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A Spectacular Vector Penalty-Projection
Method for Darcy and Navier-Stokes Problems

Philippe Angot, Jean-Paul Caltagirone and Pierre Fabrie

Abstract We present a newfast vector penalty-projection method (VPPε ), issued
from noticeable improvements of previous works [7, 3, 4], toefficiently compute the
solution of unsteady Navier-Stokes/Brinkman problems governing incompressible
multiphase viscous flows. The method is also efficient to solve anisotropic Darcy
problems. The key idea of the method is to compute at each timestep an accurate
and curl-free approximation of the pressure gradient increment in time. This method
performs atwo-step approximate divergence-free vector projectionyielding a velo-
city divergence vanishing asO(ε δ t), δ t being the time step, with a penalty param-
eterε as small as desired until the machine precision,e.g.ε = 10−14, whereas the
solution algorithm can be extremely fast and cheap. The method is numerically vali-
dated on a benchmark problem for two-phase bubble dynamics where we compare it
to the Uzawa augmented Lagrangian (UAL) and scalar incremental projection (SIP)
methods. Moreover, a new test case for fluid-structure interaction problems is also
investigated. That results in a robust method running faster than usual methods and
being able to efficiently compute accurate solutions to sharp test cases whatever the
density, viscosity or anisotropic permeability jumps, whereas other methods crash.
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1 Introduction to model incompressible multiphase flows

Let Ω ⊂R
d (d=2 or 3 in practice) be an open bounded and connected domain with

a Lipschitz continuous boundaryΓ = ∂Ω andn be the outward unit normal vector
onΓ . ForT > 0, we consider the following unsteady Navier-Stokes/Brinkman prob-
lem [9] governing incompressible non-homogeneous or multiphase flows where
Dirichlet boundary conditions for the velocityv|Γ = 0 on Γ , the volumic forcef
and initial datav(t = 0) = v0, ϕ(t = 0) = ϕ0 ∈ L∞(Ω) with ϕ0 ≥ 0 a.e. in Ω , are
given. For sake of briefness here, we just focus on the model problem (1-3) where
d(v) = (∇v+(∇v)T)/2, as a part of more complex fluid mechanics problems.

ρ (∂t v+(v·∇)v)−2∇· (µ d(v))+µ K−1v+∇p= f in Ω × (0,T) (1)

∇·v = 0 in Ω × (0,T) (2)

∂t ϕ +v·∇ϕ = 0 in Ω × (0,T). (3)

The permeability tensorK in the Darcy term is supposed to be symmetric, uni-
formly positive definite and bounded inΩ . We refer to [1, 9] for the modeling
of flows inside complex fluid-porous-solid heterogeneous systems with the Navier-
Stokes/Brinkman or Darcy equations. The equation (3) for the positive phase func-
tion ϕ governs the transport by the flow of the interface between twophases, either
fluid or solid, respectively in the case of two-phase fluid flows or fluid-structure in-
teraction problems. The forcef may include some volumic forces like the gravity
forceρ g as well as the surface tension force to describe the capillarity effects at the
phase interfacesΣ . The advection-diffusion equation for the temperatureT is not
precised here and we assume some given state laws:ρ = ρ(ϕ,T ) andµ = µ(ϕ,T )
for each phase, where the functions are continuous and positive.

2 The fast vector-penalty projection method (VPPε )

2.1 The (VPPε ) method for multiphase Navier-Stokes/Brinkman

We describe hereafter the two-step vector penalty-projection (VPPε ) method with a
penalty parameter 0< ε ≪ 1; see more details in [5]. Forϕ0 with ϕ0 ≥ 0 a.e. in
Ω , v0 and p0 ∈ L2

0(Ω) given, the method reads as below with usual notations for
the semi-discrete setting in time,δ t > 0 being the time step. For alln∈ N such that
(n+1)δ t ≤ T, find ṽn+1, vn+1, pn+1 ∈ L2

0(Ω), ϕn+1 ∈ L∞(Ω), such that:
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ρn
(

ṽn+1−vn

δ t
+(vn·∇)ṽn+1

)

−2∇·
(

µnd(ṽn+1)
)

+µnK−1 ṽn+1+∇pn = fn (4)

ε
δ t

ρn v̂n+1−∇
(

∇· v̂n+1)= ∇
(

∇· ṽn+1) (5)

vn+1 = ṽn+1+ v̂n+1, and ∇(pn+1− pn) =−
ρn

δ t
v̂n+1 (6)

pn+1 = pn+φn+1 with φn+1 reconstructed from∇φn+1 =−
ρn

δ t
v̂n+1 (7)

