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A new method for Quantitative Trait Loci detection
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Summary. We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, T ] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution
of this LRT process under the general alternative that there exist m QTL on [0, T ]. This theo-
retical result allows us to propose to estimate the number of QTL and their positions using the
LASSO. Our method does not require the choice of cofactors contrary to Composite Interval
Mapping (CIM). Besides, our method is not affected by interactions.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, χ2 process.

1. IntroductionWe study a ba
k
ross population: A×(A×B), where A and B are purely homozygous linesand we address the problem of dete
ting Quantitative Trait Lo
i, so-
alled QTL (genes in�u-en
ing a quantitative trait whi
h is able to be measured) on a given 
hromosome. The traitis observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, the observations,whi
h we will assume to be independent and identi
ally distributed (iid). The me
hanismof geneti
s, or more pre
isely of meiosis, implies that among the two 
hromosomes of ea
hindividual, one is purely inherited from A while the other (the �re
ombined" one), 
onsistsof parts originated from A and parts originated from B, due to 
rossing-overs. The Haldane(1919) modelling assumes that 
rossovers o

ur as a Poisson pro
ess. Using the Haldane(1919) distan
e and modelling, ea
h 
hromosome will be represented by a segment [0, T ].The distan
e on [0, T ] is 
alled the geneti
 distan
e (whi
h is measured in Morgans).In a famous arti
le, Lander and Botstein (1989) proposed, with the help of geneti
 mark-ers, to s
an the 
hromosome, performing a likelihood ratio test (LRT) of the absen
e of aQTL at every lo
ation t ∈ [0, T ]. It leads to a �likelihood ratio test pro
ess" Λn(.), andthen a natural statisti
 is the supremum of su
h a pro
ess. This method is 
alled �intervalmapping". There have been many papers related to the supremum of the LRT pro
ess.For example, we 
an mention Feingold and al. (1993), Chur
hill and Doerge (1994), Rebaïand al. (1994), Rebaï and al. (1995), Cier
o (1998), Piepho (2001), Chang and al. (2009),Rabier (2010).The problem is that 
onsidering the supremum of the pro
ess as a test statisti
 is appro-priate when there is only one QTL on the 
hromosome but it be
omes inappropriate whenthere are several QTL lo
ated on the 
hromosome. Besides, generally geneti
ists have nointuition if there is one or several QTL segregating on the 
hromosome. As a 
onsequen
e,



2 Céline Delmasa more general approa
h has to be 
onsidered. When multiple QTL o

ur on the same
hromosome, they a�e
t simultanously the LRT pro
ess. For instan
e, when two QTL arelo
ated in two di�erent marker interval 
lose but not adja
ent, a peak is often found betweenthese two marker interval : it is a ghost QTL (Martinez and Curnow (1992)). Jansen (1993)and Zeng (1994) proposed independently the �Composite Interval Mapping", whi
h 
onsistsin 
ombining interval mapping on two �anking markers and multiple regression analysis onother markers (Wu and al. (2007)). This way, the QTL not lo
ated in the marker intervaltested do not a�e
t anymore the LRT pro
ess. Their e�e
ts are removed due to multipleregression analysis. Howewer, the 
hoi
e of markers as 
ofa
tor is very 
ompli
ated. It isstill an open question today. Until now, there has been no mathemati
al proof whi
h 
ouldhelp us on how to 
hoose the set of markers rigorously. In this 
ontext, the aim of our paperis to propose an alternative to �Composite Interval Mapping", that is to say a new methodwhi
h does not require the 
hoi
e of 
ofa
tors.As mentioned before, in Rabier (2010), the authors suppose that there is no more than oneQTL on the 
hromosome (it is lo
ated at t⋆ ∈ [0, T ]). They show that the LRT pro
ess isasymptoti
ally the square of a �non linear interpolated pro
ess" 
entered under H0 (ie. noQTL on the 
hromosome) and un
entered of a mean fun
tion under the alternative. Thismean fun
tion depends on the QTL e�e
t and its lo
ation t⋆. In this paper, we generalizethese results to the general alternative that there exist m QTL on [0, T ] at t⋆1, · · · , t⋆m withadditive e�e
ts q1, · · · , qm.The main di�eren
es between the alternative of only one QTL and the general alternative,is in the distribution of the trait Y . When there is only one QTL at t⋆ ∈ [0, T ], the trait Y ,
onditionally to information brought by geneti
 markers lo
ated on the 
hromosome, obeysto a mixture model with known weights :
p(t⋆)f(µ+q,σ)(.) + {1− p(t⋆)} f(µ−q,σ)(.) (1)where f(µ,σ)(.) denotes a Gaussian density with mean µ and varian
e σ2. (µ, q, σ) are theunknown parameters.When there are m QTL segregating, the distribution of the trait Y , is a mixture of 2m
omponents of the form :

