F Comte 
  
C Lacour 
  
Y Rozenholc 
  
Adaptive estimation of the dynamics of a discrete time stochastic volatility model

Keywords: J.E.L. Classification number: C13-C14-C22 Keywords. Adaptive Estimation, Autoregression, Deconvolution, Heteroscedastic, Hidden Markov Model, Nonparametric Projection Estimator

This paper is concerned with the discrete time stochastic volatility model Yi = exp(Xi/2)ηi, Xi+1 = b(Xi) + σ(Xi)ξi+1, where only (Yi) is observed. The model is re-written as a particular hidden model: Zi = Xi + εi, Xi+1 = b(Xi) + σ(Xi)ξi+1, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi) and (εi) are independent and the distribution of ε is known. Then, our aim is to estimate the functions b and σ 2 when only observations Z1, . . . , Zn are available. We propose to estimate bf and (b 2 + σ 2 )f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of b and σ 2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples.

Introduction

In this paper, we consider the following model:

(1)

Y i = exp(X i /2)η i , X i+1 = b(X i ) + σ(X i )ξ i+1 ,
where (η i ) and (ξ i ) are two independent sequences of independent and identically distributed (i.i.d.) random variables (noise processes). Only Y 1 , . . . , Y n are observed, while the process of interest is the unobserved volatility V i = exp(X i /2), and in particular the functions driving its dynamics, b(.) and σ(.). We will describe an estimation method leading to nonparametric estimates of these functions.

For identifiability of the model, the density of η must be known (e.g. N (0, 1)). This model is often called a discrete time stochastic volatility process. Examples of such representation for economic or financial processes can be found in [START_REF] Shephard | Stochastic volatility. Selected readings. Advanced Texts in Econometrics[END_REF] or Shephard (2006). (1) Université Paris Descartes, MAP5, UMR CNRS 8145. fabienne.comte@parisdescartes.fr, yves.rozenholc@parisdescartes.fr. (2) Laboratoire de Probabilités et Statistique, Université Paris Sud-Orsay. claire.lacour@math.u-psud.fr.

1.1. Comparison with continuous time stochastic volatility models. Let us emphasize that our model is written directly in discrete time with fixed (to 1) step of observation.

This makes its structure different from stochastic volatility models when first considered in continuous time and in a second step discretely sampled. It would be conceivable to study a system [START_REF] Bennett | Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling[END_REF] d log(S t ) = √ U t dW t dU t = m(U t )dt + (U t )dB t ,

where (W t , B t ) is a two dimensional (standard) Brownian motion and U is a positive diffusion process. In that case, define Y i = log(S i+1 /S i ). Then, Y i has the same distribution as V i η i where V i = ( i+1 i U s ds) 1/2 and η i are i.i.d. N (0, 1) random variables. Consequently, the first equation of [START_REF] Bennett | Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling[END_REF] can lead exactly to the first equation of [START_REF] Baraud | Adaptive estimation in an autoregressive and a geometrical β-mixing regression framework[END_REF] with specific Gaussian distribution for η. The tools for estimating the common density of the V i 's are thus common to both models. But the second equations of models ( 1) and ( 2), even if they represent the same idea of a time dynamics, do not coincide.

Indeed, many statistical tools have been developed for the estimation of µ and , see Renò (2008), Bandi and Renò (2008), [START_REF] Comte | Nonparametric estimation for a stochastic volatility model[END_REF] in the nonparametric setting, or Gloter (2008) in the parametric context. But all these authors consider the high frequency data context, a set of assumptions which are often meaningful, but specific to observations with small step ∆ = ∆ n that tends to zero when n grows to infinity, and long interval of time: T n = n∆ n tends to infinity with n. Most strategies in this context require a huge sample of observations, which may not be available. Moreover, the discrete time approximations of the variables crucially exploit the small step assumption. Therefore, this does not correspond to the discrete time setting with fixed step of observation. Very few papers use another context to provide estimators of the continuous time model. Following ideas developed in Hansen and Scheinkman (1987) and later in [START_REF] Hansen | Spectral methods for identifying scalar diffusions[END_REF], Gobet et al. (2004) propose a strategy for low frequency data (i.e. fixed sample step ∆ of observation). They obtain nonparametric estimators in this context, but their method is specific to the underlying continuous time model. The methodology is similar to the operator eigenvalues approximation studied in [START_REF] Carrasco | Linear Inverse Problems in Structural Econometrics[END_REF] but can not be applied to our model.

Consequently, Model [START_REF] Baraud | Adaptive estimation in an autoregressive and a geometrical β-mixing regression framework[END_REF], and in particular the autoregressive equation in [START_REF] Baraud | Adaptive estimation in an autoregressive and a geometrical β-mixing regression framework[END_REF], is not an approximation of the continuous time model [START_REF] Bennett | Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling[END_REF] (it would require a small sample step for an approximation to hold) and does not share any underlying continuous time structure. 1.2. Logarithmic transformation of (1) and related models. When the model is described in discrete time only, estimation strategies have been proposed for the estimation of the stationary density of (X i ) only, see van Es et al. (2005), [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]. In this case, the model is rewritten as

(3) Z i = X i + ε i X i+1 = b(X i ) + σ(X i )ξ i+1
where ε i = ln(η 2 i ) -E(ln(η 2 i )) and Z i = ln(Y 2 i ) -E(ln(η 2 i )). In our setting, E(ln(η 2 i )) is known. Clearly, the logarithmic transformation of Y 2 i implies that the sign of Y i can not be recovered. When we are interested in volatility dynamics, the sign of the innovation in Y does not matter since we have the additional assumption of independent volatility and price innovation, i.e. (η) and (ξ) are independent. All our results require this independence assumption, and thus, this context does not authorize the so-called leverage effect (see also Remark 3.1).

It also happens that in some contexts, model ( 3) is considered directly. Such a non linear autoregressive model observed with additive noise is also called an errors-in-variables model and is commonly considered in economic and biological applications (see Schenmach (2007), [START_REF] Hong | A simple estimator for nonlinear error in variable models[END_REF] or Benett and Wakefield (2001)). Statistical methods used to study these models are mainly related to parametric or semiparametric specifications of the model, see [START_REF] Chanda | Large sample analysis of autoregressive moving average models with errors-in-variables[END_REF], [START_REF] Comte | Semi-parametric estimation in the nonlinear errors-invariables autoregressive model[END_REF].

Lastly, Model (3) belongs to the general class of hidden Markov models (HMM). These models constitute a very famous class of discrete time processes with applications in various areas (see [START_REF] Cappé | Inference in hidden Markov models[END_REF]). Here our model is simpler in the sense that our noise is additive, but in standard HMMs it is assumed that the joint density of (X i , Z i ) has a parametric form.

Statistical bibliography for model (3).

To our knowledge, the question of estimating b and σ 2 in Model (3) on the basis of observations Z 1 , . . . , Z n has not been studied yet.

Only the following regressive model

Z i = X i + ε i , Y i = b(X i ) + ξ i , in which (Y i
) and (Z i ) for i = 1, . . . , n + 1 are observed, has received attention. In that case, two processes are observed, all sequences (X i ), (ξ i ), (ε i ) can be supposed independent identically distributed (i.i.d.) and independent from each other, and (Y i ) is homoscedastic (σ(x) ≡ 1). In this context, Fan and Truong (1990), and Comte and Taupin (2007) study the problem of the estimation of b. See also [START_REF] Fan | Nonparametric function estimation involving errors-in-variables[END_REF], [START_REF] Fan | Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes[END_REF], [START_REF] Ioannides | Nonparametric regression with errors in variables and applications[END_REF], [START_REF] Koo | B-spline estimation of regression functions with errors in variable[END_REF]. Most authors propose estimators of b based on the ratio of two estimators, namely an estimator of bf divided by an estimator of f , where f denotes the common density of the (i.i.d. in their context) (X i ).

Several papers develop estimation methods for f , see [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], Pensky and Vidakovic (1999), [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], [START_REF] Carrasco | Linear Inverse Problems in Structural Econometrics[END_REF], and the optimality of the rates are studied in [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] and Butucea and Tsybakov (2007).

1.4. Statistical strategy. The quotient strategy is also adopted in our more general setting. More precisely, we assume that the process (X i ) is stationary, with stationary density denoted by f , and we estimate b (resp. b 2 + σ 2 ) as a ratio of an estimator of bf (resp. (b 2 +σ 2 )f ) divided by an estimator of f . We estimate f with the adaptive estimator proposed by [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]. To estimate the numerators, we adopt the same type of strategy as for the estimation of f , namely: first, we study a projection estimator, then we propose a model selection criterion to choose the best projection space as possible, in term of mean integrated risk bound.

In the setting of (3), regarding the identifiability of the model, it must be assumed that the distribution of ε, f ε (or equivalently of η) is fully known. For instance, the process η is often modeled as a standard Gaussian i.i.d. sequence, and then ε i has the distribution of ln(N (0, 1) 2 ) + ln(2) + C where C is the Euler constant. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF] specifically study this case in terms of density estimation, however more general distributions can also be considered (see [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]Comte et al. ( , 2007))).

In this respect, this allows to consider general classes of noise density f ε and also various classes of regularities for the functions to estimate (bf , (b 2 + σ 2 )f , f ). Then, when all functions belong to fixed (but user-unknown) regularity spaces, our risk bounds provide rates of convergence of the estimators.

We want here to emphasize the following point. After the pioneering work of [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], people mainly remembered that the estimation of a twice differentiable density measured with an additive gaussian noise ε had a deplorable logarithmic rate. This is true, but often, the functions to recover are much more regular than only twice differentiable. If the signal has the same regularity as the noise, then the rate can become polynomial again (see Example 3.1 below). This was found by [START_REF] Carrasco | Linear Inverse Problems in Structural Econometrics[END_REF] with their specific method and also by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], or [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias[END_REF] with wavelet, projection or kernel estimators respectively.

