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A Spectacular Vector Penalty-Projection
Method for Darcy and Navier-Stokes Problems

Philippe Angot, Jean-Paul Caltagirone and Pierre Fabrie

Abstract We present a neviast vector penalty-projection method (VBPissued
from noticeable improvements of previous works [7, 3, 4Efficiently compute the
solution of unsteady Navier-Stokes/Brinkman problemsegowmg incompressible
multiphase viscous flows. The method is also efficient toesalnisotropic Darcy
problems. The key idea of the method is to compute at eachgiepean accurate
and curl-free approximation of the pressure gradient imexa in time. This method
performs awo-step approximate divergence-free vector projectiefding a velo-
city divergence vanishing ag (& dt), ot being the time step, with a penalty param-
eters as small as desired until the machine precisig, ¢ = 1014, whereas the
solution algorithm can be extremely fast and cheap. The @addghnumerically vali-
dated on a benchmark problem for two-phase bubble dynanfiesawe compare it
to the Uzawa augmented Lagrangian (UAL) and scalar incrégthprojection (SIP)
methods. Moreover, a new test case for fluid-structureacten problems is also
investigated. That results in a robust method running fass: usual methods and
being able to efficiently compute accurate solutions togshest cases whatever the
density, viscosity or anisotropic permeability jumps, wdas other methods crash.
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1 Introduction to model incompressible multiphase flows

Let Q c RY (d=2 or 3in practice) be an open bounded and connected domain wit
a Lipschitz continuous boundafy = 0 Q andn be the outward unit normal vector
onl" . ForT > 0, we consider the following unsteady Navier-Stokes/Briak prob-
lem [9] governing incompressible non-homogeneous or phdtse flows where
Dirichlet boundary conditions for the velocity- =0 on /", the volumic forcef

and initial datav(t = 0) = vg, ¢(t = 0) = ¢o € L*(Q) with ¢ > 0 a.e.in Q, are
given. For sake of briefness here, we just focus on the madélgm (1-3) where
d(v) = (Ov+(0Ov)T)/2, as a part of more complex fluid mechanics problems.

p(@v+(v-Ov) =20 (ud(v)) + uK tv+Op=f  inQx(0.T) (1)
Ov=0 inQx(0T) (2
do+v-O0p=0 inQx(0O,T). (3)

The permeability tensoK in the Darcy term is supposed to be symmetric, uni-
formly positive definite and bounded 2. We refer to [1, 9] for the modeling
of flows inside complex fluid-porous-solid heterogeneowsdesys with the Navier-
Stokes/Brinkman or Darcy equations. The equation (3) femibsitive phase func-
tion ¢ governs the transport by the flow of the interface betweenpinases, either
fluid or solid, respectively in the case of two-phase fluid 8aw fluid-structure in-
teraction problems. The fordemay include some volumic forces like the gravity
forcepg as well as the surface tension force to describe the capilkffects at the
phase interface&. The advection-diffusion equation for the temperatagrds not
precised here and we assume some given state tewg (¢,.7) andu = u(¢,.7)

for each phase, where the functions are continuous andvgosit

2 The fast vector-penalty projection method (VPR)

2.1 The (VPR) method for multiphase Navier-Stokes/Brinkman

We describe hereafter the two-step vector penalty-priojet/PP;) method with a
penalty parameter & £ < 1; see more details in [5]. Fay® with ¢° > 0 a.e.in

Q, V0 and p® € L3(Q) given, the method reads as below with usual notations for
the semi-discrete setting in timét > 0 being the time step. For alle N such that
(n+1)6t < T, find "2, vl pl e 1 2(Q), 9™ € L™(Q), such that:
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Vn+1_vn
pn (5‘: (V |:|) n+1> —20. (“nd(vm—l)) +“nK—1\7n+1+Dpn:fn (4)

6 P VI’H—l 0 (D'vm—l) -0 (D‘vm—l) (5)

Vn+l _ \~/n+1_i_\7n+17 and D(pn+l _ pn) _ _gt n+1 (6)
p™t=p"+ @™t with ¢"! reconstructed fronilg™t = _gt VML (7)
¢n+1 ¢n