ϕn+1−ϕn

δ t
+vn+1·∇ϕn = 0 (8)

with: ṽn+1
|Γ = 0, or for non homogeneous Dirichlet conditions:ṽn+1

|Γ = vn+1
D , and

v̂n+1·n|Γ = 0. Herevn, pn are desired to be first-order approximations of the ex-
act velocity and pressure solutionsv(tn), p(tn) at timetn = nδ t. Since the end-of-
step velocity divergence is not exactly zero, the additional spherical partλ ∇·vI of
the Newtonian stress tensor is included within the dynamical pressure gradient∇p.
Once the equations (4-8) have been solved, the advection-diffusion equation of tem-
perature can be solved too forT n+1 and we can find:ρn+1 = ρ(ϕn+1,T n+1) and
µn+1 = µ(ϕn+1,T n+1).

The key feature of our method is to calculate an accurate and curl-free approxi-
mation of the momentum vector correctionρn v̂n+1 in (5). Indeed (5-6) ensures that
ρn v̂n+1 is exactly a gradient which justifies the choice for∇φn+1 = ∇(pn+1− pn)
since we have:

ρn v̂n+1 =
δ t
ε

∇
(

∇·vn+1) ⇒ ∇(pn+1− pn) =−
ρn

δ t
v̂n+1 =−

1
ε

∇
(

∇·vn+1) . (9)

The (VPPε ) method effectively takes advantage of the splitting method proposed in
[4] for augmented Lagrangian systems or general saddle-point computations to get
a very fast solution of (5); see Theorem 1. When we need the pressure field itself,
e.g. to compute stress vectors, it is calculated in an incremental way as an auxiliary
step. We propose to reconstructφn+1 = pn+1− pn from its gradient∇φn+1 given in
(6) with the following method.
Reconstruction ofφn+1 = pn+1− pn from its gradient.

By circulating on a suitable path starting at a point on the border whereφn+1 = 0 is
fixed and going through all the pressure nodes in the mesh, we get with the gradient
formula between two neighbour pointsA andB using the mid-point quadrature:

φn+1(B)−φn+1(A) =
∫ B

A
∇φn+1·dl =−

∫ B

A

ρn

δ t
v̂n+1·dl ≈−

ρn

δ t
|v̂n+1|hAB (10)

with hAB = distance(A,B). The fieldφn+1 is calculated point by point from the
boundary and then passing successively by all the pressure nodes. This fast algo-
rithm is performed at each time step to get the pressure fieldpn+1 from the known
field pn. We refer to [5] for more details and validations on the present method.
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2.2 The (VPPε ) method for anisotropic Darcy problems

We present below the fast solution to incompressible Darcy flow problems in porous
media with the (VPPε ) method. The model problem reads in dimensionless form:

s∂t v+µ K−1v+∇p= f in Ω × (0,T) (11)

∇·v = 0 in Ω × (0,T) (12)

v·n = 0 onΓ × (0,T) (13)

where the viscosityµ > 0 is constant and the permeability tensorK is supposed
to be symmetric, bounded inΩ and uniformly positive definite. The dimension-
less stationarity parameters> 0 includes the Darcy number:Da = Kre f/L2

re f and
thus we haves ≪ 1 for most practical problems or evens = 0 for the steady
anisotropic Darcy problem. The equations (11-13) also model flows inside hetero-
geneous porous-solid systems by letting the permeability tend to zero inside the
impermeable media; see also [1, 9] for the analysis and validations of the so-called
L2 volume penalty method.

The (VPPε ) method withr = O(ε)> 0 and 0< ε ≪ 1 to solve (11-13) reads as
follows. For alln∈ N such that(n+1)δ t ≤ T, find ṽn+1, vn+1 andpn+1 such that:

s
ṽn+1−vn

δ t
+µ K−1 ṽn+1− r ∇

(

∇· ṽn+1)+∇pn = fn (14)

ε
( s

δ t
+µ K−1

)

v̂n+1−∇
(

∇· v̂n+1)= ∇
(

∇· ṽn+1) (15)

vn+1 = ṽn+1+ v̂n+1,

and ∇(pn+1− pn) =−
( s

δ t
+µ K−1

)

v̂n+1− r ∇
(

∇· ṽn+1) (16)

pn+1 = pn+φn+1 with φn+1 reconstructed from its gradient∇φn+1 (17)

with the boundary conditions:̃vn+1·n|Γ = 0 and v̂n+1·n|Γ = 0 on Γ . The space
discrete solution to the prediction step (14) is explicit for s andr sufficiently small
to invert a perturbation of the Identity matrix with a Neumann asymptotic expansion.

3 On the fast discrete solution to the (VPPε ) method

The great interest for solving (5) or (15) instead of a usual augmented Lagrangian
problem lies in the following result issued from [4] which shows that the method
can be ultra-fast and very cheap ifη = ε/δ t is sufficiently small.