The plan of the paper is the following: we first give the notations, the assumptions and describe projection spaces in Section 2. Next, Section 3 explains the estimation strategy for b and gives bounds of the integrated mean square risk of the estimators. Section 4 develops the same study for the estimation of σ 2 . Simulation experiments are conducted in Section 5 in order to illustrate the method. Lastly, proofs are gathered in Sections 6-7-8 and an appendix (section 9) describes auxiliary tools.

General setting and assumptions

2.1. The principle. Let us assume that the sequence (X i ) is stationary and let us denote by f the common density of the X i 's. The principle of the estimation methods relies in all cases on a "Nadaraya-Watson-strategy" in the sense that b or b 2 + σ 2 are estimated as ratio of an estimator of = bf (respectively ϑ = (b 2 + σ 2 )f ) and an estimator of f . In all cases, we use the adaptive estimator of f described in [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF] or [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF] which study independent and β-mixing contexts.

2.2. Notations and Assumptions. Subsequently we denote by u * the Fourier transform of the function u defined by u * (t) = e itx u(x)dx, and by u , u ∞ , u ∞,K , < u, v >, u * v the quantities

u 2 = u 2 (x)dx, u ∞ = sup x∈R |u(x)|, u ∞,K = sup x∈K |u(x)|, < u, v >= u(x)v(x)dx with zz = |z| 2 and u * v(x) = u(t)v(x -t)dt.
Moreover, we recall that for any integrable and square-integrable functions u, u 1 , u 2 , (4)

(u * ) * (x) = 2πu(-x) and u 1 , u 2 = (2π) -1 u * 1 , u * 2 .
We consider the autoregressive model [START_REF] Birgé | Minimum contrast estimators on sieves: Exponential bounds and rates of convergence[END_REF]. The assumptions are the following: A1 (a) The ε i 's are i.i.d. centered (E(ε 1 ) = 0) random variables with finite variance,

E(ε 2 1 ) = s 2 ε . The density of ε 1 , f ε , belongs to L 2 (R), and for all x ∈ R, f * ε (x) = 0. (b)
The ξ i 's are i.i.d. centered with unit variance (E(ξ 2 1 ) = 1). A2 The X i 's are stationary and absolutely regular. A3 The sequences (ξ i ) i∈N and (ε i ) i∈N are independent. It follows from A3 and the data generating process of the X i that the sequences (X i ) i∈N and (ε i ) i∈N are independent.

The Z i 's are observed but the X i 's are not, the stationary density f of the X i 's is unknown but the density f ε of the ε i 's is known.

Standard assumptions on b, σ and the ξ i 's ensure that the sequence (X i ) i∈Z is stationary with stationary density denoted by f . This sequence is also absolutely regular, with βmixing coefficients denoted by β(k), see Doukhan (1994) or [START_REF] Comte | Adaptive estimation of mean and volatility functions in (auto-) regressive models[END_REF] for precise sets of conditions. We shall consider that the mixing is at least arithmetical with rate θ, i.e. that there exists θ > 0 such that [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] ∀k ∈ N,

β(k) ≤ (1 + k) -(1+θ) ,
or, more often, geometrical, i.e. ∃θ > 0, ∀k ∈ N, β(k) ≤ e -θk . The definition of the β-mixing coefficients and related properties are recalled in Section 9.

As we develop a L 2 -strategy, we need the target functions to be square-integrable.

A4 The function to estimate ( = bf , ϑ = (b 2 + σ 2 )f , or f ) is square-integrable.

In the following, we also assume that f ε is such that

A5 For all t in R, A 0 (t 2 + 1) -γ/2 exp{-µ|t| δ } ≤ |f * ε (t)| ≤ A 0 (t 2 + 1) -γ/2 exp{-µ|t| δ }, with γ > 1/2 if δ = 0.
Under Assumption A5, when δ = 0, the errors are usually called "ordinary smooth" errors, and "super smooth" errors when δ > 0, µ > 0. The standard examples are the following : Gaussian or Cauchy distributions are super smooth of order (γ = 0, µ = 1/2, δ = 2) and (γ = 0, µ = 1, δ = 1) respectively, and the Laplace (symmetric exponential) distribution is ordinary smooth (δ = 0) of order γ = 2. When ε = ln(η 2 ) -E(ln(η 2 )) with η ∼ N (0, 1) as in van Es et al. (2005), then E(ln(η 2 )) =ln(2) -C, where C is the Euler Constant, and Var(ln(η 2 )) = π 2 /2 and ε is super-smooth with γ = 0, µ = π/2 and δ = 1: 

f * ln(η 2 1 ) (x) = 2 ix √ π Γ(1 + ix), |f * ln(η 2 1 ) (x)| ∼ x→+∞ 2/ee -π|x|
S m = Span{ϕ m,j , j ∈ Z} = {f ∈ L 2 (R), supp(f * ) ⊂ [-mπ, mπ]}.
Moreover, (S m ) m∈Mn , with M n = {1, . . . , m n }, denotes the collection of linear spaces.

In practice, we should consider the truncated spaces S

(n) m = Span{ϕ m,j , j ∈ Z, |j| ≤ K n },
where K n is an integer depending on n, and the associated estimators under the additional assumption: x 2 ψ 2 (x)dx < A ψ < ∞, where ψ = bf, (b 2 + σ 2 )f or f is the function to estimate. This is done in [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF] and does not change the main part of the study. For the sake of simplicity, we write the sums over Z in the theoretical part of the present study. For t belonging to a space S m of the collection (S m ) m∈Mn , let

γ n (t) = 1 n n i=1 ( t 2 -2Z i+1 u * t (Z i )), u t (x) = 1 2π t * (-x) f * ε (x)
.

The following sequence of equalities, relying on the Fourier equalities (4), explains the choice of the contrast γ n :

E(Z 2 u * t (Z 1 )) = E(b(X 1 )u * t (Z 1 )) = u * t * f ε (-.), bf = 1 2π t * f * ε (-.) f * ε (-.), (bf ) * = 1 2π t * , (bf ) * = t, bf = E(b(X 1 )t(X 1 )) = t(x)b(x)f (x)dx = t, , (7) using that 
(8) E(σ(X 1 )ξ 2 u * t (X 1 + ε 1 )) = E(ξ 2 )E(σ(X 1 )u * t (X 1 + ε 1 )) = 0.
Therefore, we find that

E(γ n (t)) = t 2 -2 , t = t -2 - 2
is minimal when t = . Thus, we define

(9) ˆ m = arg min t∈Sm γ n (t)
As γ n is minimized over S m only, ˆ m is in fact an unbiased estimator of m , which in turn is expected to be near of . Indeed, the estimator can also be written

(10) ˆ m = j∈Z âm,j ( )ϕ m,j , with âm,j ( ) = 1 n n i=1 Z i+1 u * ϕ m,j (Z i ),
an clearly, [START_REF] Cappé | Inference in hidden Markov models[END_REF] implies that E(â m,j ( )) = a m,j ( ). Now, the decomposition of the Mean Integrated Squared Error (MISE) will show that m plays here the role of a bandwidth parameter. Thus, we have to explain how to select an adequate value of m. To this end, we define ˆ m, by setting m = arg min

m∈Mn γ n ( ˆ m ) + pen(m) ,
where the penalty function is given by pen(m) = κE(Z 2 2 )Ψ(m) where ( 11)

Ψ(m) =          ∆(m) n if 0 ≤ δ < 1/3 m [(3δ-1)/2]∧δ ∆(m) n if δ ≥ 1/3, and ∆(m) = 1 2π πm -πm dx |f * ε (x)| 2 ,
where x ∧ y := inf(x, y).

The idea behind this criterion is that γ n ( ˆ m ) estimates the squared bias part of the MISE, and pen(m) has the order of the variance term. A kind of cross-validation method is thus performed here.

In practice

E(Z 2 2
) is unknown and is replaced by its empirical version, (1/n) n i=1 Z 2 i . Then, the resulting penalty function, pen, becomes random. We note that γ n ( ˆ m ) = -j∈Z [â m,j ( )] 2 , which explains (13) below.

Remark 3.1. We can see here why we can not omit the independence assumption between (ε i ) and (ξ i ), and consider the so-called leverage effect. Indeed, assume that we have

ξ i = ρε i + 1 -ρ 2 ε ⊥ i , for an i.i.d. centered noise (ε ⊥ i ), independent of (ε i ).
Then, because of the dynamics of the autoregressive X i sequence, if the noises (ε i ) and (ξ i ) are not independent, then the sequences (X i ) and (ε i ) are not independent either. Then, as for a given i, X i and ε i are no longer independent in model (3), we can not estimate f (the basic convolution link is lost). To keep X i and ε i independent for a given i (and then f can still be estimated, see Comte et al. (2007[START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF])), we have to write the dynamics of X i as follows: X i+1 = b(X i ) + σ(X i )ξ i . But then, Equality [START_REF] Cappé | Inference in hidden Markov models[END_REF] which justifies the definition of the contrast γ n (t) used for the estimation of , is no longer true. Indeed, instead of (8), we have

E(σ(X 1 )ξ 1 u * t (X 1 + ε 1 )) = ρE(σ(X 1 )ε 1 u * t (X 1 + ε 1 )
), and this last term is not necessarily zero. As a conclusion, the independence assumption between (ε i ) and (ξ i ) is necessary.

3.1.2. Second step: the estimators of f . The second stage of the estimation procedure is to estimate f . In fact, [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF] explain how to estimate f in an adaptive way and the mixing context is studied in [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]. The estimator of f on S m is defined by

(12) fm = j∈Z âm,j (f )ϕ m,j with âm,j (f ) = 1 n n i=1 u * ϕ m,j (Z i ).
Then we define f m,

(13) m = arg min m∈Mn    - j∈Z [â m,j (f )] 2 + p en(m)    ,
where the penalty function is given by p en(m) = κΨ(m) with Ψ(m) given by [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. For the properties of f m we refer to [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]. Up to the multiplicative constants, the control of the mean square risk of the estimator is the same as the one obtained for here.