5 +v1.0¢" =0 (8)

with: ¥+ = 0, or for non homogeneous Dirichlet conditiorigy™* = vg™*, and

v”+1-n“— = 0. Herev", p" are desired to be first-order approximations of the ex-
act velocity and pressure solutiond,), p(t,) at timet, = nét. Since the end-of-
step velocity divergence is not exactly zero, the additispaerical parA (- v| of

the Newtonian stress tensor is included within the dynahpiessure gradieni p.
Once the equations (4-8) have been solved, the advectifusidn equation of tem-
perature can be solved too fof™*! and we can findp"*! = p(¢"*1,.7"1) and
“n+l _ “(¢n+1’yn+l)_

The key feature of our method is to calculate an accurate ardree approxi-
mation of the momentum vector correctiphU"*1 in (5). Indeed (5-6) ensures that
p"U"1is exactly a gradient which justifies the choice fap"™t = O(p" — p")
since we have:

ontl _ ot n+1 il oy P on+l _ 1 nt1

p"v £D(D-v )= O(p p") = — 5V £|:|(|:|~V ). 9)
The (VPR) method effectively takes advantage of the splitting méthmposed in
[4] for augmented Lagrangian systems or general saddi@-pomputations to get
a very fast solution of (5); see Theorem 1. When we need theyredield itself,
e.g. to compute stress vectors, it is calculated in an inergahway as an auxiliary
step. We propose to reconstriggt'! = p"*1 — p" from its gradientig"t! given in
(6) with the following method.
Reconstruction o™t = p™1 — p" from its gradient.
By circulating on a suitable path starting at a point on thelbowheregp"1 = 0 is

fixed and going through all the pressure nodes in the meshetusith the gradient
formula between two neighbour poimdsandB using the mid-point quadrature:

oHB) - @A / O™ L-dl = — / G \\7”“\hAB (10)

with hag = distance(A,B). The field "+ is calculated point by point from the
boundary and then passing successively by all the pressalesnThis fast algo-
rithm is performed at each time step to get the pressure ffield from the known
field p". We refer to [5] for more details and validations on the pnéseethod.
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2.2 The (VPR) method for anisotropic Darcy problems

We present below the fast solution to incompressible Daowy firoblems in porous
media with the (VPP) method. The model problem reads in dimensionless form:

s&v+uKlv4+Op=f inQx(0,T) (11)
Ov=0 inQx(0,T) (12)
vvn=0 onl x(0,T) (13)

where the viscosity: > 0 is constant and the permeability tensoris supposed
to be symmetric, bounded i€2 and uniformly positive definite. The dimension-
less stationarity parametsr> 0 includes the Darcy numbeRa = Kef/LZ and
thus we haves < 1 for most practical problems or even= 0 for the steady
anisotropic Darcy problem. The equations (11-13) also rhiddles inside hetero-
geneous porous-solid systems by letting the permeabéitg to zero inside the
impermeable media; see also [1, 9] for the analysis andat#bids of the so-called
L2 volume penalty method.

The (VPR) method withr = &'(¢) > 0 and 0< € < 1 to solve (11-13) reads as
follows. For alln € N such thatn+1) 8t < T, find ¥™1, v"*1 and p™** such that:

g+l _yn
S%WK*V”H#D (B9 +0p" =1 (14)
£ (% +U Kil) il (D.\’]n+1) -0 (D,\"/nJrl) (15)

Vn+1 _ \7n+1 +\7n+1
and D(pn+1— pn) = — (%_‘_uK*l) vn+1_rD(D_\~/n+1) (16)
pt=p"+ @™ with ¢"*! reconstructed from its gradierifg™t  (17)

with the boundary conditionsi"™**.nj- = 0 and¥"**.n- = 0 onI. The space
discrete solution to the prediction step (14) is explicitd@ndr sufficiently small
to invert a perturbation of the Identity matrix with a Neumaasymptotic expansion.

3 On the fast discrete solution to the (VPR) method

The great interest for solving (5) or (15) instead of a usugnaented Lagrangian
problem lies in the following result issued from [4] whichosts that the method
can be ultra-fast and very cheapjift= €/t is sufficiently small.

