.

2.2. Stokes/Brinkman problem with Ochoa-Tapia & Whitaker interface conditions

We now consider that̃µ = µ/φ , whereφ ∈]0,1] is the porosity of the porous medium, and stress jump interface
conditions of Ochoa-Tapia & Whitaker’s type [19] like in (1),the original ones reading withβτ = βotw andβn = 0:

[[σ(v, p)·n]]Σ = Mv with M j j =
µ βτ√

Kτ
, j = 1, · · · ,d−1, Mdd =

µ βn√
Kn

and [[v]]Σ = 0 onΣ, (10)

whereM is a positive diagonal matrix withβτ ,βn ≥ 0 a.e. onΣ and Kτ ,Kn permeability coefficients. Then, as a
consequence of the general framework stated in [5], the problem (3-6,10) satisfies inΩ the weak formulation below:
Find v ∈ V = {u ∈ H1

0(Ω)d; ∇·u = 0} such that,

2
∫

Ω f

µ d(v) :d(w)dx+2
∫

Ωp

µ
φ

d(v) :d(w)dx+
∫

Ωp

µ K−1v·wdx+
∫

Σ
Mv ·wds=

∫

Ω
f·wdx, ∀w ∈ V. (11)

Theorem 2.1(Global solvability of Stokes/Brinkman problem with OT-W). If usual ellipticity assumptions hold, the
problem (3-6,10) withf ∈ L2(Ω)d has a unique solution(v, p)∈ V×L2(Ω) satisfying the weak form (11) for allw ∈ V
and such that pf = pf

0 +C1/2 and pp = pp
0 −C1/2 with p0 ∈ L2

0(Ω) and the constant C1 defined by:

C1 =
1
|Σ| 〈[[σ(v, p0)·n]]Σ −Mv , n〉− 1

2 ,Σ
.

We can also interpret this solution as the limit solution of the problem (3-8) with penalized velocity jumps onΣ
when the penalty parameterε > 0 tends to zero; see [6] for the details.

2.3. Stokes/Darcy problem with Beavers & Joseph interface conditions

We consider the problem (3-8) with the Dirichlet boundary condition (6) onΓp replaced by the stress boundary

condition of Neumann whereν is the outward unit normal vector onΓp andq ∈ H− 1
2 (Γp)

d given, e.g.q =−peν :

v = 0 onΓ f and σ(vp, pp)·ν =−pp ν + µ̃∇vp·ν = q on Γp. (12)



Let us define the Hilbert spaceWN equipped with the natural inner product and norm inH1(Ω f ∪Ωp)
d:

WN ≡ {w ∈ L2(Ω)d, w|Ω f
∈ H1

0Γ f
(Ω f )

d andw|Ωp ∈ H1(Ωp)
d; ∇·w = 0 in Ω f ∪Ωp}.

Then, as a corollary of [5, Theorem 1.1], see also [5, Theorem2.1], the problem (3-5,7-8,12) has a unique solution
(v, p) ∈ WN ×L2(Ω).

For anyε > 0, let us now consider the solution(vε , pε) ∈ WN×L2(Ω) of the problem (3-5,7-8,12) with a vanishing
viscosityµ̃ = ε for the Brinkman problem inΩp. The condition (12) avoids the creation of a spurious boundary layer
alongΓp for the Darcy problem whenε → 0. The J.E.B.C. (7-8) are also calibrated as follows to obtain interface
conditions of Beavers & Joseph’s type [9] with a jump of tangential velocity (2) allowing a possible pressure jump:

[[σ(v, p)·n]]Σ = M v|Σ with M j j = 0, j = 1, · · · ,d−1, Mdd =
µ βn√

Kn
on Σ, (13)

σ(v, p)·n|Σ = S[[v]]Σ with Sj j =
µ ατ√

Kτ
, j = 1, · · · ,d−1, Sdd =

1
ε

on Σ, (14)

whereM , S are positive diagonal matrices withατ = αb j, βn ≥ 0 a.e. onΣ andKτ ,Kn permeability coefficients.
Let us define the Hilbert spaces