3.1.3. Last step: the estimator of b. We estimate b on a compact set B only and the following additional assumption is required:

A6 (a) ∀x ∈ B, f 0 ≤ f (x) ≤ f 1 for two positive constants f 0 and f 1 . (b) b is bounded on B.
Then we can define:

(14) b = b m, m = ˆ m f m if ˆ m/ f m ≤ a n , b = b m, m = 0 else
, where a n is a sequence to be specified later.

3.2.

Risk bound for ˆ m and ˆ m.

3.2.1.

Risk bound for ˆ m . We define the following empirical centered process

ν n (t) = 1 n n k=1 (Z k+1 u * t (Z k ) -t, ),
and with ( 6) and ( 10), we note that the following equalities hold

-ˆ m 2 = -m 2 + m -ˆ m 2 = -m 2 + j∈Z (a m,j ( ) -âm,j ( )) 2 = -m 2 + j∈Z ν 2 n (ϕ m,j ). Therefore E -ˆ m 2 ≤ -m 2 + j∈Z Var[ν n (ϕ m,j )].
The termm 2 is a deterministic integrated squared bias term. The part corresponding to j∈Z Var[ν n (ϕ m,j )] is the variance term, which has to be bounded. Then, the risk bound on the estimate ˆ m is as follows: Proposition 3.1. Consider the estimator ˆ m of defined by ( 9) where = bf with b and f as in Model [START_REF] Birgé | Minimum contrast estimators on sieves: Exponential bounds and rates of convergence[END_REF]. Then under Assumptions A1-A4, if E(b 4 (X 1 )) < +∞ and θ > 1 for arithmetical mixing (see ( 5)), we have

(15) E( -ˆ m 2 ) ≤ -m 2 + 2E(Z 2 2 ) ∆(m) n + 8K m n .
Note that the last term m/n in ( 15) is always smaller that ∆(m)/n and might have been omitted, up to a less precise constant before ∆(m)/n.

Rate of the estimator. When f *

ε satisfies A5, then the order of the variance term is bounded by: C∆(m)/n ≤ C m 2γ+1-δ exp(2µ(πm) δ )/n. For the squared bias term, we have

-m 2 = (2π) -1 |x|≥πm |f * (x)| 2 dx.
To evaluate this term, regularity conditions must be considered for . We shall assume that belongs to the space:

(16) S s,a,r (A) = {u : +∞ -∞ |u * (x)| 2 (x 2 + 1) s exp{2a|x| r }dx ≤ A}, δ = 0 δ > 0 f ε ordinary smooth f ε supersmooth r = 0 Sobolev(s) π m = O(n 1/(2s+2γ+1) ) rate = O(n -2s/(2s+2γ+1) ) π m = [ln(n)/(2µ + 1)] 1/δ rate = O((ln(n)) -2s/δ ) r > 0 C ∞ π m = [ln(n)/2a] 1/r rate = O ln(n) (2γ+1)/r n m solution of m2s+2γ+1-r exp{2µ(π m) δ + 2aπ r mr } = O(n)
Table 1. Choice of m and corresponding rates under A1-A5 and if belongs to S s,a,r (A) defined by [START_REF] Comte | Semi-parametric estimation in the nonlinear errors-invariables autoregressive model[END_REF].

for nonnegative constants s, a, r and A > 0. When r = 0, this corresponds to Sobolev spaces of order s, which are classically considered. But we can also think that may be as regular as f ε can be. When r > 0, a > 0, this corresponds to analytic functions, which are called "super-smooth" functions. When belongs to a space S s,a,r (A) defined by ( 16), then the order of the squared bias is

-m 2 = (2π) -1 |x|≥πm |f * (x)| 2 dx ≤ Cm -2s exp(-2a(πm) r ).
In this setting, we obtain from [START_REF] Comte | Finite sample penalization in adaptive density deconvolution[END_REF] the risk bound terms:

Cm -2s exp(-2a(πm) r ) + C m 2γ+1-δ exp(2µ(πm) δ )/n. Example 3.1. Consider the example of a Gaussian η, η ∼ N (0, 1), i.e. ε = ln(η 2 ) - E(ln(η 2 )
) is super-smooth with γ = 0, µ = π/2 and δ = 1. It is true that if is in a Sobolev i.e. belongs to S s,a,r (A) with r = a = 0, then the best attainable rate is of order [log(n)] -2s . But if is as regular as f ε and belongs to S s,a,r (A) with s = 0, r = 1, a > 0, then the optimal choice is π m = log(n)/(π + 2a) and the resulting rate is polynomial, of order n -2a/(π+2a) . This is summarized in Proposition 3.2 and Table 1.

Proposition 3.2. Assume that the Assumptions of Proposition 3.1 hold. In addition, assume that belongs to a space S s,a,r (A) defined by [START_REF] Comte | Semi-parametric estimation in the nonlinear errors-invariables autoregressive model[END_REF] and that Assumption A5 is fulfilled. Then the estimate ˆ m with m as in Table 1, has the rates given in Table 1 in terms of its mean square integrated risk E( ˆ m -2 ).

When r > 0, δ > 0 the value of m is not explicitly given. It is obtained as the solution of the equation m2s+2γ+1-r exp{2µ(π m) δ + 2aπ r mr } = O(n). For explicit general formulae of the rates in these cases, we refer to [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF].

We just recall the particular case δ = r, for positive other parameters: this gives the (almost) polynomial rate

n -µ/(a+µ) (log(n)) -τ with τ = [2µδ + (δ -2γ -1)a]/[(a + µ)δ].

3.3.

Risk bound of ˆ m. These rates enhance the interest of building an estimator for which the choice of the relevant model m is automatically performed. This is done with ˆ m, and we can prove the following result: Theorem 3.1. Assume that Assumptions A1-A4 hold, that E(b 8 (X 1 )), E(σ 8 (X 1 )) and E(ξ 8 1 ) are finite and that E(ε 6 1 ) < +∞. Assume moreover that the process X is geometrically β-mixing, (or arithmetically β-mixing with θ > 14) and that the collection M n is such that for all m ∈ M n , pen(m) ≤ 1, then

E( ˆ m -2 ) ≤ C inf m∈Mn -m 2 + pen(m) + C n .
The proof of Theorem 3.1 is sketched in Section 6. Theorem 3.1 shows that the estimator automatically selects the optimal m when δ ≤ 1/3: indeed, in that case, the penalty has exactly the same order as the variance (namely ∆(m)/n). When δ > 1/3, a compromise is still performed, but the penalty is slightly greater than the variance. In an asymptotic setting, this implies a loss in the rate of convergence of the estimator, but this loss can be shown to be negligible with respect to the rates. For discussions on this point, see [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]. Theorem 3.2. Assume that Assumptions A1-A4 hold. Assume that the process X is geometrically β-mixing, (or arithmetically β-mixing with θ > 3 in ( 5)) and that the collection

M n is such that for all m ∈ M n , p en(m) ≤ 1, then E( f m -f 2 ) ≤ C inf m∈Mn f -f m 2 + p en(m) + C n
where f m denotes the orthogonal projection of f on S m .

Then it is common (see e.g. [START_REF] Lacour | Nonparametric estimation of the stationary density and the transition of a Markov chain[END_REF] or Comte and Taupin (2007)) to obtain a bound on the MISE computed on a compact set, denoted here by B. In the following result, we denote by h 2 B := B h 2 (x)dx, for any square integrable function h on B. Theorem 3.3. Assume that the assumptions of Theorems 3.1 and 3.2 and A5-A6 hold, that f belongs to a space S s,a,r (A) with s > 1/2 if r = 0 and to a space S s ,a ,r (A ), that ln(ln(n)) ≤ m n ≤ (n/ ln(n)) 1/(2γ+1) for f m. Then, for n great enough, we have

E( b -b 2 B ) ≤ C 1 E( f m -f 2 ) + C 2 E( ˆ m -2 ) + C 3 n
where a n = n ω with ω > 1/2 and C 1 , C 2 , C 3 are constants.

The MISE bound in Theorem 3.3 means that the rate for estimating b will be the worst between the rates of estimation of f and bf , which are optimal or near-optimal.

The proof of this result is omitted. The reader is referred to [START_REF] Lacour | Nonparametric estimation of the stationary density and the transition of a Markov chain[END_REF] or Comte and Taupin (2007).

Estimation of σ 2

4.1. Steps of the estimation. We now aim at estimating σ 2 and we also follow the strategy described in Section 2.1.

First step. We set ϑ = (b 2 + σ 2 )f and we first estimate ϑ. To this end, we consider the following contrast:

(17) γn (t) = t 2 - 2 n n k=1 Z 2 k+1 -s 2 ε u * t (Z k ).
As f ε is assumed to be known, then so is the variance s 2 ε . Suggestions on how to estimate this quantity can be drawn from Butucea and Matias (2004), but this has a cost and they obtain logarithmic rates of convergence for both the variance estimator and the induced plugged in estimator of the density. Then we define [START_REF] Delyon | Limit theorem for mixing processes[END_REF] θm = arg min where p en(m) is a penalty function given by: p en(m) = κE((Z 2 2s 2 ε ) 2 )Ψ(m), with Ψ(m) given by [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. Again, the expectation

E[(Z 2 2 -s 2 ε ) 2 ] is replaced by its empirical version in practice, namely (1/n) n i=1 (Z 2 i -s 2 ε ) 2 .
Second step. As previously, we use as an estimator of f , the estimator f m defined by ( 12)-( 13). Its risk is controlled by Theorem 3.2.