2m
∑

α=1

wαf(Mα,σ)(.)where the wαs and the Mαs are known fun
tions of the unknown parameters µ, m, t⋆1, ...,
t⋆m, q1, ..., qm.In this 
ontext, we show that under the general alternative, the LRT pro
ess is still asymp-toti
ally the square of a �non linear interpolated pro
ess". Howewer, the mean fun
tiondepends this time on the number of QTL, their positions and their e�e
ts. This theoret-i
al result allows us to propose a new method to estimate the number of QTL and theirpositions using the LASSO. Note that in this paper, as in Broman and Speed (2002), thefo
us is mainly on the estimation of the number of QTL and their positions, rather thanon the estimation of the QTL e�e
ts. Nevertheless, the e�e
ts 
an be obtained easily withthe method that we propose.The originality of our paper is twofold. First, with our asymptoti
 study of the LRT pro-
ess under the general alternative, we are now able to explain mathemati
ally some strangesituations whi
h happen when we analyze data. Typi
ally, we generally �nd a ghost QTL
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ondly, the originality is in the fa
t that we propose a new methodto �nd QTL. Our method is very easy to implement and does not require the 
hoi
e of mark-ers as 
ofa
tors whi
h is a major drawba
k of Composite Interval Mapping. Besides, weprove that our method is not a�e
ted by intera
tions. With the help of simulated data,we show that our method performs better than the Composite Interval Mapping whi
h islargely used in the geneti
 
ommunity. We refer to the book of Van der Vaart (1998) forelement of asymptoti
 statisti
s used in proofs.
2. Model and NotationsThe 
hromosome is the segment [0, T ]. K geneti
 markers are lo
ated on the 
hromosome,one at ea
h extremity. t1 = 0 < t2 < ... < tK = T are the lo
ations of the markers. The�genome information" at t will be denoted X(t). The Haldane (1919) model, whi
h assumesthat 
rossovers o

ur as a Poisson pro
ess, 
an be written mathemati
ally : let N(t) be astandard Poisson pro
ess, the law of X(t) is 1

2 (δ1 + δ−1) and X(t) = (−1)N(t)X(t1). TheHaldane (1919) fun
tion r : [0, T ]
2 7−→

[

0, 1
2

] is su
h as :
r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) = 1

2
(1− e−2|t−t′|)

r̄(t, t′) will be the fun
tion equal to 1− r(t, t′).
r(t, t′) denotes the probability of re
ombination between two lo
i (ie. positions) lo
ated at
t and t′. r̄(t, t′) denotes the absen
e of re
ombination. Note that a re
ombination o

urs ifthere is an odd number of 
rossovers between the two lo
i.We are interested in a quantitative trait Y whi
h is a�e
ted by several QTL lo
ated on the
hromosome. m will refer to the number of QTL and qs to the QTL e�e
t of the sth QTL.Its position will be 
alled t⋆s. We impose 0 < t⋆1 < ... < t⋆m < T and we will suppose thatthe QTL e�e
ts are additives and there is no intera
tion between them. In this 
ontext,the quantitative trait Y veri�es :