WS/D ≡
{

w ∈ L2(Ω)d, w|Ω f
∈ H1

0Γ f
(Ω f )

d, w|Ωp ∈ L2(Ωp)
d; ∇·w = 0 in Ω f ∪Ωp

}

equipped with the natural inner product and norm inH1(Ω f )
d ×L2(Ωp)

d and

WS−D ≡
{

w ∈ WS/D; ∇·w ∈ L2(Ω), [[w]]Σ ∈ L2(Σ)d, [[w·n]]Σ = 0
}

equipped with the norm defined by:‖w‖2
WS−D

= ‖w‖2
1,Ω f

+‖w‖2
0,Ωp

+‖∇·w‖2
0,Ω +‖[[w]]Σ‖2

0,Σ.
We prove in [6] the following convergence result which also ensures the well-posedness of the Stokes/Darcy pro-

blem with Beavers & Joseph’s type interface conditions (2,13) whatever the coefficientsατ ,βn ≥ 0 a.e. onΣ.

Theorem 2.2(Convergence to Stokes/Darcy problem with B-J). With the dataf ∈ L2(Ω)d and q = 0, the solution
(vε , pε) in WN×L2(Ω) for anyε > 0 of the problem (3-5,12,13,14) with a vanishing viscosityµ̃ = ε weakly converges
to the solution(v, p) in WS/D ×L2(Ω) of the Stokes/Darcy problem with the interface conditions (2,13) onΣ when
ε → 0. Indeed, in the porous domainΩp, vp and pp satisfy the Darcy equation,i.e.Eq. (4) withµ̃ = 0, and pp belongs
to H1(Ωp) such that pp = 0 on Γp.
With additional regularity assumptions such thatvp ∈ H1(Ωp)

d, thenv ∈ WS−D ∩WN and we have the global error
estimate with C> 0 depending on the data,‖∇v‖0,Ωp, ‖ψ‖0,Σ andψ defined as the weak limit of1

ε [[vε ·n]]Σ in L2(Σ):

||vε −v||1,Ω f +
√

ε ||vε −v||1,Ωp + ||vε −v||0,Ωp + ||p0ε − p0||0,Ω +
1√
ε
‖[[vε ·n]]Σ‖0,Σ ≤C‖ψ‖0,Σ

√
ε .

REFERENCES

1. G. ALLAIRE , Arch. Ration. Mech. Anal.113(3), 209-259, 1991.
2. PH. ANGOT, Math. Meth. in the Appl. Sci. (M2AS) 22(16), 1395-1412, 1999.
3. PH. ANGOT, C. R. Acad. Sci. Paris, Ser. I Math.337(6), 425-430, 2003.
4. PH. ANGOT, C. R. Acad. Sci. Paris, Ser. I Math.341(11), 683-688, 2005.
5. PH. ANGOT, C. R. Math. Acad. Sci. Paris, Ser. I348(11-12), 697-702, 2010.
6. PH. ANGOT, Applied Mathematics Letters, 2010 (in press. doi:10.1016/j.aml.2010.07.008).
7. PH. ANGOT, F. BOYER, F. HUBERT, Math. Model. Numer. Anal. (M2AN) 43(2), 239-275, 2009.
8. J.-L. AURIAULT, Transport in Porous Media79(2), 215-223, 2009.
9. G.S. BEAVERS, D.D. JOSEPH, J. Fluid Mech.30, 197-207, 1967.
10. H.C. BRINKMAN , Appl. Sci. Res.A(1), 27-34, 1947.
11. Y. CAO, M. GUNZBURGER, F. HUA , X. WANG, Comm. Math. Sci.8(1), 1-25, 2010.
12. M. CHANDESRIS, D. JAMET, Int. J. Heat Mass Transfer49(13-14), 2137-2150, 2006.
13. M. DISCACCIATI, A. QUARTERONI, Rev. Math. Complut.22(2), 315-426, 2009.
14. B. GOYEAU, D. LHUILLIER , D. GOBIN, M.G. VELARDE, Int. J. Heat Mass Transfer46, 4071-4081, 2003.



15. U. HORNUNG (ED.), Homogenization and porous media, Interdisciplinary Applied Mathematics6, Springer-Verlag (New York), 1997.
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