Third step. We obtain, by defining, similarly to ( 14), 

b 2 + σ 2 = θ m f m if θ m/ f m ≤

4.2.

Risk bounds for θm and θ m. It is not difficult to check that E(γ n (t)) = t 2 -2 ϑ, t which justifies the choice of γn given in [START_REF] Comte | Adaptive estimation in a nonparametric regression model with errors-in-variables[END_REF]. We can also easily obtain the decomposition γn (t)γn (s

) = t -ϑ 2 -s -ϑ 2 -2ν n (t -s) where νn (t) = 1 n n k=1 (Z 2 k+1 -s 2 ε )u * t (Z k ) -t, ϑ .
As for b previously, we can write that

θm -ϑ 2 = ϑ m -ϑ 2 + j∈Z ν2 n (ϕ m,j ).
With the same tools as for the study of , using a relevant decomposition of the empirical process νn , we prove (see Section 7) that:

Proposition 4.1. Consider the estimator θm of ϑ defined by [START_REF] Delyon | Limit theorem for mixing processes[END_REF] where ϑ = (b 2 + σ 2 )f with b, σ and f as in Model (3). Then under Assumptions A1-A4, and if ξ 2 , ε 1 , b 2 (X 1 ) and σ 2 (X 1 ) admit moments of order 4, then

E( ϑ -θm 2 2 ) ≤ ϑ -ϑ m 2 + 4E[(Z 2 2 -s 2 ε ) 2 ] ∆(m) n + K m n where K = 16 2 k≥0 (k + 1)β(k)E((b 2 (X 1 ) + σ 2 (X 1 )) 4 ) if k kβ(k) < +∞.
The empirical processes involved in the decomposition of νn are of the same type as the processes studied for the estimation of . Therefore, we give the risk bound for θ m but we omit the proof.

Theorem 4.1. Assume that Assumptions A1-A4 hold, that E(b p (X 1 )), E(σ p (X 1 )) and E(ξ p 1 ) are finite for a p ≥ 16 and that E(ε 12 1 ) < +∞. Assume that the process X is geometrically β-mixing and that the collection M n is such that for all m ∈ M n , p en(m) ≤ 1, then

E( θ m -ϑ 2 ) ≤ C inf m∈Mn ϑ -ϑ m 2 + p en(m) + C n .

Simulation results

5.1. The models. We start from the first equation of the multiplicative model, Y i = exp(X i /2)η i ,, i = 1, . . . , n. Then we compute:

(19) Z i = ln(Y 2 i ) -E(ln(η 2 1 
)), i = 1, . . . , n and the Z i 's follow the equation

Z i = X i + ε i , where ε i is centered with variance s 2 ε . We have ε i = ln(η 2 i ) -E(ln(η 2 1 
)). We consider three types of noises: the case ε i Laplace with variance s 2 ε,L , the case ε i Gaussian N (0, σ 2 ε,G ), and the case called hereafter "logχ 2 (1)" where η i in N (0, 1); in that case, E(ln(η 2 1 )) = -Cln(2) where C is the Euler constant, and s 2 ε,χ = π 2 /2. In practice, we generate directly the ε i 's. To compute the Z i 's, we need also to generate the X i 's.

We want to experiment different models, thus we have to choose functions b, σ. In all cases, the ξ i 's are i.i.d. N (0, 1) random variables. Then we consider the following functions, defining three models (20)

   b 0 1 (x) = 0.25x σ 0 1 (x) = 3, b 0 2 (x) = 0.25 sin(2πx + π/3) σ 0 2 (x) = ( √ 2/7)(0.31 + 0.7 exp(-5x 2 )), b 0 3 (x) = -0.25(x + 2 * exp(-16x 2 )) σ 0 3 (x) = 0.2 + 0.4 exp(-2x 2 
). The first model is a simple linear model, the two other ones are arbitrary chosen to lead to different types of curves.

We compute recursively, up to initial conditions, a sample U 1 , . . . , U n with U i+1 = b 0 (U i ) + σ 0 (U i )ξ i+1 , for (b 0 , σ 0 ) taken as one of the (b 0 j , σ 0 j ), j = 1, 2, 3. Note that we drop out the first 100 observations to have a stationary sample.

At last, we take (X i , b, σ) = (U i , b 0 , σ 0 ) when the ε i 's are Laplace or Gaussian, and

X i = U i /s ε , b(x) = b 0 (s ε x)/s ε , σ(x) = σ 0 (s ε x)/s ε when the ε i 's are log χ 2 (1)
. The factor sε is a scaling factor computed to have the same signal to noise ratio (i.e. the ratio Var(X)/Var(ε)) for the three different noises ε. Therefore we take s ε,L = s ε,G = 1 and thus sε = √ 2/π for Model 1, and s ε,L = s ε,G = 0.05 and thus sε = 0.05 √ 2/π for Models 2 and 3.

Description of the estimation algorithm.

Let us describe the way the procedure works. Consider data (Y i ) 1≤i≤n for a given noise η in Model [START_REF] Baraud | Adaptive estimation in an autoregressive and a geometrical β-mixing regression framework[END_REF]. Then E(ln(η 2 1 )) is known and we compute Z i as given by [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF]. For instance if η 1 ∼ N (0, 1), we take

Z i = ln(Y 2 i ) + C + ln(2)
where C is the Euler constant.

The first step is to estimate . Given the Z i , we compute

âm,j ( ) = 1 n n i=1 Z i+1 u * ϕ m,j (Z i ) = 1 2πn n i=1 Z i+1 e -iuZ i ϕ m,j (u) f * ε (u)
du for j = -N, . . . , N , and N great enough. Note that the a m,j ( ) are real. Indeed, let φZ (x) = (1/n) n k=1 Z k+1 e ixZ k . Then with an elementary change of variable, we obtain

âm,j ( ) = 1 2π π -π φZ (-mu)e iju f * ε (mu) √ mdu = 1 π π 0 Re φZ (-mu)e iju f * ε (mu) √ mdu,
where Re(z) denotes the real part of the complex number z. Then m is selected by minimizing over a grid of possible m's the quantity:

γ n ( ˆ m ) + pen(m) = - j [â m,j ( )] 2 + pen(m) with pen(m) = 1 2n 1 n n i=1 Z 2 i 1 + ln 2.5 (πm) (πm)(1 + s 2 ε ) + C(m, s ε ) ∆(m), ∆(m) = 2 πm 0 du |f * ε (u)| 2 where (21) f * ε (x) = 1 1 + 1 2 s 2 ε,L x 2 (Laplace), f * ε (x) = exp(- 1 2 s 2 ε,G x 2 ) (Gaussian)
or, for the log-χ 2 (1):

(22) f * ε (x) = 1 √ π 2 i(x+C+ln(2)) Γ(1 + i(x + C + ln(2))) and C(m, s ε ) = 0 if ε 1 is Laplace, C(m, s ε ) = 2 3 (πm) 2 s 2 ε,G if ε 1 is Gaussian, C(m, s ε ) = πms ε,χ if ε 1 ∼ ln(χ 2 (1)).
Let us mention that the Fourier transforms f * ε above correspond to the densities The penalties are calibrated so that we recover standard orders m/n when s ε → 0. Indeed, setting s ε → 0 amounts to set the convolution noise to zero and is a limit case where X i would be observed.

• f ε (x) = exp(- √ 2|x|/s ε,L )/( √ 2s ε,L ) for the centered Laplace with variance s 2 ε,L , • f ε (x) = exp(-x 2 /(2s 2 ε,G ))/( √ 2πs ε,G ) for the N (0, s 2 ε,G ), • f ε (x) = K(x -ln(2) -C)
Moreover, the penalties correspond to the variance order ∆(m)/n, with no loss for Laplace errors, with a loss of order m for the log χ 2 (1) case (where δ = 1) and a loss of order m 2 in the Gaussian case (δ = 2), see formula [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. The common term ln 2.5 (πm) is an additional adjustment for small m's, which has no asymptotic weight compared to the other terms.

For the estimation of f , the same procedure applies with

• the function φZ replaced by f * Z (x) = (1/n) n k=1 e ixZ k , • the factor (1/n) n i= Z 2
i in the penalty replaced by 1. For the estimation of ϑ, the same procedure applies with

• the function φZ replaced by

φZ 2 (x) = 1 n n k=1 (Z 2 k+1 -s 2 ε )e ixZ k ,
• the factor (1/n) n i= Z 2 i in the penalty replaced by (1/n) n i=1 (Z 2 is 2 ε ) 2 . In the three cases, we select the three values of m among 125 values ranging from 10 ln(n)/(πn) to 10 and of course, they are not the same in general.

Simulation results. Let us present the results of our simulation experiments.

First, we performed a Monte Carlo study which is reported in Table 1. For each simulation, we compute the average squared error (ASE) at 101 grid points of our adaptive estimator and average these ASEs over 100 replications. It must be noticed that we give here the results for the functions b 0 j , σ 0 j , so that the ASE's can be compared in function of the distribution of the noise ε. We can see that, as already noticed in the density deconvolution setting, there is little difference between Laplace, logχ 2 (1) and Gaussian ε i 's, in spite of the difference between the theoretical rates. Moreover, it appears clearly that increasing the sample size leads to noticeable improvements of the results. Figures 2 to 6 illustrate our results in the three cases of couples (b j , σ 2 j ) given in (20) with rescaling for logχ 2 (1) errors ε. The true curves are bold dotted and are given together with 20 estimated curves. This set of twenty estimated curves shows, in each case, that the confidence band around the true function has very small width. Moreover, in all cases, and for all the noise distributions, the estimation are very good. With the financial setting in mind, we took samples with large sizes n = 1000 or n = 5000 which are clearly good sizes for nonparametric estimation.