Y = µ +

m
∑

s=1

X(t⋆s) qs + σεwhere ε is a Gaussian white noise.Besides, the �genome information" is available only at lo
ations of geneti
 markers, thatis to say at t1, t2, ..., tK . We denote by Xj(t) the value of the variable X(t) for the jthobservation. So, in fa
t, our observation on ea
h individual is (Yj , Xj(t1), ..., Xj(tK)).These observations are supposed to be iid.
3. LRT process under the alternative of only one QTL located on [0, T ] (Rabier

(2010))Before etablishing the general result of this paper, we �rst should fo
us on the work ofRabier (2010), that is to say the 
ase where there is only one QTL lying on [0, T ] (ie.
m = 1). It will be a good way to introdu
e the LRT pro
ess and will make the readingof our paper easier. In order to sum up this previous work, we will 
onsider the sameelements and notations used by the authors. As said previously, the authors fo
us on thefamous �Interval Mapping" of Lander and Botstein (1989) whi
h 
onsists in s
anning the
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hromosome, performing a likelihood ratio test (LRT) of the absen
e of a QTL at everylo
ation t ∈ [0, T ].We 
onsider values of the parameter t that are distin
t of the markers positions, and theresult will be prolonged by 
ontinuity at the markers positions. For t ∈ [t1, tK ]\TK where
TK = {t1, ..., tK}, we de�ne tℓ and tr as :

tℓ = sup {tk ∈ Tk : tk < t} , tr = inf {tk ∈ Tk : t < tk}In other words, t belongs to the �Marker interval" (tℓ, tr). We de�ne p(t) the weight su
has p(t) = P
{

X(t) = 1
∣

∣X(tℓ), X(tr)
}.By the Bayes rule,

p(t) = Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 (2)where :
Q1,1

t =
r̄(tℓ, t) r̄(t, tr)

r̄(tℓ, tr)
, Q1,−1

t =
r̄(tℓ, t) r(t, tr)

r(tℓ, tr)

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

tLet θ = (q, µ, σ) be the parameter of the model at t �xed and θ0 = (0, µ, σ) the true valueof the parameter under H0. The likelihood of the triplet (Y, X(tℓ), X(tr)
) with respe
tto the measure λ⊗N ⊗N , λ being the Lebesgue measure, N the 
ounty measure on N, is

∀t ∈ [tℓ, tr] :
L(θ, t) =

[

p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)
]

g(t) (3)where g(t) is a fun
tion independent of θ.The likelihood Ln(θ, t) for n observations is obtained by the produ
t of n terms as above.
θ̂ = (q̂, µ̂, σ̂) will be the maximum likelihood estimator (MLE) of θ.Under H0, there is no QTL lying on the interval [0, T ]. Besides, under H1, it is supposedthat there is only one lo
ation where the QTL lies (ie. m = 1). In order to deal with thisalternative, the lo
ation of the QTL, t⋆ (t⋆ ∈ [0, T ]), has to be added in the de�nition of
H1. So, the alternative hypothesis 
an be written :

Hat⋆ : �the QTL is lo
ated at the position t⋆ with e�e
t q = a/
√
n where a ∈ R

⋆ "In this 
ontext, the authors show that the LRT pro
ess, Λn(.), 
onverges weakly to thesquare of a �non linear interpolated pro
ess". It means that the LRT statisti
s at ea
hpoint 
an easily be dedu
ed from the Wald or s
ore statisti
s 
al
ulated at markers positions.Besides, this �non linear interpolated pro
ess" is 
entered under H0 and un
entered of amean fun
tion mt⋆(t) under Hat⋆ . This mean fun
tion depends on the lo
ation of the QTL
t⋆, the position tested t and the parameter a linked to the QTL e�e
t. It is also a �non linearinterpolated fon
tion" (same interpolation as the pro
ess). Then, sin
e they suppose thatthere is only one QTL on [0, T ], the authors have a 
lose formula (due to the interpolation)to 
ompute the supremum of Λn(.).
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4. LRT process under the general alternative of m QTL on [0, T ]In the previous Se
tion, it has been supposed that there was only one QTL lying on theinterval [0, T ]. As a 
onsequen
e, the test statisti
 used was a natural statisti
, that is tosay the supremum of the pro
ess. The interest is now on studying the same pro
ess aspreviously, Λn(.), but under the presen
e of several QTL on the interval [0, T ]. In this 
ase,the goal is not to perform a test anymore, but to be able to run a model sele
tion in orderto estimate the number of QTL and their lo
ations.Let denote ~t⋆ the quantity refering to the lo
ations of the QTL. Ha~t⋆ will be the followingassumption :
Ha~t⋆ : � there are m QTL lo
ated respe
tively at t⋆1, ..., t⋆m and with e�e
t
q1 = a1√

