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Delay effects in shimmy dynamics of wheels
with stretched string-like tyres
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Abstract

The dynamics of wheel shimmy is studied when the self-excited vibrations are re-
lated to the elasticity of the tyre. The tyre is described by a classical stretched string
model, so the tyre-ground contact patch is approximated by a contact line. The lat-
eral deformation of this line is given via a non-holonomic constraint, namely, the
contact points stick to the ground, i.e., they have zero velocities. The mathematical
form of this constraint is a partial differential equation (PDE) with boundary con-
ditions provided by the relaxation of deformation outside the contact region. This
PDE is coupled to an integro-differential equation (IDE), which governs the lateral
motion of the wheel. Although the conventional stationary creep force idea is not
used here, the coupled PDE-IDE system can still be handled analytically. It can
be rewritten as a delay differential equation (DDE) by assuming travelling wave
solutions for the deformation of the contact line. This DDE expresses the intrinsic
memory effect of the elastic tyre. The linear stability charts and the corresponding
numerical simulations of the nonlinear system reveal periodic and quasi-periodic self-
excited oscillations that are also confirmed by simple laboratory experiments. The
observed quasi-periodic vibrations cannot be explained in single degree-of-freedom
wheel models subject to a creep force.
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1 Introduction

The lateral vibration of towed wheels, called shimmy, may appear on airplane
landing gears, motorcycle wheels, caravans, rear wheels of semi-trailers and
articulated buses, and it usually presents a safety hazard. The terminology
‘shimmy’ appeared in the 1920’s when it was the name of a popular dance.
The shimmy of towed wheels may be caused either by the elasticities of the
towing bar suspension and the attached vehicle structure, or by the elastic-
ity of the tyre on the wheel, or by a combination of the two cases. There
are two important reasons why the shimmy phenomenon has not been fully
explored yet. One part of the problem is that the vehicle itself is a complex
dynamical system serving several low-frequency vibration modes which may
all be important components of the dynamical behaviour at different running
speeds and conditions. This part of the problem is mainly resolved by the de-
velopment of multibody dynamics and commercial computer codes (Schiehlen,
2006). The other part of the problem is originated in the wheel-ground con-
tact. Advanced finite element calculations need long computation times even
in stationary cases; see (Kalker, 1991) for railway wheels and (Béhm, 1989;
Chang et al., 2004) for tyres. Even nowadays, the dynamic contact problems
usually require special codes, large computational power, and still, there are
no analytical results available to check these calculations.

One of the first scientific reports on shimmy was presented by von Schlippe
and Dietrich (Schlippe and Dietrich, 1941), where they analysed a simple low
degree-of-freedom (DoF) model. In this so-called stretched string model the
tyre-ground contact was considered as a contact line that becomes deformed
due to the lateral displacement of the wheel (see the curve between the points
L and R in Fig. 1), while the longitudinal deformation was neglected. Further-
more, it was considered that each contact point P sticks to the ground. Note
that the tyre becomes deformed not only along the contact line but also in
front of the leading point L and behind the rear point R as represented by the
deformed central line of the tyre in Fig. 1. It was assumed that outside the
contact patch the deformation decays exponentially, which was also confirmed
by measurements. Because the resulting equations were too complicated to
be analysed with the available mathematical tools at that time, they intro-
duced a severe simplification, namely, the contact line was straight between
the points L and R. This way, the resultant lateral force and torque induced
by the elastic tyre deformation were calculated, leading to a delay differential
equation (DDE) with a discrete delay. Using this equation the linear stability
of the stationary rolling motion was analysed (with some further simplifica-
tions since the mathematical theory of DDEs was not available at that time).
The discrete delay was equal to the time period of a tyre point while in contact
with the ground between L and R. Since then, several versions of the stretched
string model have been developed and analysed. For example, in (Segel, 1966)



frequency response functions were calculated for the stretched string model
without any restriction to the shape of the contact line. This so-called exact
stretched string model has become a basic reference for later studies. This ap-
proach results in a DDE with a distributed delay as explained in details in
Section 3.