We can see that b and b 2 + σ 2 are well estimated by the ratio strategy. The extraction of σ 2 sometimes suffers from scale problems (if σ 2 is much smaller that b 2 or if both are very small). In particular, we plot σ 2 with the same vertical scale as b 2 + σ 2 to take this into account.

We can therefore conclude that the method we propose is very precise to estimate b and b 2 + σ 2 , and can give an interesting idea of the shape of σ 

n (t) + ν (2) n (t) + ν (3) n (t) with (23) ν (1) n (t) = 1 n n k=1 ε k+1 u * t (Z k ), ν (2) n (t) = 1 n n k=1 ξ k+1 σ(X k )u * t (Z k ), ( 24 
) ν (3) n (t) = 1 n n k=1 (b(X k )u * t (Z k ) -t, ).
Here the terms ν

n and ν

(2)

n can be kept together and benefit from the uncorrelatedness of the variables involved in the sums. The term ν we find Var[ν n (ϕ m,j )] ≤ 2Var ν (1) n (ϕ m,j ) + ν (2) n (ϕ m,j ) + 2Var ν (3) n (ϕ m,j ) . The first variance involves uncorrelated and centered terms and leads to

Var 1 n n i=1 (ε i+1 + σ(X i )ξ i+1 )u * ϕ m,j (Z i ) = 1 n 2 n i=1 E[(s 2 ε + σ 2 (X i ))|u * ϕ m,j (Z i )| 2 ] so that j∈Z Var ν (1) n (ϕ m,j ) + ν (2) n (ϕ m,j ) = 1 n j∈Z E[(s 2 ε +σ 2 (X 1 ))|u * ϕ m,j (Z 1 )| 2 ] = (s 2 ε + E(σ 2 (X 1 )))∆(m) n .
We use here the following useful property of our basis (resulting from a Parseval's formula):

∀x ∈ R, j |u * ϕ m,j (x)| 2 = ∆(m),
where ∆(m) is defined by [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] and the u * ϕ m,j (x) are just rewritten as Fourier coefficients. For the second term, we use the standard tools specific to the β-mixing context (namely [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] covariance Inequality) and we can easily prove the following Lemma: Lemma 6.1. Under Assumptions A1-A3, and if E(b 4 (X 1 )) < ∞ and k kβ(k) < +∞, then j∈Z Var ν (3) n (ϕ m,j ) ≤ E(b 2 (X 1 ))

∆(m) n + 4Km n ,
where

K = 2 k≥0 (k + 1)β(k)E(b 4 (X 1 )).
The result of Proposition 3.1 follows. 2 Proof of Lemma 6.1.

Var ν (3) n (ϕ m,j ) =

1 n 2 n k=1 Var b(X k )u * ϕ m,j (Z k ) + 1 n 2 1≤k =l≤n cov(b(X k )u * ϕ m,j (Z k ), b(X l )u * ϕ m,j (Z l )). F. COMTE, C. LACOUR, Y. ROZENHOLC Then E(b(X k )u * ϕ m,j (Z k )) = 1 2π E(b(X 1 )e ixX 1 )ϕ * m,j (-x)dx = bf, ϕ m,j = E(b(X 1 )ϕ m,j (X 1 ))
and note that, for k = l,

E(b(X k )u * ϕ m,j (Z k )b(X l ) ū * ϕ m,j (Z l )) = 1 4π 2 E(b(X k )b(X l )e ixX k -iyX l )ϕ * m,j (-x)ϕ * m,j (y)dxdy = E[b(X k )b(X l )ϕ m,j (X k )ϕ m,j (X l )]. Therefore, Var 1 n n k=1 b(X k )u * ϕ m,j (Z k ) ≤ 1 n Var(b(X 1 )u * ϕ m,j (Z 1 )) + Var 1 n n k=1 b(X k )ϕ m,j (X k ) .
The last term requires a covariance inequality for mixing variables [START_REF] Delyon | Limit theorem for mixing processes[END_REF], Viennet (1997), Theorem 9.1 in the appendix) and uses the fact that the X i 's are β-mixing with coefficients β(k).

j∈Z

Var 1 n n i=1 b(X i )ϕ m,j (X i ) ≤ j∈Z 4 n β(x)b 2 (x)|ϕ m,j (x)| 2 f (x)dx ≤ 4m n β(x)b 2 (x)f (x)dx
where β is a nonnegative function such that E(β p (X)) ≤ p k≥0 (k + 1) p-1 β(k) and by using that

j |ϕ m,j | 2 (.) ∞ = m. Therefore if E(b 4 (X 1 )) < ∞ and θ > 1, then j∈Z Var 1 n n i=1 b(X i )ϕ m,j (X i ) ≤ 4m 2 k≥0 (k + 1)β(k)E(b 4 (X 1 )) n . Moreover j∈Z Var b(X 1 )u * ϕ m,j (Z 1 ) ≤ E b 2 (X 1 ) j∈Z (u * ϕ m,j (Z 1 )) 2 so that j∈Z 1 n Var b(X 1 )u * ϕ m,j (Z 1 ) ≤ E(b 2 (X 1 ))∆(m) n ,
which gives the result. 

(t) -γ n (s) = t -2 -s -2 -2ν n (t -s), and 
2ν n ( ˆ m -m ) ≤ 1 4 ˆ m -m 2 + 4 sup t∈B m, m (0,1) ν 2 n (t).
Thus, we obtain, as

ˆ m -m 2 ≤ 2 ˆ m -2 + 2 m -2 that (25) 1 2 ˆ m -2 ≤ 3 2 m -2 + pen(m) + 4 sup t∈B m, m (0,1) ν 2 n (t) -pen( m).
Then we need to find a function p(m, m ) such that

(26) E sup t∈B m, m(0,1) ν 2 n (t) -p(m, m) + ≤ C n
which in turn will fix the penalty function through the requirement: ∀m, m ∈ M n , [START_REF] Hong | A simple estimator for nonlinear error in variable models[END_REF] 4p(m, m ) ≤ pen(m) + pen(m ).

Gathering ( 25), ( 26) and ( 27) will lead to, ∀m ∈ M n ,

1 2 E ˆ m -2 ≤ 3 2 m -2 + 2pen(m) +
4C n which is the result. Now, if ν n is split into several terms, deduced from the first decomposition given by ( 23)-( 24), say ν n (t) = 3

i=1 p i j=1 ν (i,j)
n (t) where p i ≤ 3, then, up to some multiplicative constants, inequality (26) will follow from inequalities

E sup t∈B m, m (0,1) [ν (i,j) n (t)] 2 -p i,j (m, m) + ≤ C i,j n ,
with C = 9 i,j C i,j and p(m, m ) = 9 i,j p i,j (m, m ). The study of the ν

(i,j) n (t) is explained below.
First we split ν

n in two parts, so that both expressions involve independent variables, conditionally to (X): ν

(1) n = ν (1,odd) n + ν (1,even) n where ν (1,even) n (t) = 1 n 1≤2k≤n ε 2k+1 u * t (Z 2k ), ν (1,odd) n (t) 
= 1 n 1≤2k+1≤n ε 2k+2 u * t (Z 2k+1 ).
Now, we shall study ν

(1,even) n only since both terms lead to the same type of result. As Talagrand's Inequality requires the random variables involved to be bounded, we have an additional step that allows to obtain the result under a moment condition on the ε i 's: ν

(1,even) n = ν (1,1) n + ν (1,2) n + ν (1,3) n with ν (1,1) n (t) = 1 n 1≤2k≤n ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * t (Z 2k ) -E X (ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * t (Z 2k )) , ν (1,2) n (t) 
= 1 n 1≤2k≤n E(ε 2k+1 1 I |ε 2k+1 |≤n 1/4 ) [t(X 2k ) -E(t(X 2k ))]
and

ν (1,3) n (t) = 1 n 1≤2k≤n ε 2k+1 1 I |ε 2k+1 |>n 1/4 u * t (Z 2k ) -E(ε 2k+1 1 I |ε 2k+1 |>n 1/4 u * t (Z 2k )) ,
where E X denotes the conditional expectation given (X k ) 1≤k≤n+1 . It is worth noticing that ν

(1,2) n vanishes if the ε's are symmetric and ν

(1,3) n (t) is negligible under adequate moment conditions on the ε's.

The following lemmas are proved below:

Lemma 6.2. E sup t∈B m, m (0,1) [ν (1,1) n (t)] 2 -p 1,1 (m, m) + ≤ C n ,
where p 1,1 (m, m ) = KE(ε 2 1 )Ψ(m ∨ m ) where K is a numerical constant and Ψ(m) is defined by [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. Lemma 6.3. If the process (X k ) is geometrically β-mixing (or arithmetically with θ > 3), then

E sup t∈B m, m (0,1) [ν (1,2) n (t)] 2 -KE(|ε 1 |) k β(k) m + m n + ≤ C n . Lemma 6.4. If E(ε 6 1 ) < +∞, and m n is the largest value of m such that ∆(m n )/n ≤ 1, then, E sup t∈B m, m (0,1) 
[ν (1,3) 

n (t)] 2 ≤ E sup t∈Bm n (0,1) (ν (1,3) n (t)) 2 ≤ 2E(ε 6 1 ) n .
For the study of ν

n (t), a result is given, whose proof is detailed in Section 8:

Lemma 6.5. Let τ n (t) = ν (2) 
n (t) = (1/n) n k=1 ξ k+1 σ(X k )u * t (Z k ). Under the assumptions of Theorem 3.1, E sup t∈B m, m(0,1) [τ n (t)] 2 -p τ (m, m) + ≤ C n ,
where

p τ (m, m ) = κE(σ 2 (X 1 ))Ψ(m ∨ m ).
For ν

n (t) we write ν

n (t) = ν (3,1) n (t) + ν (3,2) n (t) with ν (3,1) n (t) = 1 n n k=1 [b(X k )u * t (Z k ) -b(X k )t(X k ))], ν (3,2) n (t) = 1 n n k=1 [b(X k )t(X k ) -t, ], where b(X k )t(X k ) = E (X) [b(X k )u * t (Z k )]. For ν (3) 
we can apply Talagrand's Inequality conditionally to (X), for ν

, we can use approximation techniques. More precisely, using the same techniques as previously, we get Lemma 6.6. If E(b 8 (X 1 )) < +∞, and (X i ) i∈N is arithmetically β-mixing with θ > 14, then

E sup t∈B m, m (0,1) [ν (3,1) n (t)] 2 -p 3,1 (m, m) + ≤ C n , where p 3,1 (m, m ) = KE(b 2 (X 1 ))Ψ(m ∨ m ), and 
E sup t∈B m, m (0,1) [ν (3,2) n (t)] 2 -K (E(b 4 (X 1 )) k (k + 1)β(k)) 1/2 m + m n + ≤ C n ,
where κ and κ are numerical constants.