n
, ..., qm = am√

n
where (a1, ..., am) ∈ R

m⋆ "We remind that we suppose that the QTL e�e
ts are additives and that there is no intera
-tion between them. We will 
onsider values t, t⋆1, ..., t⋆m of the parameters that are distin
tof the markers positions, and the result will be prolonged by 
ontinuity at the markerspositions.
4.1. ResultsTheorem With the previous de�ned notations,

Sn(.) ⇒ Z⋆(.) , Λn(.)
F.d.→ {Z⋆(.)}2as n tends to in�nity, under H0 and Ha~t⋆ where :

• Sn(.) is the s
ore pro
ess for n observations
• ⇒ is the weak 
onvergen
e and F.d.→ is the 
onvergen
e of �nite-dimensional distribu-tions
• Z⋆(.) is a Gaussian pro
ess with unit varian
e.
• Z⋆(.) is the 
ontinuous and the �non linear interpolated pro
ess" su
h as :

Z⋆(t) =
{

α(t) Z⋆(tℓ) + β(t) Z⋆(tr)
}

/

√

E

[

{2p(t)− 1}2
]The mean fun
tion of Z⋆(.) :

• under H0, m(t) = 0

• under Ha~t⋆ , m~t⋆(t) =
{

α(t) m~t⋆(t
ℓ) + β(t) m~t⋆(t

r)
}

/

√

E

[

{2p(t)− 1}2
]The di�erent quantities are :

α(t) = Q1,1
t +Q1,−1

t − 1, β(t) = Q1,1
t −Q1,−1

t , Cov {Z(tℓ), Z(tr)
}

= e−2(tr−tℓ)

m~t⋆(t
ℓ) =

m
∑

s=1

as e
−2|t⋆s−tℓ| / σ , m~t⋆(t

r) =

m
∑

s=1

as e
−2|tr−t⋆s | / σ ,and E

[

{2p(t)− 1}2
]

= {α(t)}2 + {β(t)}2 + 2 α(t) β(t)e−2(tr−tℓ).



6 Céline DelmasThe proof is given in Se
tion 7.1.
4.2. Illustration of the theorem and of the Ghost QTL phenomenon
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A new method for QTL detection 9In order to illustrate the theorem, we will 
onsider a geneti
 map whi
h 
onsists ofa 
hromosome of size T = 100
M with 6 markers equally spa
ed every 20
M. Figure 1refers to the absen
e of QTL on the 
hromosome. On the left-side, a path of the pro
ess
Z⋆(.) is represented under H0. As there is not any QTL, it 
orresponds only to noise.Besides, we 
an observe the interpolation obtained between geneti
 markers. The samepath 
orresponding to the pro
ess {Z⋆(.)}2 has been added on the right-side : in geneti
s,we 
all this path "a likelihood pro�le". It is usually this path that we obtain when weanalyze data. Note that many authors, instead of 
omputing the pro
ess Λn(.), fo
us onthe LOD pro
ess, LODn(.)� where LODn(.) = Λn(.)/ {2 log(10)}.Figure 2 represents the signal. On the left-side, we present some mean fun
tions m~t⋆(t)when only one QTL (m = 1) is lo
ated on the 
hromosome. As expe
ted, the supremumof these interpolated fun
tions is obtained at the lo
ation of the QTL. Besides, the largerthe QTL e�e
t is, the stronger the signal is. On the right-side, the fo
us is on m~t⋆(t) when
m = 2. A