A different approach was taken by Pacejka (Pacejka, 1966) who introduced
different straight and curved contact line approximations by using station-
ary shape functions for the lateral tyre deformation calculated at constant
drift angles. The resultant lateral creep force and torque are calculated from
these ‘quasi-stationary’ deformations by the semi-empirical ‘Magic Formula’
(Pacejka, 2002). This way, the delay effects are completely eliminated. In the
resulting simplified models only the caster angle and the lateral deformation
of the leading point L. were used as state variables, leading to an ordinary
differential equation (ODE) that made it very popular and easy-to-analyse. In
the middle range of the towing speeds, the quasi-stationary deformation idea
gives reasonable agreement with experiments. Several research reports prove
the success of this approach in engineering (see (Troger and Zeman, 1984) on
tractor-semi-trailers systems, (Sharp et al., 2004) on motorcycles or (Fratila
and Darling, 1996) on caravans). Nonlinearities were also introduced and their
importance were emphasized by the existence of unstable periodic motions in
(Pacejka, 1966). The model was also generalised by considering the effect of
the width of the contact area, that of sliding at the rear part of the contact
patch, and that of the gyroscopic effects appearing when the wheel is allowed
to be tilted from its vertical plane. Pacejka’s wisdom about tyres has accu-
mulated in his book (Pacejka, 2002) that also includes a separate chapter for
shimmy with an extensive reference list.

Considering the exact stretched string model with simplified boundary condi-
tions, Stépan (Stépdn, 1998) has introduced nonlinearities into the system. He
also investigated the linear stability with mathematical rigor leading to the
possibilities of quasi-periodic oscillations, which recently has been confirmed
experimentally in (Takacs, 2005; Takacs and Stépan, to appear 2007).

The elasticity of the tyre was also considered in a point contact model by
Moreland (Moreland, 1954). The contact line was shrunk into a point where
the force, induced by the elastic tyre, acts. A relaxation time was also intro-
duced for the force to model its ‘delayed action” and a torque coefficient was
defined to relate the force and the torque. It was proven by Collins (Collins,
1971) that the point contact model is equivalent to the stretched string model
when the latter is restricted to the case of straight contact line. However,
in the point contact model the relaxation time and a torque coefficient has
to be estimated or measured, while the stretched string model provides the
corresponding constants via its geometry.



If there is elasticity in the suspension system, even a point contact model
with rigid tyre can exhibit shimmy and complicated nonlinear (sometimes
even chaotic) behaviour (Goodwine and Stépéan, 2000; Le Saux et al., 2005;
Schwab and Meijaard, 1999; Stépéan, 1991, 2002; Takédcs et al., 2007). However,
feed-back linearisation based controllers can be constructed for these nonlinear
systems to suppress the vibrations (Goodwine and Zefran, 2002).

In this study, we consider the case when the wheel is pulled by a caster fixed to
a cart of constant velocity. The lateral deformations of the tyre are modelled
by the exact stretched string model. The tyre-ground contact is described
by a contact line. We assume that each contact point sticks to the ground
that results in a non-holonomic constraint expressed by a first-order partial
differential equation (PDE). We also assume that the deformation decays ex-
ponentially outside the contact region with a characteristic relaxation length.
With the appropriate choice of the boundary conditions, the relaxation length
of the tyre is taken into account among other conventional tyre parameters
like the specific stiffness and damping. The Newtonian equation of motion be-
comes a second order integro differential equation (IDE). Assuming travelling
wave solutions of the deformation allows us to transform the PDE-IDE sys-
tem into a delay differential equation (DDE) with distributed delay. Here, the
delay is the time needed for the leading point L of the contact line to travel
backward (relative to the caster) to the actual contact point P (see Fig. 1).
The linear stability investigation of the DDE shows that the stationary rolling
motion may lose its stability via co-dimension one or co-dimension two Hopf
bifurcations as the parameters (like the towing speed and the caster length)
are varied. Consequently, self-excited periodic and quasi-periodic oscillations
can appear. The stability chart in the plane of the above parameters is de-
termined analytically and checked by numerical simulations and laboratory
experiments.

2 Mechanical model

Consider the simple model of a towed wheel with elastic tyre in Fig. 1. The
wheel is pulled by a caster, and the suspension point A of the caster is towed
with a constant velocity v. The length of the caster is [ and the tyre-ground
contact length is 2a. We consider the suspension system to be rigid and use
the exact stretched string model of the tyre.