Let us now consider any space discretization of our probi&mdenote byB =
—div, the mx n matrix corresponding to the discrete divergence oper&tbr=
grad, the n x m matrix corresponding to the discrete gradient operatogreds|
denotes the x n identity matrix withn > mandD then x n diagonal nonsingular
matrix containing all the discrete density valuespdf> 0 a.e.in Q. Herenis the
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number of velocity unknowns whereass the number of pressure unknowns. Then,
the discrete vector penalty-projection problem corregpanto (5) withe = n ot
reads:

<D+;BTB>\7,)_;BTB\7, with vy = 949, (18)

We proved in [4] the crucial result below due to theéapted right-hand sida the
correction step (18) which lies in the range of the limit ager BT B. Indeed, (18)
can be viewed as a singular perturbation problem with wetked data in the right-
hand side. More precisely, we give in Theorem 1 the zerordedten of the solution
vy to (18):

-1
\7,,:—1 <D+1BTB) BBV (19)
n n

when the penalty parametgris chosen sufficiently small; see the asymptotic ex-
pansion ofv, and the proof in [4, Theorem 1.1 and Corollary 1.3].

Theorem 1 (Fast solution of the discrete vector penalty-prj@ction). Let D be an

n x n positive definite diagonal matrix, | thexnn identity matrix and B an ma n
matrix. If the rows of B are linearly independent, r&Bk = m, then for alln small
enough,0 < n < 1/||S71|| where S= BD BT, there exists an & n matrix G
bounded independently ansuch that the solution of the correction step (19) writes
for any vectori € R™:

Uy =CoU+nCi¥ with G=-D'B'S'B=-D'B"(BD!B")'B. (20)

If rank(B) = p < m, there exists a surjective>pn matrix T such that BB=TTT
and a similar result holds replacing B by T.

Hence, for a constant density> 0 and choosing now = p £/4t, we have: D=
I, S=BB" and G = —-B"S'B= —B"(BB")~1B. Moreover, if rankB) = p< m <
n, the zero-order solutiofi= Cy V in (20) is the solution of minimal Euclidean norm
in R" to the linear system: B= —BV by the least-squares method, and the matrix
BT = BT(BB") ! is the Moore-Penrose pseudo-inverse of B such thatC-B'B.
Indeed, a singular value decomposition (SVD) or a QR faztdion of B yields:
Co = —lo where } is the nx n diagonal matrix having onliL or O coefficients, the
zero entries in the diagonal being the-rp null eigenvalues of the operator B.

Hence, forn small enough, the computational effort required to solvg) (1
amounts to approximate the mat@s which includes bottD andD~? inside non
commutative products. Thus, we always use the diagonabpditboning in the case
of a variable density which makes the effective conditiomber quasi-independent
on the density or permeability jumps. We also use the Jaaalgiopditioner in the
prediction step (4) to cope with the viscosity or permegbjiimps as performed in
[9]. However, for a constant density whé&n= |, we getCy = —lg. This explains
why the solution can be obtained with only one iteration oludable precondi-
tioned Krylov solver whatever the size of the mesh step odihensiom; see the
numerical results in [4].
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4 Numerical validations with discrete operator calculus

The (VPR) method has been implemented with discrete exterior aadc(IDEC)
methods, see the recent review in [6], for the space digatéin of the Navier-
Stokes equations on unstructured staggered meshes. Thg) ([D&thods ensure
primary and secondary discrete conservation propertiggiticular, the space dis-
cretization satisfies for the discrete operatdlsx (On @) = 0 andDy- (Op x ) =0,
which is not usually verified by other methods; see [6]. Hetlve (VPR) method
is now validated on unstructured meshes both in 2-D or 3-D.

The structure and solver of the computational code are dsfoen previous
works, originally implemented with a Navier-Stokes finitelume solver on the
staggered MAC mesh and using the Uzawa augmented Lagragtdfdr) method
to deal with the divergence-free constraint; see [9]. Werréd [1, 2, 9] and the
references therein for the analysis and numerical vatidatof the fictitious domain
model using the so-calldd? or H-penalty methods to take account of obstacles in
flow problems with the Navier-Stokes/Brinkman equationsnég, our approach is
essentially Eulerian with a Lagrangian front-tracking loé sharp interfaces accu-
rately reconstructed on the fixed Eulerian mesh, see e.g1]@&nd the references
therein. Thus we use no Arbitrary Lagrangian-Eulerian (Abkethod, no global
remeshing nor moving mesh method.