ording to the theorem, m~t⋆(t) is obtained by summing the mean fun
tions
orresponding to the 
ase m = 1. As a 
onsequen
e, the fun
tions m~t⋆(t) of the graph ofthe right-side are easily obtained from those of the graph of the left-side. Let's fo
us on the
urve in solid line. The two QTL are lo
ated respe
tively at t⋆1 = 30
M and t⋆2 = 70
M. So,the marker interval (40
M, 60
M) is adja
ent to the two marker intervals where the QTLare lo
ated. As a result, we 
an observe on the graph that the biggest peak is obtained inthe interval (40
M,60
M) and that the supremum is obtained in the middle of this markerinterval, at 50
M. Note that it is obtained exa
tly at 50
M sin
e we 
onsider exa
tly thesame e�e
t (a1 = a2 = 4) and that there is symmetry due to the lo
ation of the QTLand the length of the 
hromosome. If now we 
onsider a larger e�e
t for the se
ond QTL(a2 = 6) lo
ated at t⋆2 = 70
M (dashed line), we 
an observe almost the same two peaks inthe intervals (40
M,60
M) and (80
M,100
M). Besides, the supremum of the mean fun
tionis obtained at 52
M. It is like a bary
enter : some weights are a�e
ted to the QTL as afun
tion of their e�e
ts, so the signal and the lo
ation of the supremum is a�e
ted by theseweights.Figure 3 is the analogous of Figure 1 under the alternative of 2 QTL lo
ated at t⋆1 = 30
Mand t⋆2 = 70
M. As in Figure 1, the path of the pro
ess Z⋆(.) is on the left-side whereasthe one 
orresponding to {Z⋆(.)}2 is on the right-side. A

ording to the theorem, in orderto obtain the path of Z⋆(.) under Ha~t⋆ , we have to sum the path of Z⋆(.) under H0 (ie.the noise), and the mean fun
tion m~t⋆(t) (ie. the signal). In other words, the path of
Z⋆(.) under Ha~t⋆ has been obtained by adding the path of Z⋆(.) presented in Figure 1 andthe mean fun
tion of the graph of the right-side of Figure 2. Note that on the right-sideof Figure 3, the likelihood pro�le (ie. the path of {Z⋆(.)}2) has easily been obtained by
omputation of the square of Z⋆(.). We 
an observe in Figure 3 that, when the e�e
ts ofthe two QTL are the same (ie. the solid lines), the biggest peak is obtained between 40
Mand 60
M whi
h is a marker interval where there is no QTL : su
h a peak is 
alled a ghostQTL (Martinez and Curnow (1992)). It was expe
ted sin
e the supremum of the signal wasobtained at 50
M.Note that when we in
rease the e�e
t of the se
ond QTL (ie. the dashed lines), the biggestpeak is obtained in the marker interval (60
M, 80
M) whi
h is the interval whi
h 
ontainsthe se
ond QTL. It is due to the noise sin
e the signal is almost the same in the intervals(40
M,60
M) and (60
M,80
M) whereas the values of Z⋆(.) are larger under H0 in themarker interval (60
M, 80
M) than in the interval (40
M, 60
M).To 
on
lude, we wanted to highlight here the fa
t that the likelihood pro�les in QTL
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tion, are the results of two 
omponents : the noise and the signal whi
h 
ontainsinformations on the number of QTL, their e�e
ts and positions. Besides, when two QTLare lo
ated in two di�erent markers intervals 
lose but not adja
ent, a ghost QTL is oftenfound between these two markers intervals : it is due to the signal (
f. Figure 2). We 
anonly say �often" be
ause of the noise whi
h a�e
ts also the likelihood pro�les.
5. A new method for QTL detectionIn this se
tion, the goal is to propose a method to estimate the number of QTL, their e�e
tsand their positions 
ombining results of the theorem and a penalized likelihood method.
5.1. Introducing our methodA

ording to the theorem, if we dis
retize the s
ore pro
ess at markers positions, we havewhen n is large :