One of the chosen state variables is clearly the caster angle v of rotation
about the vertical axis. In accordance with the stretched string model, the
tyre-ground contact patch is approximated by the contact line, i.e., by the
deformed central line of the tyre between the leading point L and the rear point
R (see Fig. 1). Note that the deformation of the tyre outside the contact line is



Fig. 1. Model of a towed wheel with elastic tyre. Panel (a) shows the 3-dimensional
view of the wheel while panel (b) depicts the side and top view of the wheel. The
deformed central line of the tyre is shown in both panels. This forms the contact line
between the points L and R where the tyre is connected to the ground. The (z,y, 2)
coordinate system is fixed to the caster while the (X,Y,Z) coordinate system is
fixed to the ground.

also described by the deformation of its central line. The lateral deformation
q(z,.) of the central line is described in the coordinate system (x,y, z) fixed
to the caster as shown in Figs. 1 and 2. This is a state variable distributed
along the contact line x € [—a, +a|, while it is defined by the exponentially
decaying functions
oo 1) = {q(a,t) e(zz“:/"o, ?f x € [a,0), (1)
q(—a,t) et/ if € (—o0,—a],

before the leading point L. and behind the rear point R. The tyre parameter
o is called the relazation length (see Fig. 2(b)). This is considered to be small
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Fig. 2. Stretched string tyre model. The deformation of the central line of the
tyre is shown in 3 dimension in panel (a) and projected to the ground, i.e., to
the (z,y)-plane in panel (b). The relaxation length o is identified corresponding to
formula (1).

relative to the wheel diameter, so the theoretical extension x € (—o00, +00) is
an acceptable standard approximation (Pacejka, 2002; Schlippe and Dietrich,
1941; Segel, 1966). For general theory of deformation of strings see (Karman
and Biot, 1940), and for derivation of the equations of motion for moving
continua see (Wickert and Mote, 1990).

Rolling without sliding means a non-holonomic constraint with respect to the
state variables ¢ and ¢(z, .) which is formulated as follows. In the ground-fixed
coordinate system (X, Y, Z), the position vector of a contact point P is given
as

X(z,t)| vt = (—x)cosp(t) — q(z,t) siny(t)
Y(x,t) —(l — ) sin(t) + q(x, t) cos(t)

for x € [—a,al]. (The trivial condition Z(z,t) = 0 is not spelled out here since

the vertical dynamics are neglected.) Since point P sticks to the ground, its
dX dy

velocity col[*5- 5] is zero, that yields

gq(:c,t) =wvsiny(t) + (I — :c)z/J(t)

dt o (3)
&= —vcos(t) + q(x, t)(t),



with

d . ,
for z € [—a,a]. Here <& refers to total differentiation with respect to time ¢

while dot and prime refer to partial differentiation with respect to time t and
space z. By eliminating x, we obtain the constraining equation for the state
variables in the form of a first-order scalar partial differential equation (PDE)

i, 1) = vsin () +(1-2)d(0)+4 (2,0) (v cos (B ~(a, 0(D)) , 7 € [=aa).
(5)

We assume that the deformation ¢(x,t) is continuously differentiable at the
leading point L which is often referred to as ‘no kink at L’ condition (Pacejka,
1966). This provides the mixed boundary condition

q(a,t)

¢(at) =~ (6)
for the PDE (5) in accordance with the exponential decay of deformation in
(1) in front of the leading point L.

The equation of motion of the wheel can be given as an integro-differential
equation (IDE)

Ja Qﬁ(t) = —k /O:O(l —x)q(z,t)dz — b/o:o(l — x)%q(x, t)dx, (7)

where Ja is the mass moment of inertia of the wheel and the caster together
with respect to the z axis at the king pin A, while k£ and b stand for the lateral
stiffness and damping of the tyre per unit length, respectively. To simplify the
model, the quantities £ and b are considered to be constant even outside the
contact region where the deformation of the wheel central line is projected
to the ground as in Fig. 2 (even though these are constant rather along the
circumference). Thus, the towed wheel model is given by the coupled PDE-
IDE system (5,7) when considering the approximation (1) and the boundary
condition (6).

3 Travelling wave solutions and time delay

Let 7(x) denote the time needed for a tyre particle located at the leading point
L to travel backward (relative to the caster) to the actual point P characterized
by the coordinate x. With this delay, we can describe a travelling wave solution



as

X(z,t) _ X(a,t —7(x)) ®)
Y (x,1) Y(a,t — ()|

which simply expresses the fact that the tyre particles once fixed to the ground
remain fixed there, while the caster travels ahead above them. With the help
of (2), the travelling wave (8) can be transformed into the form

l—x =wrcosy(t)+ (I —a) cos(@/)(t) —P(t — 7')) —q(a,t — 1) sin(w(t) —(t — 7')) :
g(x,t) =vrsing(t) + (I — a)sin(v(t) — (t — 7)) + qla, t — 7) cos((t) — Y(t — 7)) .
(9)
which is still implicit due to the fact that 7(x) cannot be expressed in closed
form. However, differentiating the first equation in (9) with respect to 7, we
obtain

dx

4 = —veos(t) + (L= a)(t — ) sin(4(t) — ot = 7)) — dla,t — 7)sin(¥(t) — ¥t - 7))
tqla,t — )t — 1) Cos(@/)(t) —(t — T)) .
(10)