The proof of the result concerning ν

(3,1) n follows the same line as the proof of Lemma 6.5, which is detailed in section 8 and is therefore omitted here. For ν (3,2) n , the bound can be obtained directly by applying Talagrand's inequality (see Theorem 9.2) to this process, if b is bounded. As this is not assumed, we write

b = b 1 + b 2 with b 1 (x) = b(x)1 I |b(x)|≤n 1/4 and b 2 (x) = b(x)1 I |b(x)|>n 1/4
. This allows to split the process in two parts and consequently to obtain the result under E(|b(X 1 )| 8 ) < +∞ and m n ≤ √ n, where m n is the largest over the m ∈ M n (a condition which is fulfilled in our problem).

Proof of Lemma 6.2.

We apply Lemma 9.2 to process ν

(1,1) n (t) conditionally to the sequence (X k ) 1≤k≤n . Given the X i 's, the variables (Z 2k , ε 2k+1 ) k≥1 are independent and we have, for m = m ∨ m ,

E X sup t∈B m,m (0,1) (ν (1,1) 
n (t)) 2 ≤ j∈Z E X     1 n 1≤2k≤n ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * ϕ m ,j (Z 2k ) -E X (ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * ϕ m ,j (Z 2k ))   2   ≤ j∈Z 1 n 2 1≤2k≤n Var X ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * ϕ m ,j (Z 2k ) ≤ j∈Z 1 n 2 1≤2k≤n E X ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * ϕ m ,j (Z 2k ) 2 = 1 n 2 1≤2k≤n E X   ε 2 2k+1 1 I |ε 2k+1 |≤n 1/4 j∈Z (u * ϕ m ,j (Z 2k )) 2   ≤ E(ε 2 1 ) ∆(m ) n := H 2 , as j |u * ϕ m,j (.)| 2 ∞ ≤ ∆(m) by using Parseval's formula. Next sup x,y |y1 |y|≤n 1/4 u * t (x)| ≤ n 1/4 u * t (.) ∞ ≤ n 1/4 ∆(m * ) := M 1 .
Lastly, following the same method as in [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], Lemma 4, we get sup t∈B m,m (0,1)

1 n k Var X (ε 2k+1 1 I |ε 2k+1 |≤n 1/4 u * t (Z 2k ))
≤ sup t∈B m,m (0,1)

1 n k E(ε 2 2k+1 )E X [(u * t (Z 2k )) 2 ] ≤ E(ε 2 1 ) ∆ 2 (m )/(2π), where (28) 
∆ 2 (m) = m 2 ϕ * (x)ϕ * (y) f * ε (mx)f * ε (my) f * ε (m(x -y)) 2 dxdy.
Then the usual bounds for ∆ 2 hold, namely, ∆

2 (m ) ≤ ∆(m ) if δ > 1 and if δ ≤ 1, ∆ 2 (m )/2π ≤ κ∆(m )/(m ) (1-δ)/2 . This gives v = c∆(m * )(m ) -(1-δ) + /2 .
Given that the orders are the same as in Comte et al. for v and H 2 and inserting the slight difference on M 1 , it can easily be checked that the conclusion still holds and therefore the result of Lemma 6.2 follows. 2

Proof of Lemma 6.3. The result given in Lemma 6.3 is a standard result of density estimation for mixing variables. We refer the reader to [START_REF] Tribouley | L p adaptive density estimation in a β mixing framework[END_REF] 

E sup

t∈Bm n (0,1)

(ν (1,3) n (t)) 2 ≤ j∈Z Var 1 n k e 2k+1 u * ϕ mn,j (Z 2k ) = 1 n 2 j∈Z   k Var e 2k+1 u * ϕ mn,j (Z 2k ) + k =l cov(e 2k+1 u * ϕ mn,j (Z 2k ), e 2l+1 u * ϕ mn,j (Z 2l ))   ≤ E(e 2 3 )∆(m n ) n + 1 n 2 j∈Z E(e 3 ) 2 k =l cov(ϕ mn,j (X 2k ), ϕ mn,j (X 2l )) ≤ E(e 2 3 )∆(m n ) n + 1 n 2 j∈Z E(e 3 ) 2 Var k ϕ mn,j (X 2k ) ≤ E(e 2 3 ) ∆(m n ) n + m n k β k n ≤ 2∆(m n ) n E ε 2 1 1 I |ε 1 |≥n 1/4 ≤ 2E ε 6 1 /n .2 7. Proof of Proposition 4.1.
We bound the expectations of the empirical processes involved in order to obtain the bound of j∈Z E(ν n (ϕ m,j )), using the decomposition νn = 4 i=1 ν(i) n with ν( 1)

n (t) = (1/n) n k=1 (b 2 (X k ) + σ 2 (X k ))u * t (Z k ) -t, ϑ , ν(2) n (t) = (1/n) n k=1 (ξ 2 k+1 -1)σ 2 (X k )u * t (Z k ), ν (3) 
n (t) = 1 n n k=1 (ε 2 k+1 -s 2 ε )u * t (Z k ), and ν(4) n (t) = (2/n) n k=1 [ε k+1 ξ k+1 σ(X k )+b(X k )ε k+1 +σ(X k )b(X k )ξ k+1 ]u * t (Z k ). But it is clear that ν(1)
n is the same process as ν

(3)

n with b(X k ) replaced by (b 2 + σ 2 )(X k ), that ν(2) n is of the same type as ν (2) n with σ(X k ) replaced by σ 2 (X k ) and ξ k+1 by ξ 2 k+1 -1. Next, ν (3) 
n corresponds to ν

(1)

n with ε k+1 replaced by ε 2 k+1 -s 2 ε . Lastly j∈Z E[(ν (4) n (ϕ m,j )) 2 ] = 4 n j∈Z E[(ε 2 ξ 2 σ(X 1 ) + b(X 1 )ε 2 + (σb)(X 1 )ξ 2 ) 2 (u * ϕ m,j (Z k )) 2 ] ≤ 4∆(m) n [s 2 ε E(σ 2 (X 1 )) + E(b 2 (X 1 )(s 2 ε + σ 2 (X 1 )))].
The last step is to gather the terms.2 8. Proof of Lemma 6.5

If t = t 1 + t 2 with t 1 in S m and t 2 in S m , then t is such that t * has its support included in [-π max(m, m ), π max(m, m )] and therefore t belongs to S m where m = max(m, m ). We recall that B m,m (0, 1) = {t ∈ S m / t = 1}. Denote by

H 2 τ (m, m ) = (n -1 n i=1 ξ 2 i+1 σ 2 (X i ))∆(m )/n, ( 29 
)
and let σ 2 τ = E(ξ 2

2 )E(σ 2 (X 1 )) = E(σ 2 (X 1 )). We have

H 2 τ (m, m ) = (n -1 n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ )∆(m )/n + σ 2 τ ∆(m )/n,
which is bounded by H τ,1 (m, m ) + H τ,2 (m, m ) where

H τ,1 (m, m ) = (n -1 n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ )1 I {|n -1 n i=1 ξ 2 i+1 σ 2 (X i )-σ 2 τ |>σ 2 τ /2}
∆(m ) n and H τ,2 (m, m ) = 3σ 2 τ ∆(m )/(2n). We infer that τ n (t) = τ

(1)

n (t) + τ (2) 
n (t) with

τ (1) n (t) = 1 n n k=1 ξ k+1 σ(X k ) [u * t (Z k ) -t(X k )] , τ (2) n (t) = 1 n n k=1 ξ k+1 σ(X k )t(X k ),
and

E[ sup t∈B m,m (0,1) |τ n (t)| 2 -p τ (m, m )] + ≤ 2E[ sup t∈B m,m (0,1)
|τ (1) 

n (t)| 2 -2(1 + 2 2 (m, m ))H 2 τ (m, m )] + +2E[ sup t∈B m,m (0,1) |τ (2) n (t)| 2 -6p 2 (m, m )] + +E[4(1 + 2 2 (m, m ))H 2 τ (m, m ) + 12p 2 (m, m ) -p τ (m, m )] + , where (m, m ) = 1 if 0 ≤ δ < 1/3 and (m, m ) = C(f ε )(π(m ∨ m ))
p 2 (m, m ) = E(σ 2 (X 1 )) m n .
Clearly, p 2 (m, m ) is negligible with respect to p τ (m, m ) (compare their orders in m ), so that for simplicity we consider that (12p 2 (m, m )p τ (m, m )/2) + ≤ C/n.