~Sn = ~m~t⋆ + ~εwhere ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK))
′ , ~m~t⋆ = (m~t⋆(t1) , m~t⋆(t2) , ... , m~t⋆(tK))

′and ~ε ∼ N(0,Σ) with Σkk′ = e−2|tk−tk′ |.It will be useful to de
orrelate the 
omponents of ~Sn for running the penalized likelihoodmethod. That's why, we propose to keep only points of the pro
ess taken at marker positions: we 
an perform a Cholesky de
omposition of Σ (we remind that Sn is an �interpolatedpro
ess"). However, we will look for QTL not only on markers postions.Let 
onsider the Cholesky de
omposition Σ = AA′. It 
omes :
A−1~Sn = A−1B

(a1
σ

, ... ,
am
σ

)′
+ A−1~εwhere B is a matrix of size K ×m su
h as Bks = e−2|tk−t⋆s |.The problem is that the number m of QTL and their positions t⋆1,...,t⋆m are unknown. So,we 
onsider a new dis
retization of [0, T ] 
orresponding to all the lo
ations where we thinkthe QTL 
an be lo
ated : 0 6 t̃1 < t̃2 < ... < t̃L 6 T . ã1, ..., ãL will be the 
orrespondinge�e
ts divided by σ. As a 
onsequen
e, we 
an rewrite the model :

A−1~Sn = A−1B̃ (ã1 , ... , ãL)
′ + A−1~ε (4)where B̃ is a matrix of size K × L su
h as B̃kl = e−2|tk−t̃l|.At this time, we would like to know whi
h of the 
oe�
ients ã1, ..., ãL are exa
tly 0 : itwill tell us where the QTL are lo
ated. As a 
onsequen
e, a natural approa
h is to use theLASSO Tibshirani (1996) :

argmin(ã1,...,ãL)′

∥

∥

∥
A−1~Sn −A−1B̃ (ã1 , ... , ãL)

′
∥

∥

∥

2 provided that |ã1|+ ...+ |ãL| 6 ζ

ζ is a tuning parameter. It will 
ontrol the amount of shrinkage that is applied to theestimates Tibshirani (1996). A large (resp. small) ζ will lead to the estimation of a large(resp. small) number of QTL m. We will estimate ζ using 
ross validation as des
ribed inChapter 7 of Hastie and al. (2001).
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5.2. Computing the score and the Wald processesIn order to run our method, we need to 
al
ulate the s
ore pro
ess dis
retized at markerlo
ations. We remind that tk refers to the lo
ation of marker k. A

ording to Rabier (2010),the s
ore statisti
 on marker k veri�es :
Sn(tk) =

n
∑

j=1

(yj − µ)
{

2 1Xj(tk)=1 − 1
}

σ
√
n

(5)A

ording to Prohorov and by 
ontiguity (
f. Se
tion 7.1), the s
ore test 
an be obtained,repla
ing µ by ȳ :=
∑n

j=1 yj/n and σ by { 1
n−1

∑n
j=1(yj − ȳ)2

}1/2.Besides, let Wn(.) the Wald pro
ess for n observations. As the model is regular and by
ontiguity, we have ∀t ∈ [0, T ], Sn(t) = Wn(t) + oP (1) where oP (1) is a sequen
e whi
h
onverges to 0 in probability under H0 and Ha~t⋆ .As a 
onsequen
e, our method for QTL dete
tion is also suitable with the Wald pro
ess
Wn(.) (just repla
e Sn by Wn in Se
tion 5.1). In this 
ase, a

ording to Rabier (2010) :