Now, one may substitute (1,3,9) into (7) and use the change of variables x and
7 (integration by substitution) based on (10). The resulting retarded functional
differential equation (RFDE) contains the time dependent caster angle 1(t)
and its delayed values 1 (t — 7), and the time dependent leading point lateral
deformation ¢(a, t) and its delayed values ¢(a,t—7). The constraining equation
(5) with its boundary condition (6) provides an ordinary differential equation
(ODE) for the leading point lateral deformation:

dla,1) = vsin ¥(0) + (1= a)(t) — a(a, 1) cosv(t) + ~¢*(a,1)i(r) . (1)

The above described nonlinear RFDE-ODE system was given explicitly for
the special case of zero relaxation length (0 = 0) and zero damping (b = 0)
in (Stépan, 1998). For non-zero ¢ and b the explicit linearised equations are
given in the next section.

Pacejka’s creep force/moment model also uses the leading point lateral de-
formation as state variable, but instead of the travelling wave solution along
the contact line, it uses the stationary lateral deformation obtained at con-
stant drift angle ¢ (Pacejka, 1966). This way, one obtains a three dimensional
nonlinear ODE instead of the infinite dimensional nonlinear RFDE-ODE, but
loses the dynamics within the contact region, which may be important in
certain parameter domains as identified later.



4 Small oscillations around stationary rolling

The stationary rolling motion of the wheel is described by the trivial solution
v(t)=0, q(z,t)=0, z€ (—00,+). (12)

Small shimmy oscillations around the stationary rolling can be described by
the linearisation of the governing equations (7,9,10,11):

a

I ==k [ 1= 0) (ate,0) + £ ate0) o
—ko(l —a— o) (q(a, t) + % g(a,t) + gq(a, t)>> (13)

—ko(l+a+ o) <q(—a, £ + %<Cj(—a, £) — gq(—a, t))) ,

l—z =vr+l—a = 7(z)=%", (14)
alwt) = (or+1—app(t) = (1= ayblt =) +qla.t 7).
dx
= U (15)
(a,t) = vi() + (1= )d(t) - —g(a1). (16)

In (13) the integrals over the intervals (—oo, —al, and [a,c0) are calculated
in closed form by using the exponential decay functions in (1), while the
remaining <-¢(z,t) can be obtained from the linearisation of (3). The second
equation in (14) means that the lateral deformation ¢(z,t) can be expressed
by the present and delayed values of the caster angle 1) and the leading point
lateral deformation ¢(a, .).

In particular, considering the first equation in (14) at the rear point R, we
obtain

r=—-a = 7(—a)= - (17)

and so the second equation in (14) at the rear point R gives

g(—a,t) = (L +a)y(t) — (I - a)p(t — %) + qla,t — %). (18)

After substituting (14,15,17,18) into the IDE (13) and dividing the equation



with the mass moment of inertia J,, we obtain the form

2a
. kv rs

90+ 2enid(t) + ) = 7 [T (1~ ator)p(t — 7)dr
= a0 (p0+ 2 (30 + 2ol0) ) &
+ s ato) (p(t — 2+ 2 (3 - 2) - Zp(e - 2—)))
+ 3—22[(@ +o)(t),
where we temporarily introduced the new notation
p(t) = (= (1) — gla, 1) (20)

for the absolute position Y of the leading point L to shorten the expression.
The constants

wn:\/3—k(a(l2+a2/3)—I—cr(l2—|—a2—|—aa)) and Qz%% (21)

A

are the undamped natural angular frequency and the damping ratio of the
steady wheel (v = 0), respectively.

5 Rescaling

Let us rescale the time as

v
T:=—t 22
v, (22)
define the new integration variable by
v
V= —— 23
v, (23
and the dimensionless leading point lateral deformation by
1
QT) = —q(a,T). (24)

Now, using dot as partial differentiation with respect to the rescaled time T,
we can define the dimensionless angular velocity as

Q(T) == (T). (25)

10



Furthermore, the dimensionless towing speed V', the dimensionless caster length
L and the dimensionless relaxation length ' are given by

V:—lv L;:£7 =2

— 26
Wy 2a a a (26)
respectively.