E[4(1 + 2 2 (m, m ))H 2 τ (m, m ) + 12p 2 (m, m ) -p τ (m, m )] + (31) ≤ 4(1 + 2 2 (m, m ))E|H τ,1 (m, m )| + E[4(1 + 2 2 (m, m ))H τ,2 (m, m ) -p τ (m, m )/2] + .
Since we only consider values of m such that the penalty are bounded by some constant K, we obtain that for some p ≥ 2, E|H τ,1 (m, m )| is bounded by

CE | 1 n n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ |1 I {n -1 | n i=1 (ξ 2 i+1 σ 2 (X i )-σ 2 τ )|>σ 2 τ /2} ≤ C2 p-1 E |n -1 n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ | p /σ 2(p-1) τ .
Moreover, we shall see below that (m, m ) is constant (if δ = 0 or 0 < δ < 1/3) or at most of order (ln(n)) δ (if δ > 1/3). According to Rosenthal's inequality (see Rosenthal (1970)) generalized to the mixing case (see Doukhan (1994) and Inequality [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] recalled in Lemma 9.1), we find that,

E|n -1 n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ | p ≤ C (p, ξ, σ(X)) n 1-p + n -p/2 .
Now, Assumption A1(i)-A5 implies that γ > 1/2, therefore |M n | ≤ √ n if δ = 0 and has logarithmic order if δ > 0 and thus, choosing p = 3 leads to m ∈Mn E|(1 + 2 2 (m, m ))H τ,1 (m, m )| ≤ C(ξ, σ(X))/n, where C(ξ, σ(X)) is a constant depending on the moments of ξ 1 and σ(X 1 ). In particular this requires that ξ admit a moment of order 8.

The last term of the inequality (31) vanishes as soon as

p τ (m, m ) = 8(1 + 2 2 (m, m ))H τ,2 (m, m ) = 12(1 + 2 2 (m, m ))E(σ 2 (X 1 ))∆(m )/n.
For this choice of p τ (m, m ), we obtain that

E[ sup t∈B m, m (0,1) |τ n (t)| 2 -p τ (m, m)] + ≤ 2 m ∈Mn E[ sup t∈B m,m (0,1) (n -1 n i=1 ξ i σ(X i )(u * t (Z i ) -t(X i ))) 2 -2(1 + 2 2 (m, m ))H 2 τ (m, m )] + +2 m ∈Mn E[ sup t∈B m,m (0,1) |τ (2) n (t)| 2 -6p 2 (m, m )] + + C n .
Then we apply the following Lemma.

Lemma 8.1. Under the assumptions on the model, if E|ξ 1 | 8 < ∞ and E(σ 8 (X 1 )), then for some given > 0:

m ∈Mn E   sup t∈B m,m (0,1) 1 n n i=1 ξ i+1 σ(X i )(u * t (Z i ) -t(X i )) 2 -2(1 + 2 2 )H 2 τ (m, m )   + ≤ K 1    m ∈Mn σ 2 τ λ 2 Γ 2 (m ) n exp -K 2 2 ∆(m ) λ 2 Γ 2 (m ) + 1 + ln 4 (n) √ n 1 n    ,
where λ 2 is a constant, Γ 2 (m) is defined by

(32) Γ 2 (m) = (m) 2γ+min[(1/2-δ/2),(1-δ)] exp{2µ(πm) δ }
and K 1 and K 2 are constants depending on the moments of ξ and σ(X).

Moreover, it also follows from [START_REF] Baraud | Adaptive estimation in an autoregressive and a geometrical β-mixing regression framework[END_REF] and [START_REF] Comte | Adaptive estimation of mean and volatility functions in (auto-) regressive models[END_REF], that the process τ [START_REF] Bennett | Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling[END_REF] n is a standard process of the auto-regressive context and satisfies, for p 2 (m, m ) defined by [START_REF] Koo | B-spline estimation of regression functions with errors in variable[END_REF],

2 m ∈Mn E[ sup t∈B m,m (0,1) |τ (2) n (t)| 2 -6p 2 (m, m )] + ≤ c n .
We denote by

A(m) = K 1 σ 2 τ n λ 2 Γ 2 (m) exp -K 2 2 ∆(m) λ 2 Γ 2 (m) = K 1 σ 2 τ λ 2 Γ 2 (m) n exp -κ 2 2 m (1/2-δ/2) + .
The We work conditionally to the (ξ i , X i )'s and E X,ξ and P X,ξ denote the conditional expectations and probability for fixed ξ 1 , . . . , ξ n , ξ n+1 , X 1 , . . . , X n .

We apply Lemma 9.2 with f t (ξ i , X i , Z i ) = ξ i+1 σ(X i )u * t (Z i ), conditionally to the ξ i 's and X i 's to the random variables (ξ 2 , X 1 , Z 1 ), . . . , (ξ n+1 , X n , Z n ) which are independent but non identically distributed since the ξ i 's and the X i s are fixed constants.

Straightforward calculations give that for H τ (m, m ) defined in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] we have

E 2 X,ξ [ sup t∈B m,m (0,1) n -1 n l=1 ξ l+1 σ(X l )(u * t (Z l ) -t(X l ))] ≤ H 2 τ (m, m ). Let P (l) j,k (m) = E X,ξ [u * ϕ m,j (Z l )u * ϕ m,k (-Z l )]. Write sup t∈B m,m (0,1) 1 n n l=1 Var X,ξ (ξ l+1 σ(X l )u * t (Z l )) ≤ 1 n n l=1 ξ 2 l+1 σ 2 (X l )   j,k∈Z |P (l) j,k (m )| 2   1/2 .
We argue as in [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]. Let recall that ∆ 2 (m) is defined by [START_REF] Ioannides | Nonparametric regression with errors in variables and applications[END_REF]. We have ∆ 2 (m) ≤ λ 2 2 Γ 2 2 (m), with Γ 2 defined by (32) and λ 2 = λ 2 (γ, A 0 , δ, µ, f ε ). Now, write P (l) j,k as

P (l) j,k (m) = m 4π 2 e -ixj-iyk e im(x-y)X l ϕ * (-x)ϕ * (-y) f * ε (mx)f * ε (my) f * ε (m(x -y))dxdy.
By applying Parseval's formula we get that j,k |P

(l) j,k (m)| 2 equals ∆ 2 (m). We now write that sup t∈B m,m (0,1) (n -1 n i=1 Var X,ξ (ξ i+1 σ(X i )u * t (Z i ))) ≤ (n -1 n i=1 ξ 2 i+1 σ 2 (X i ))λ 2 Γ 2 (m ), and thus we take v τ (m, m ) = (n -1 n i=1 ξ 2 i+1 σ 2 (X i ))λ 2 Γ 2 (m ). Lastly, since sup t∈B m,m (0,1) f t ∞ ≤ 2 max 1≤i≤n |ξ i+1 σ(X i )| ∆(m ), we take M 1,τ (m, m ) = 2 max 1≤i≤n |ξ i+1 σ(X i )| ∆(m ).
By applying Lemma 9.2, we get for some constants κ

1 , κ 2 , κ 3 E X,ξ [ sup t∈B m,m (0,1) ν 2 n,1 (t) -2(1 + 2 2 )H 2 τ ] + ≤ K 1 λ 2 Γ 2 (m ) n 2 ( n i=1 ξ 2 i+1 σ 2 (X i )) exp -K 2 2 ∆(m ) λ 2 Γ 2 (m * ) + ∆(m ) n 2 ( max 1≤i≤n ξ 2 i+1 σ 2 (X i )) exp    -K 3 C( 2 ) n i=1 ξ 2 i+1 σ 2 (X i ) max i |ξ i+1 σ(X i )|     
To relax the conditioning, it suffices to integrate with respect to the law of the (ξ i+1 , X i )'s the above expression. The first term in the bound simply becomes:

σ 2 τ λ 2 Γ 2 (m ) exp[-κ 2 ∆(m )/(λ 2 Γ 2 (m ))]/n.
The second term is bounded by

(33) ∆(m ) n 2 E   (max |ξ i+1 σ(X i )| 2 ) exp   -κ 3 C( 2 ) n i=1 ξ 2 i+1 2 (X i ) max 1≤i≤n |ξ i+1 σ(X i )|     .
Since we only consider integers m such that the penalty term is bounded, we have ∆(m)/n ≤ K and the sum of the above terms for m ∈ M n and |M n | ≤ √ n is less than

K √ n E   max 1≤i≤n ξ 2 i+1 σ 2 (X i ) exp   -κ 3 C( 2 ) n i=1 ξ 2 i+1 σ 2 (X i ) max 1≤i≤n |ξ i+1 σ(X i )|     .
We need to study when such a term is less than c/n for some constant c. We bound max i |ξ i+1 σ(X i )| by m ξ,σ on the set {max i |ξ i+1 σ(X i )| ≤ m ξ,σ } and the exponential by 1 on the set {max i |ξ i+1 σ(X i )| > m ξ,σ } and by denoting µ = κ 3 C( 2 ), this yields √ n/[2 √ 2 ln(n)] and for any n ≥ 3, and for C 1 and C 2 some constants depending on the moments of ξ and σ(X), we find that

E max 1≤i≤n ξ 2 i+1 σ 2 (X i ) exp -µ n i=1 ξ 2 i+1 σ 2 (X i ) max 1≤i≤n ξ 2 i+1 σ 2 (X i ) ≤ m 2 ξ,σ E   exp(-µ n i=1 ξ 2 i+1 σ 2 (X i ) m ξ,σ )   +E max 1≤i≤n ξ 2 i+1 σ 2 (X i )1 I {max 1≤i≤n |ξ i+1 σ(X i )|>m ξ,σ } ≤ m 2 ξ,σ E exp(-µ nσ 2 τ /(2m 2 ξ,σ )) + P | 1 n n i=1 ξ 2 i+1 σ 2 (X i ) -σ 2 τ | ≥ σ 2 τ /2 +m -
E    max 1≤i≤n ξ 2 i+1 σ 2 (X i ) exp   -κ 3 C( 2 ) n i=1 ξ 2 i+1 σ 2 (X i ) max 1≤i≤n ξ 2 i+1 σ 2 (X i )      ≤ C 1 √ n + C 2 ln 4 (n) √ n 1 √ n .
Then the sum over M n with cardinality less than √ n of the terms in ( 33) is bounded by C(1 + ln(n) 4 / √ n)/n for some constant C, by using again that ∆(m )/n is bounded. 2