Wn(tk) = n q̂/







n
∑

j=1

(yj − ȳ)2







1/2where q̂ is the maximum likelihood estimator of q.
5.3. How to improve our methodOur method is based on the asymptoti
 result of the theorem. As a 
onsequen
e, we haveto 
onsider a number of observations n large enough to run the method. We remind thatwe have n observations sin
e we 
onsider n individuals. On the other hand, in the model(4), we have this time only K observations whi
h 
orrespond to the s
ore statisti
 (obtainedfrom the n individuals) on markers and de
orrelated. Besides, there are L parameters ã1,..., ãL to estimate (if we ex
ept ζ). We remind that t̃1,... ,t̃L denote the lo
ation where weare going to look for QTL. In most of 
ases, as we don't have any idea where the QTL arelying, we will look for QTL on markers and between markers. If we 
onsider d positions inea
h marker interval, then L = K(d + 1)− d. It 
omes L >> K. In su
h a situation, theLASSO is suitable. Howewer, in order to improve the performan
e of the LASSO, it wouldbe ni
e if we 
ould deal with a large number of observationsK. The problem is thatK refersto the number of geneti
 marker whi
h is 
onstant. So, we have to �nd an alternative. Inan asymptoti
 study, the question is always the same : how many individuals n are neededto rea
h the asymptoti
 ? We have to keep in mind that even if n is very large, we willonly deal with K observations (ie. the number of markers) in model (4). As a result, wepropose to split the individuals into groups and to analyze these groups separately, that isto say 
omputing the s
ore (or Wald) pro
ess for ea
h group. Obviously, we have to dealwith a number of individuals large enough in ea
h group in order to rea
h the asymptoti
.We 
onsider groups of same sizes and we 
all I the number of groups : n/I is the number ofindividuals in ea
h group. Si

I(.) denotes the s
ore pro
ess for the ith group. A

ording tothe theorem, Si
I(.) is asymptoti
ally the square of a �non linear interpolated pro
ess" witha mean fun
tion ~m~t⋆,I(.) under the alternative, verifying

m~t⋆,I(t) =
{

α(t) m~t⋆,I(t
ℓ) + β(t) m~t⋆,I(t

r)
}

/

√

E

[

{2p(t)− 1}2
]
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m~t⋆,I(t

ℓ) =

L
∑

s=1

as e
−2|t⋆s−tℓ| / (σ

√
I) , m~t⋆,I(t

r) =

L
∑

s=1

as e
−2|tr−t⋆s | / (σ

√
I)Note that √

I at the denominator 
omes from the fa
t that the QTL e�e
ts have beende�ned as a fun
tion of the total number of individuals n.So, sin
e the groups are independent, we 
an easily adapt our method of Se
tion 5.1. Wehave now :
(

~S1
I , ... , ~SI

I

)′
=
(

~m~t⋆,I , ... , ~m~t⋆,I

)′
+ (~ε1 , ... , ~εI)

′where ~m~t⋆,I =
(

m~t⋆,I(t1) , m~t⋆,I(t2) , ... , m~t⋆,I(tK)
) , ~Si

I =
(

Si
I(t1) , S

i
I(t2) , ... , S

i
I(tK)

)and ~εi iid of size 1×K su
h as ea
h ~εi ∼ N(0,Σ) with Σkk′ = e−2|tk−tk′ |.In the same way as previously (
f. Se
tion 5.1) provided that this time ã1, ..., ãL are thee�e
ts divided by σ
√
I :
Γ
(

~S1
I , ... , ~SI

I

)′
= Ξ (ã1 , ... , ãL)

′
+ Γ ~ε (6)

Γ is a square matrix of size KI su
h as Γ = Diag
[

A−1 , ... , A−1
].