Using definitions (22-26), the ODE (16) and the IDE (19,20) provide a 3-
dimensional system of first-order DDEs:

&(T) 0 1 0 Y(T)
AT | = |~ + e % —e2(L—1-2)| |QD)
O(T) 2 L-1 ~2 QT)
. 0 00| |g(T+9)
+cQ/(L—1—219) L—10-1| |QT +v)|dvV (27)
o 0 00||QT+v)
0 0 0 | [v(T=-1)
+ 0_22(11 + 14 X) | (z—acvyp-1)-1s¢v 0 scv-s| | QUT —1)] ,
0 0 0 | |Q(—1)
where
1 :%(L—l—2)(L—1)+2§V(L2+(1+E)2),
1 1 (28)

TVt Y(2 1+ )

6 Stability investigation

The stationary rolling motion (12) is now represented by the trivial solution

QT)| =0 (29)



of the linearised equation of motion (27). The Laplace transformation of (27)
or the substitution of the trial solution

QT)| =K', KeC?, xeC (30)

leads to the characteristic function
A1 ),
L24+134+X(L2+1+ X%
ACVL(1 4+ X)(2+ XN
L—-1—X%

DA\ p) = ZVEN 4 2V(V 4+ DON + (X + 4CV)A + 2 —

)X

X {%((L— DA+2—((L+ 1)/\+2)e’\) +

+(L—1=-2)2XCVA+ X +4CV)+ (L+ 14+ X)2X¢VI+ X — 4§V)e’\} ,
(31)
where ;1 € R* represents the dimensionless parameters ordered in a vector

p=col[V L X (]. (32)

Generally, equation (31) has infinitely many complex zeros for the character-
istic exponents (characteristic roots) A, but only a finite number of these may
be situated in the right-half complex plane. The stationary rolling (12,29)
is asymptotically stable if and only if all the infinitely many characteristic
exponents are situated in the left-half complex plane (Stépan, 1989).

At the limit of stability, bifurcation can take place in the corresponding nonlin-
ear system when characteristic roots are located at the imaginary axis for some
critical values . of the parameter vector. It is easy to see, that the critical
characteristic root cannot be the zero since it does not satisfy the character-
istic equation for any parameter values, i.e., D(0, ) # 0. This means that
only Hopf bifurcation can occur at ., when a pair of pure imaginary complex
conjugate characteristic exponents

Ma(pler) = Hiw, weRT (33)

satisfy (31) with the dimensionless angular frequency w. Due to this bifurca-
tion, self-excited vibrations may appear in the corresponding nonlinear sys-
tem around the stationary rolling motion with dimensional frequency f =
wv/(4ar) = wVw,/(27) in Hertz. Consequently, travelling waves propagate
backward along the contact line with dimensional wave length v/ f = 4am/w.

The stability boundaries are determined in the parameter space by the substi-
tution of the characteristic exponent A; = iw into (31) and by the separation

12



of the real and imaginary parts:

Re D(iw; pier) = 0, Im D(iw; ptey) = 0. (34)

In the 4-dimensional parameter space u € R*, these formulae describe stability
boundaries (3-dimensional hypersurfaces) parameterized by the dimensionless
angular frequency w € R*. Fixing 2 of the 4 parameters, we obtain stability
boundary curves in a parameter plane. In particular, we fix the dimensionless
relaxation length X' and the damping ratio ( for different values, and construct
stability boundary curves in the plane of the dimensionless towing speed V'
and the dimensionless caster length L. To decide whether a certain region
bounded by the intricate structure of stability curves is stable or not, we use
the stability criteria derived in (Stépan, 1989). The stable parameter domains
are shaded in the stability charts plotted in the (V) L)-plane in Fig. 3 for
different values of X' for the undamped system (¢ = 0). Notice that there
exists a boundary at L = 1 + Y for any Y, and for large V' the system is
stable above this boundary and unstable below. Fig. 4 shows the stability
charts in the (V, L)-plane for a mesured value of X' (see Fig. 7 later) when
( is increased. It can be observed that the unstable ‘lenses’ gradually shrink
and disappear as the damping is increased and only the monotone increasing
stability curve persist for large damping (¢ > 0.035). This curve saturates at
L =1+ X for large V.

Where the stability boundary curves intersect each other, two pairs of pure
imaginary characteristic exponents +iw; and +iwy co-exist with two dimen-
sionless angular frequencies w; and wy. This is a co-dimension two (or double)
Hopf bifurcation which also arises in a similar delayed robot dynamics problem
(Stépan and Haller, 1995). Due to this bifurcation quasi-periodic self-excited
oscillations appear around the stationary rolling motion with dimensional fre-
quencies f1 = wyv/(4ar) = wiVw,/(27) and fo = wov/(dam) = waVwy,/(27).
The corresponding ‘quasi-periodic travelling waves’” in the contact region pos-
sess the dimensional wave lengths v/ f = 4ar/w; and v/ fy = 4am/w,.