Let us now consider any space discretization of our problem.We denote byB=
−divh the m× n matrix corresponding to the discrete divergence operator,BT =
gradh the n×m matrix corresponding to the discrete gradient operator, whereasI
denotes then×n identity matrix withn> m andD then×n diagonal nonsingular
matrix containing all the discrete density values ofρn > 0 a.e. in Ω . Heren is the
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number of velocity unknowns whereasm is the number of pressure unknowns. Then,
the discrete vector penalty-projection problem corresponding to (5) withε = η δ t
reads:

(

D+
1
η

BTB

)

v̂η =−
1
η

BTBṽ, with vη = ṽ+ v̂η . (18)

We proved in [4] the crucial result below due to theadapted right-hand sidein the
correction step (18) which lies in the range of the limit operatorBTB. Indeed, (18)
can be viewed as a singular perturbation problem with well-suited data in the right-
hand side. More precisely, we give in Theorem 1 the zero-order term of the solution
v̂η to (18):

v̂η =−
1
η

(

D+
1
η

BTB

)−1

BTBṽ (19)

when the penalty parameterη is chosen sufficiently small; see the asymptotic ex-
pansion of ˆvη and the proof in [4, Theorem 1.1 and Corollary 1.3].

Theorem 1 (Fast solution of the discrete vector penalty-projection). Let D be an
n×n positive definite diagonal matrix, I the n×n identity matrix and B an m×n
matrix. If the rows of B are linearly independent, rank(B) = m, then for allη small
enough,0 < η < 1/‖S−1‖ where S= BD−1BT , there exists an n× n matrix C1

bounded independently onη such that the solution of the correction step (19) writes
for any vectorṽ∈ R

n:

v̂η =C0 ṽ+η C1 ṽ with C0 =−D−1BTS−1B=−D−1BT(BD−1BT)−1B. (20)

If rank(B) = p< m, there exists a surjective p×n matrix T such that BTB= TTT
and a similar result holds replacing B by T.

Hence, for a constant densityρ > 0 and choosing nowη = ρ ε/δ t, we have: D=
I, S= BBT and C0 =−BTS−1B=−BT(BBT)−1B. Moreover, if rank(B) = p≤ m≤
n, the zero-order solution̂v=C0 ṽ in (20) is the solution of minimal Euclidean norm
in R

n to the linear system: B̂v= −Bṽ by the least-squares method, and the matrix
B† = BT(BBT)−1 is the Moore-Penrose pseudo-inverse of B such that C0 = −B†B.
Indeed, a singular value decomposition (SVD) or a QR factorization of B yields:
C0 = −I0 where I0 is the n×n diagonal matrix having only1 or 0 coefficients, the
zero entries in the diagonal being the n− p null eigenvalues of the operator BTB.

Hence, forη small enough, the computational effort required to solve (18)
amounts to approximate the matrixC0 which includes bothD andD−1 inside non
commutative products. Thus, we always use the diagonal preconditioning in the case
of a variable density which makes the effective condition number quasi-independent
on the density or permeability jumps. We also use the Jacobi preconditioner in the
prediction step (4) to cope with the viscosity or permeability jumps as performed in
[9]. However, for a constant density whenD = I , we getC0 = −I0. This explains
why the solution can be obtained with only one iteration of a suitable precondi-
tioned Krylov solver whatever the size of the mesh step or thedimensionn; see the
numerical results in [4].
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4 Numerical validations with discrete operator calculus

The (VPPε ) method has been implemented with discrete exterior calculus (DEC)
methods, see the recent review in [6], for the space discretization of the Navier-
Stokes equations on unstructured staggered meshes. The (DEC) methods ensure
primary and secondary discrete conservation properties. In particular, the space dis-
cretization satisfies for the discrete operators:∇h×(∇h φ)= 0 and∇h·(∇h×ψ)= 0,
which is not usually verified by other methods; see [6]. Hence, the (VPPε ) method
is now validated on unstructured meshes both in 2-D or 3-D.

The structure and solver of the computational code are issued from previous
works, originally implemented with a Navier-Stokes finite volume solver on the
staggered MAC mesh and using the Uzawa augmented Lagrangian(UAL) method
to deal with the divergence-free constraint; see [9]. We refer to [1, 2, 9] and the
references therein for the analysis and numerical validations of the fictitious domain
model using the so-calledL2 or H1-penalty methods to take account of obstacles in
flow problems with the Navier-Stokes/Brinkman equations. Hence, our approach is
essentially Eulerian with a Lagrangian front-tracking of the sharp interfaces accu-
rately reconstructed on the fixed Eulerian mesh, see e.g. [10, 11] and the references
therein. Thus we use no Arbitrary Lagrangian-Eulerian (ALE) method, no global
remeshing nor moving mesh method.