Fig. 1 Benchmark for 2-D bubble dynamics with (VPFRnethod,s = 10-8: motion of a circular
bubble with surface tension at time- 3 and Re= 35 - bubble initial diametep = 0.05, p1/p02 =

1000/100 = 10, p1/p2 = 10/1 = 10, domain QL x 0.2, mesh size 128 256, 6t = 0.007143,
circular bubble initially with no motion at heiglyt= 0.05. LEFT: isobars and isoling = 0.5 of

the phase function at interfaceldT: superposition of isoling = 0.5 at interface for (UAL),
(SIP), (VPP) and vertical velocity field (in absolute referai).

4.1 Multiphase flows: dispersed two-phase bubble dynamics

The (VPR) method is numerically validated for multiphase incompilele flows by
performing with the three methods (UAL), (SIP) and (VPPg ltlenchmark problem
studied in [8] for 2-D bubble dynamics. In that problem, wenpute the first test
case which considers an initial circular bubble of diamétébm with density and
viscosity ratios equal to 10 which undergoes moderate stlafmrmation. In this
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case, the bubble is driven up by the external gravity fdreepg, whereas the
surface tension effect on the interfaEebetween the two fluid phases is taken into
account through the following force balance at the interfac

[Vl]s=0and [(—pl+u (Ov+(Ov)T)) n]s =0kn;s, of fg=0Kkn;sds

whereo = 245 is the surface tension coefficiemt,the local curvature of the in-
terfacens the outward unit normal to the interface adglthe Dirac measure sup-
ported by the interfac&. The solution of the phase transport (3) is carried out by the
so-calledvOF-PLIC method,i.e. the famous/OF method using a piecewise linear
interface construction proposed in [12] to precisely retarct the sharp interface

> at the isolinep = 0.5, with ° = 0in Q; and¢® = 1 in Q,; see [10, 11].

The results of the three methods (UAL), (SIP) and (VPP) &2értime iterations
are presented in Figure 1 by superposing the different fieldget a more precise
comparison. We observe an excellent agreement both betilveethree methods
and the reference solution in [8]. However, the (VPP) methud faster.

Fig. 2 ACF11-ball with (VPR) method,s = 10°: free fall of a heavy solid body in air at time
t = 0.15 and Re= 7358 - Cylinder diametep = 0.05, ps = 1%, pr = 1, s = 10'2, us = 1073,
domain 01 x 0.2, mesh size 256 512, 6t = 0.0002, cylinder initially with no motion at height
y = 0.15. LEFT: isobars and isoling = 0.5 of the phase function at interfaceld¥T: vertical
velocity field and horizontal velocity isolines.

4.2 A test case for fluid-structure interaction problems

To evaluate the robustness of the (\dPRethod with respect to large density or
viscosity ratios, we compute the motion of an heavy solidybatlich freely falls
vertically in air with the gravity forcé = psg. The rigid behaviour of the body is
obtained by letting the viscosifys tend to infinity inside the ball in order to penalize
the tensor of deformation rativ). This fictitious domain method using a penalty
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was studied in [1] (see the references therein) to desigmaenoal wind-tunnel,
then numerically validated in several works, e.g. [11], aisb analyzed theoreti-
cally in [1, 2] where optimal global error estimates are gabyor theH! penalty
method. Moreover, this fictitious domain method allows ugasily compute the
forces applied on the obstacle, see [9]; the error estimgitegtproved in [1] when
the nonlinear convection term is neglected inside the sdiitacle.

The results obtained by the (VPPmethod are presented in Figure 2 at time
0.15safter 750 time iterations when the ball velocity reachgs: gt = 1.4715m/s.
The computation shows that the strain rate tensor insidéaleQs vanishes as
1d(V) || L2(qq) = @ (Ht/Hs), i.e. of the order of the machine precision. Hence, the
(VPP:) method efficiently ensures both the rigidity of the solidlp@nd a velocity
divergence vanishing ag(¢ dt) [5], whereas it avoids the blocking effect observed
with other methods; see e.g. [11].

The (SIP) method crashes after a few time iterations. The_juBethod is still
able to compute the flow with a larger velocity divergence tielcomputation is
far more expensive than with the (VPRnethod.
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