Instead of carrying out the analytical study of co-dimension one and two
Hopf bifurcations that would require the reduction of the dynamics from the
infinite-dimensional state space to 2- and 4-dimensional centre manifolds, we
identified typical periodic and quasi-periodic vibrations in the system by nu-
merical simulations. These provide enough information at this stage of the
research for the validation of our model by experiments.

13
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Fig. 3. Stability charts in the (V| L)-plane for the undamped system ({ = 0) for
different values of the dimensionless relaxation length 3. Stable regions are shaded.
The stability boundary curves refer to Hopf bifurcations, their intersections refer to
co-dimension two Hopf bifurcations.

7 Simulation of the nonlinear equations

In order to demonstrate the stability properties determined above we study the
original PDE-IDE system (5,7) with conditions (1,6) by numerical simulation.
On one hand we wish to verify that the obtained linear stability diagrams
are correct. On the other hand we would like to obtain information about the
appearing nonlinear oscillations when the stationary rolling motion is linearly
unstable.

We fix the dimensional parameters a, o, k and b as in Table 1 and vary v, [ and
Ja such that w, is kept constant (see (21)). Consequently, the dimensionless
parameters Y and ( keep their values shown in Table 1 while V' and L are
varied (see (26)). This means that we consider the stability diagram in Fig. 4(c)
where the points A-D are marked by crosses. We run the simulations using the
parameters at these points. In each of the pairs A-C and B-D the points are
separated by a Hopf curve such that one point lies in the stable (shaded) regime

14
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Fig. 4. Stability charts in the (V, L)-plane for different values of the damping ratio
¢ with fixed dimensionless relaxation length 3’ = 1.8. Stable regions are shaded.
The stability boundary curves refer to Hopf bifurcations, their intersections refer to
co-dimension two Hopf bifurcations. Thin curves correspond to the stability bound-
aries of the undamped system (¢ = 0) for the same X = 1.8 (see Fig. 3(d)). In panel
(c) the crosses A-D show the parameter values used for the numerical simulations
in Fig. 5.

while the other in the unstable (white) regime. Consequently, qualitatively
different behaviour is expected for the two points of each pair.

To integrate the PDE-IDE system (5,7) we use the Lax-Wendroff method (Lax
and Wendroff, 1960) which provides second order accuracy in time. Note that
for the IDE component this method is effectively the same as the 2nd order
Runge-Kutta method. The number of spatial mesh points was 400. Further-
more, we consider the initial condition

(35)
q0,2) =0, ¢0,z)=(—-2)w, z€[-a,a,

with constant w = 1[rad/s]. This corresponds to applying a lateral impact to
the stationary rolling wheel at t = 0.

15



0 5 10 15 t[s] 20 "o 5 10 15 t[s} 20

<
=
o
o NI

N3

0 5 10 15 t[s] 20 0 5 10 15 t[s} 20

q*[m]
0.051

L 0 .
-0112  -004 0 004 0.112 x[m] -0.112 -004 0 004 0.112 x[m]

Fig. 5. Numerical simulation results for the points marked by red crosses in Fig. 4(c).
In each panel the time profile for the caster angle v (t) is shown and the spatial
distribution of the lateral deformation ¢*(x) = ¢(z,t*) is depicted at time ¢*. In
panels (a) and (c) the stationary rolling motion is linearly stable, while in panels
(b) and (d) this motion is unstable and stable oscillating (shimmy) motions can be
observed.

The obtained results are shown in Fig. 5. In each panel the time history for the
caster angle 1 (t) is shown together with the spatial distribution of the lateral
deformation ¢*(z) = g(z,t*) at the chosen time t*. Fig. 5(a) and (b) show the
cases A and B where the stationary rolling motion is linearly stable, that is,
small perturbations around this motion decay in time. Observe that the small
amplitude oscillations/waves are very close to harmonic. Fig. 5(c) and (d) show
the cases C and D where the stationary rolling motion is linearly unstable,
that is, small perturbations grow in time and the system approaches large-
amplitude oscillations as time progresses. In case C the approached motion is
periodic corresponding to a limit cycle in phase space while in case D quasi-
periodic oscillations are observed which correspond to a torus in phase space.
The large amplitude oscillations/waves are not harmonic anymore, but these
are not realistic physically due to the large caster angles reaching even /2.
This will be further discussed in Section 8 on comparison to experimental
observations.
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Fig. 6. The experimental rig on the stiffened conveyor belt.