Fig. 1 Benchmark for 2-D bubble dynamics with (VPPε ) method,ε = 10−8: motion of a circular
bubble with surface tension at timet = 3 and Re= 35 - bubble initial diameter⊘= 0.05,ρ1/ρ2 =
1000/100= 10, µ1/µ2 = 10/1 = 10, domain 0.1× 0.2, mesh size 128× 256, δ t = 0.007143,
circular bubble initially with no motion at heighty= 0.05. LEFT: isobars and isolineϕ = 0.5 of
the phase function at interface. RIGHT: superposition of isolineϕ = 0.5 at interface for (UAL),
(SIP), (VPP) and vertical velocity field (in absolute referential).

4.1 Multiphase flows: dispersed two-phase bubble dynamics

The (VPPε ) method is numerically validated for multiphase incompressible flows by
performing with the three methods (UAL), (SIP) and (VPP), the benchmark problem
studied in [8] for 2-D bubble dynamics. In that problem, we compute the first test
case which considers an initial circular bubble of diameter0.05m with density and
viscosity ratios equal to 10 which undergoes moderate shapedeformation. In this
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case, the bubble is driven up by the external gravity forcef = ρ g, whereas the
surface tension effect on the interfaceΣ between the two fluid phases is taken into
account through the following force balance at the interface Σ :

[[v]]Σ = 0 and [[
(

−pI +µ
(

∇v+(∇v)T)) ·n]]Σ = σ κ n|Σ , or fst = σ κ n|Σ δΣ

whereσ = 24.5 is the surface tension coefficient,κ the local curvature of the in-
terface,n|Σ the outward unit normal to the interface andδΣ the Dirac measure sup-
ported by the interfaceΣ . The solution of the phase transport (3) is carried out by the
so-calledVOF-PLICmethod,i.e. the famousVOF method using a piecewise linear
interface construction proposed in [12] to precisely reconstruct the sharp interface
Σ at the isolineϕ = 0.5, with ϕ0 = 0 in Ω1 andϕ0 = 1 in Ω2; see [10, 11].

The results of the three methods (UAL), (SIP) and (VPP) after420 time iterations
are presented in Figure 1 by superposing the different fieldsto get a more precise
comparison. We observe an excellent agreement both betweenthe three methods
and the reference solution in [8]. However, the (VPP) methodruns faster.

Fig. 2 ACF11-ball with (VPPε ) method,ε = 10−6: free fall of a heavy solid body in air at time
t = 0.15 and Re= 7358 - Cylinder diameter⊘ = 0.05, ρs = 106, ρ f = 1, µs = 1012, µ f = 10−5,
domain 0.1×0.2, mesh size 256×512,δ t = 0.0002, cylinder initially with no motion at height
y = 0.15. LEFT: isobars and isolineϕ = 0.5 of the phase function at interface. RIGHT: vertical
velocity field and horizontal velocity isolines.

4.2 A test case for fluid-structure interaction problems

To evaluate the robustness of the (VPPε ) method with respect to large density or
viscosity ratios, we compute the motion of an heavy solid body which freely falls
vertically in air with the gravity forcef = ρsg. The rigid behaviour of the body is
obtained by letting the viscosityµs tend to infinity inside the ball in order to penalize
the tensor of deformation rated(v). This fictitious domain method using a penalty
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was studied in [1] (see the references therein) to design a numerical wind-tunnel,
then numerically validated in several works, e.g. [11], andalso analyzed theoreti-
cally in [1, 2] where optimal global error estimates are proved for theH1 penalty
method. Moreover, this fictitious domain method allows us toeasily compute the
forces applied on the obstacle, see [9]; the error estimate being proved in [1] when
the nonlinear convection term is neglected inside the solidobstacle.

The results obtained by the (VPPε ) method are presented in Figure 2 at timet =
0.15safter 750 time iterations when the ball velocity reaches:Vb = gt= 1.4715m/s.
The computation shows that the strain rate tensor inside theball Ωs vanishes as
‖d(v)‖L2(Ωs)

= O(µ f /µs), i.e. of the order of the machine precision. Hence, the
(VPPε ) method efficiently ensures both the rigidity of the solid body and a velocity
divergence vanishing asO(ε δ t) [5], whereas it avoids the blocking effect observed
with other methods; see e.g. [11].

The (SIP) method crashes after a few time iterations. The (UAL) method is still
able to compute the flow with a larger velocity divergence andthe computation is
far more expensive than with the (VPPε ) method.
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