Appendix

As a reminder, some definitions and properties related to β-mixing sequences are given in this section. Let (Ω, A, P) be a probability space. Let Y be a random variable with values in a Banach space (B, • B ), and let M be a σ-algebra of A. (1960). Let X = (X i ) i≥1 be a strictly stationary sequence of real-valued random variables. For any k ≥ 0, the coefficients β X,1 (k) are defined by β X,1 (k) = β(σ(X 1 ), σ(X 1+k )), Let M i = σ(X k , 1 ≤ k ≤ i). The coefficients β X,∞ (k) are defined by β X,∞ (k) = sup i≥1,l≥1 sup {β(M i , σ(X i 1 , . . . , X i l )), i

+ k ≤ i 1 < • • • < i l } ,
In the paper, we do not distinguish between the two types of mixing and denote the coefficients of the process X by β(k) or β X (k). It is implicit that when only covariance inequality are involved, then the milder mixing β X,1 (k) is required, and we shall assume that stronger β X,∞ (k) mixing coefficients are used in the general case. Now, a Rosenthal-type inequality for mixing variables can be deduced from Doukhan (1994), Theorem 2 p.26 and the following result holds: We also use [START_REF] Delyon | Limit theorem for mixing processes[END_REF] covariance Inequality, successfully exploited by Viennet (1997) for partial sums of strictly stationary processes. Lastly, we recall the version of the Talagrand inequality that is required in the paper. Mention must be made that it is valid for independent but non necessarily identically distributed random variables, which is useful here when we work conditionally to one or two of the sequences. 

3. Estimation of b 3 . 1 . 3 . 1 . 1 .

 31311 The steps of the estimation. First step: the estimators of = bf . The orthogonal projection of = bf on S m , m , is given by[START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias[END_REF] m = j∈Z a m,j ( )ϕ m,j with a m,j ( ) = R ϕ m,j (x) (x)dx = ϕ m,j , .

3. 4 .

 4 Risk bounds for b.[START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF] prove that f m satisfies the same inequality as ˆ m. We recall their result.

  t∈Sm γn (t) and m = arg min m∈Mn γn ( θn ) + p en(m)

  ȃn and 0 otherwise, and ȃn is a sequence to be specified in the same way as a n for the estimation of b. Clearly, b 2 + σ 2 is an estimator of b 2 + σ 2 . For the study of steps 2 and 3, see Section 3.4.Fourth step. The estimator of σ 2 must be built by settingσ2 = b 2 + σ 2 -( b) 2 .Clearly, as σ2 -σ 2 2 ≤ 2 b 2 + σ 2 -(b 2 + σ 2 ) 2 + 2 b + b 2 b -b 2 ,the risk of the final estimator is the sum of the risks of the estimators of b 2 + σ 2 and b, provided that b is bounded (by M b ) and b is bounded (by 2M b ) with probability near of one. The latter step is studied from an empirical point of view only.

Figure 1 .

 1 Figure1. ASE for the estimation of b 0 j and (σ 0 j ) 2 , j = 1, 2, 3 given in[START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], for 100 replications of the estimation procedure.

Figure 2 .Figure 3 .

 23 Figure 2. True curves: b 1 (left), b 2 1 +σ 2 1 (center), σ 2 1 (right) in dotted-bold and 20 estimated curves, n = 1000, ε Laplace.

  Figures 2 to 6 illustrate our results in the three cases of couples (b j , σ 2 j ) given in (20) with rescaling for logχ 2 (1) errors ε. The true curves are bold dotted and are given together with 20 estimated curves. This set of twenty estimated curves shows, in each case, that the confidence band around the true function has very small width. Moreover, in all cases, and for all the noise distributions, the estimation are very good. With the financial setting in mind, we took samples with large sizes n = 1000 or n = 5000 which are clearly good sizes for nonparametric estimation.We can see that b and b 2 + σ 2 are well estimated by the ratio strategy. The extraction of σ 2 sometimes suffers from scale problems (if σ 2 is much smaller that b 2 or if both are very small). In particular, we plot σ 2 with the same vertical scale as b 2 + σ 2 to take this into account.We can therefore conclude that the method we propose is very precise to estimate b and b 2 + σ 2 , and can give an interesting idea of the shape of σ 2 .

Figure 4 .Figure 5 .

 45 Figure 4. True curves: b 2 (left), b 2 2 +σ 2 2 (center), σ 2 2 (right) in dotted-bold and 20 estimated curves, n = 1000, ε Laplace.

Figure 6 .

 6 Figure 6. True curves: b 3 (left), b 2 3 +σ 2 3 (center), σ 2 3 (right) in dotted-bold and 20 estimated curves, n = 5000, Gaussian ε.

2 6. 2 .

 22 Proof of Theorem 3.1. The proof could be sketched as follows. Let us define for m, m ∈ M n , B m (0, 1) = {t ∈ S m , t = 1} and B m,m (0, 1) = {t ∈ S m + S m , t = 1}. Under the definition of m, ∀m ∈ M n , γ n ( ˆ m) + pen( m) ≤ γ n ( m ) + pen(m). For all functions s and t, γ n

  or Comte and Merlevède (2002), p.217.2 Proof of Lemma 6.4. Let e k = ε k 1 I |ε k |>n 1/4 .

  σ ) + C (p, ξ, σ(X))m 2 ξ,σ [n 1-p + n -p/2 ] + nE(|ξ 1 | r+2 )E(|σ(X 1 )| r+2 )m -r ξ,σ . Since E|ξ 1 | 8 < ∞, we take p = 3, c = 4 in Lemma 9.1, r = 4, m ξ,σ = σ τ C( 2 )κ 3

  Let P Y |M be a conditional distribution of Y given M, and let P Y be the distribution of Y . Let B(B) be the borel σ-algebra on (B, • B ). Define now β(M, σ(Y )) = E sup A∈B(X ) |P Y |M (A) -P Y (A)| The coefficient β(M, σ(Y )) is the usual mixing coefficient, introduced by Volkonskiȋ and Rozanov

Lemma 9 . 1 .≤

 91 Let (Y k ) 1≤k≤n be a sequence of centered and stationary β-mixing variables with coefficients β(k), admitting moments of order r + 1 and r ≥ 2, then if∃c ∈ 2N, c ≥ r, such that k≥1 (k + 1) c-2 β(k) 1 c+1 < +∞, F. COMTE, C. LACOUR, Y. ROZENHOLC we have the bound C(r) n 1-r [E|Y 1 | r+1 ] r/(r+1) + n -r/2 [(E|Y 1 | 3 )] r/3 .

Theorem 9 . 1 .

 91 [START_REF] Delyon | Limit theorem for mixing processes[END_REF],[START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF]) Let P be the distribution of Z 0 on a probability space X , f dP = E P (f ) for any function f P -integrable. For r ≥ 2, let L(r, β, P ) be the set of functions b Z :X → R + such that b Z = l≥0 (l + 1) r-2 b l,Z with 0 ≤ b l,Z ≤ 1 and E P (b l,Z ) ≤ β Z (l)We define B r as B r = l≥0 (l + 1) r-2 β Z (l). Then for 1 ≤ p < ∞ and any function b Z in L(2, β, P ), E P (b p Z ) ≤ pB p+1 , as soon as B p+1 < ∞. The following result holds for a strictly stationary absolutely regular sequence, (Z i ) i∈Z , with β-mixing coefficients(β Z (k)) k≥0 : if B 2 < +∞,there exists b Z ∈ L(2, β, ∞) such that for any positive integer n and any measurable function f ∈ L 2 (P ), we have Var n i=1 f (Z i ) ≤ 4nE P (b Z f 2 ) = 4n b Z (x)f 2 (x)dP (x).

Lemma 9 . 2 . 1 ,

 921 Let Y 1 , . . . , Y n be independent random variables, letν n,Y (f ) = (1/n) n i=1 [f (Y i )-E(f (Y i ))] and let F be a countable class of uniformly bounded measurable functions. Then for ξ 2 > 0E sup f ∈F |ν n,Y (f )| 2 -2(1 + 2 2 with C( 2 ) = √ 1 + 2 -1, K 1 = 1/6,andsup f ∈F f ∞ ≤ M 1 , E sup f ∈F |ν n,Y (f )| ≤ H, sup f ∈F 1 n n k=1 Var(f (Y k )) ≤ v.This result follows from the concentration inequality given in[START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).

  /2 .

	2.3. The projection spaces. As projection estimators are used in all cases, we hereby
	provide a description of the projection spaces. Let us define
	ϕ(x) =	sin(πx) πx	and ϕ m,j (x) =	√	mϕ(mx -j),
	where m can be replaced by 2 m . The key point is that ϕ * (x) = 1 I [-π,π] (x). It is well
	known (see Meyer (1990), p.22) that {ϕ m,j } j∈Z is an orthonormal basis of the space of square integrable functions having a Fourier transform with compact support included
	into [-πm, πm]. Such a space is denoted by S m .		

  study of A(m ) is standard in deconvolution (see[START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]) and leads to choose 2 (m, m ) as a constant if δ ≤ 1/3 and of orderm δ-(1/2-δ/2) + if δ > 1/3, to ensure that m ∈Mn A(m ) is less than C/n.With p τ (m, m ) given in Lemma 6.5, by gathering all terms we find the result. 2 Proof of Lemma 8.1.

  ] + nE(|ξ 2 σ(X 1 )| r+2

	Again by applying Rosenthal's inequality (see Lemma 9.1), we obtain that
	E max 1≤i≤n	ξ 2 i+1 σ 2 (X i ) exp -µ	n i=1 ξ 2 i+1 σ 2 (X i ) max 1≤i≤n ξ 2 i+1 σ 2 (X i )
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