Considering cases A and C the appearing dimensional frequency and wave-
length are close to f = wVw,/(27) = 0.93 f, and 4dan/w = 3.22(2a), re-
spectively, where the dimensionless angular frequency w = 1.95 is obtained
from the neighbouring Hopf curve. Similarly, in cases B and D the appear-
ing dimensional angular frequencies are close to f; = w1Vw,/(27) = 0.27 f,
and fo = wyVw,/(2w) = 1.03 f,, and the appearing wavelengths are close
dam/wy = 3.85 (2a) and 4am/wy = 1.01 (2a), respectively. Here the dimension-
less angular frequencies w; = 1.63 and wy = 6.20 belong to the neighbouring
co-dimension two Hopf point.

8 Experimental validation

An experimental rig has been designed and constructed to test the above time-
delayed model of shimmy motion of a towed wheel with elastic tyre (Takécs,

Dimensional parameters | Dimensionless parameters
a = 0.04 [m]
¥=138
o = 0.072 [m]
k = 53506 [N/m?]
b = 140 [Ns/m?]
¢=0.02
wyn = 15.29 [rad/s]
fn = 2.43[Hz]

Table 1
The experimentally identified dimensional parameters and their dimensionless
counterparts; see formulae (21) and (26).
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Fig. 7. Measuring tyre parameters. Panel (a) shows the static lateral load on the
framed wheel. Panel (b) shows the measurements of contact length 2a and relaxation
length o of the tyre contacting a transparent plastic plate.

2005; Takdcs and Stépén, to appear 2007). The wheel was placed on a conveyor
belt of variable speed as shown in Fig. 6. In order to avoid oscillations due to
the elasticity of the conveyor belt, it was stiffened laterally by a steel frame
which also kept the possible lateral buckling of the conveyor belt under control.
The caster length and the mass moment of inertia of the structure with respect
to the vertical axis at the king pin A were also adjustable. In this way, we
were able to tune the natural angular frequency w, and the damping ratio
¢ to desired values (see (21,26)). Thus, all the necessary parameters were
controlled within certain limits to identify an experimental stability chart in
the plane of dimensionless towing speed V' and dimensionless caster length L
(for fixed dimensionless relaxation length X' and damping ratio (). Since all
dimensionless parameters depend on the caster length [ and the contact length
2a, the proper variation of the system parameters requires special attention.

In order to identify the numerical values of parameters, first, we fixed a certain

air pressure in the pneumatic tyre, placed the wheel in a rigid frame as in
Fig. 7(a) and pulled its centre point in lateral direction. Fig. 7(b) shows the
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Fig. 8. Panel (a) compares the experimentally identified stability boundary (piece-
wise smooth line with circles) with the theoretical stability boundaries (smooth
lines) on the (V,L)-plane. The experimentally identified stable region is shaded.
For parameter values at the point D (marked by cross) quasi-periodic oscillations
were found by numerical simulation and by experiment, too.

enlarged (and distorted) picture of the deformed tyre in and around the contact
region when a transparent plastic plate was placed at one side of the frame
and the central line of the tyre was marked. This picture perfectly follows
the approximation (1) of the stretched string model used in the literature
(Pacejka, 2002; Schlippe and Dietrich, 1941; Segel, 1966). We identified the
contact length 2a and the relaxation length o, and the obtained results are
shown in Table 1.

Then the standing wheel was placed to the conveyor belt as in Fig. 6 and its
centre was slightly hit in lateral direction. The time history of the acceleration
of a chosen caster point was recorded. From the frequency and logarithmic
decrement of the vibration signal the natural angular frequency w, and the
damping ratio ¢ can be determined. Using (21) the lateral stiffness k£ and
lateral damping b per unit length can be calculated. The obtained results are
also given in Table 1.

During the experiments, for a chosen caster length [, we increased the towing
speed v step-by-step and identified the loss of stability of stationary rolling by
detecting the appearance of self-excited vibrations, i.e., the shimmy. Then we
repeated the same experiment for several different values of the caster length [.
We managed to keep the constant value for the natural frequency f,, when the
caster length [ was varied: we varied the mass at the end of the caster and the
mass moment of inertia Ja changed accordingly. Consequently, the damping
ratio ¢ and the dimensionless relaxation length 3 were also kept constant (see
(21,26)).

The experimental stability chart was transformed to the (V) L)-plane of di-
mensionless parameters. Fig. 8 compares this measured stability chart with
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the corresponding theoretical stability chart calculated from the time-delayed
model for the experimentally identified parameters in Table 1 (see also the
bottom part of Fig. 4(c)). This shows relatively good agreement between the-
ory and experiment. Recall that the theoretical stability boundary saturates at
L =1+ 2 for large V. Fig. 8 shows that the experimental stability boundary
saturates to a slightly higher value of L. This suggests that one may obtain
a better fit for large V' by considering slightly higher value of X' than the
measured one.

In Fig. 8 we marked by a cross the point D on the experimental stability
boundary which is located close to the double Hopf point (the intersection of
the theoretical stability curves). This is the same point as point D in Fig. 4(c)
where quasi-periodic oscillations were found by numerical simulation as shown
in Fig. 5(d). Our measurements confirm these observations as quasi-periodic
vibrations appear in the experiments, too. However, we found that the ampli-
tude of oscillations in the experiments is lower than suggested by simulations.
These deviations are due to the shortcoming of our model that the tyre sticks
to the ground even for very large lateral deformations, while in reality sliding
usually occurs at the rear part of the contact region. Involving this dissipative
effect one might be able to obtain better agreement between simulations and
measurements. More details about this analysis can be found in (Takédcs and
Stépén, to appear 2007).

9 Conclusion and discussions

A low degree-of-freedom model of the shimmying wheel with elastic tyre was
investigated. The no-slip kinematic constraint along tyre-ground contact re-
gion was described by a nonlinear partial differential equation (PDE) which
was coupled to an integro-differential equation (IDE) of wheel motion. Con-
sidering the relaxation of tyre deformation around the contact region provided
a boundary condition for the coupled nonlinear PDE-IDE system.

The equations were linearized about the stationary rolling motion. Using
travelling wave solutions the linearized PDE-IDE was transformed into a 3-
dimensional linear system of delay differential equations (DDEs). In this way,
stability charts were constructed analytically in the plane of the towing speed
and caster length for certain damping ratio and relaxation length parameters.
Crossing the stability boundaries in the stability chart, Hopf bifurcations take
place leading to self-excited vibrations in the corresponding nonlinear PDE-
IDE system. The appearing periodic and quasi-periodic oscillations were found
by numerical simulations and the stability chart was confirmed numerically. A
constructed experimental rig allowed to detect the periodic and quasi-periodic
oscillations experimentally and to determine an experimental stability chart
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having a reasonable good match to the theoretical one.

The experimental stability chart confirmed the importance of the non-zero re-
laxation length. In previous experimental studies where zero relaxation length
was considered (Takdcs, 2005; Takédcs and Stépan, to appear 2007), the results
showed large deviation from theoretical predictions for large towing speed and
long caster. The appearance of quasi-periodic self-excited oscillations at low
towing speed and short caster also validates the delayed shimmy model. To
explain these oscillations it is essential to describe appropriately the ‘motion of
the contact line’. Single degree-of-freedom models with creep force approxima-
tion cannot predict quasi-periodic behaviour because they omit the dynamics
within the contact region. Nevertheless, whether a towing speed is considered
to be large or small depends on the natural frequency of the system, and also
on the length of the contact patch as it is expressed by the dimensionless
towing speed.

Note that the proper bifurcation analysis of the nonlinear system has not
been carried out yet. This can be very complicated in the studied infinite
dimensional system in particular in the vicinity of the double Hopf bifurcation
points. In order to resolve this problem one needs to consider the nonlinear
terms and use either normal form calculations (Campbell and Bélair, 1995;
Orosz, 2004) or numerical continuation techniques (Engelborghs et al., 2001;
Szalai et al., 2006). For example, carrying out these calculations for nonlinear
point contact models with rigid tyre, strong subcritical behaviour was found
(Stépan, 1991; Takacs et al., 2007). Subcriticality results in small-amplitude
unstable oscillations around the stable stationary rolling and also predicts
bistability between stationary rolling and large-amplitude oscillations.

Further development of our model is possible by involving sliding of the tyre
at the rear part of the contact region. The appearing friction force dissipates
energy and may allow us to have a better match between simulations and ex-
periments (Takécs and Stépan, to appear 2007). However, allowing the wheel
to slide may also lead to very complicated (e.g., chaotic) large-amplitude vi-
brations in some parameter regimes (Stépan, 1991; Takdcs et al., 2007). We
consider these problems for future research directions.
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