Ξ is a 
olumn ve
tor of 
omponents A−1B̃ repli
ated I times.To 
on
lude, we propose to use the LASSO Tibshirani (1996) :
argmin(ã1,...,ãL)′

∥

∥

∥

∥

Γ
(

~S1
I , ... , ~SI

I

)′
− Ξ (ã1 , ... , ãL)

′
∥

∥

∥

∥

2 provided that |ã1|+ ...+ |ãL| 6 ζ

6. SimulationsIn this Se
tion, we perform our method using Wald pro
esses (
f. Se
tion 5.2) and 5 fold
ross validation for the LASSO. We 
onsider 100 populations of size n = 320. We use mainlyMATLAB to perform our method. We used R to perform The LASSO with pa
kage LARSof Hastie and Efron. Composite Interval Mapping was performed using (R/qtl Broman andal. (2003)).
6.1. How does our method perform?In order to illustrate the performan
es of our method, we 
onsider a sparse map whi
h
onsists of 6 geneti
 markers equally spa
ed every 20
M on a 
hromosome of length T =
100
M. We look for a QTL every 5
M. In order to make groups, we have to �nd a good
ompromise between having enough individuals in ea
h group to rea
h the asymptoti
, andhaving a large number of groups to in
rease the performan
es of the LASSO. We split hereour 320 individuals into 8 groups of 40 individuals in order to improve the method (
f.Se
tion 5.3). Indeed, it is reasonable to 
onsider the asymptoti
 to be rea
hed with 40individuals (Rabier (2010)). As a 
onsequen
e, we have now L = 21 parameters to estimatewith 6× 8 = 48 observations (6 markers and 8 groups).We study several situations with 2, 3 and 4 QTL. We will say that a QTL is truly identi�edif the QTL is �nd in a neighbourhood of 5
M of the true position (ie an interval of length



A new method for QTL detection 13

10
M 
entered on the true lo
ation). Besides, in order to 
ount the number of QTL found,we have 
hoosen not to penalize if several QTL were found in the 10
M intervals 
enteredon the true lo
ations, whereas we have 
hoosen to penalize a lot for any QTL found outsideof the intervals. As a 
onsequen
e, we 
ount only one QTL if 2 or 3 QTL are found in the
10
M intervals 
entered on the true lo
ations and we 
ount one QTL for every QTL foundoutside these intervals.In Figure 4, we study a situation with 2 QTL lo
ated on the 
hromosome. First, twoQTL linked in repulsion (ie with opposite signs) are lo
ated at positions 10
M and 70
Mon the 
hromosome. We have to keep in mind that as our method is based on 
ontiguity,the QTL e�e
ts have to be 
lose to 0. However, we 
an see in Figure 4, that the methodgives good results even when the e�e
ts are not so 
lose to 0. Note that the heritability isindi
ated just for information but it is not linked to the performan
es of our method sin
ethe bigger the e�e
ts are the bigger the heritability is. The number of QTL found is slightlygreater than 2, but it is reasonable sin
e we penalize a lot when we are outside of the QTLintervals. We obtain the same 
on
lusions for the two QTL linked in 
oupling (ie. withsame signs) presented on the right side of Figure 4. Good performan
es of the methods arealso illustrated in Figure 5 when 3 and 4 QTL are lo
ated on the 
hromosome.
6.2. Comparison with the Composite Interval MappingWe propose here to 
ompare our method with the Composite Interval Mapping (CIM) ofJansen (1993) and Zeng (1994), largely used in the geneti
 
ommunity. We remind thatCIM 
onsists in 
ombining interval mapping on two �anking markers and multiple regres-sion analysis on other sele
ted markers (Wu and al. (2007)). This way, the QTL not lo
atedin the marker interval tested don't a�e
t the test statisti
s anymore. As a 
onsequen
e, it ispossible to perform separately interval mapping in ea
h marker interval to test the presen
eof a QTL in the interval. However, the 
hoi
e of the markers as 
ofa
tors is very empiri
al: we don't know how to 
hoi
e the set of markers in a mathemati
al point of view.For the 
omparison between our method and CIM, we use the same 
on�guration as in Se
-tion 6.1. We study several situations with 2, 3 and 4 QTL on the 
hromosome (see Figures6 and 7). We 
ompute 4 kinds of CIM. First, we 
onsider two ways of 
hoosing the 
ofa
tors: CIM(20) (resp. CIM(40)) refers to CIM with markers 
onsidered as 
ovariates if theydo not belong to a window size of 20
M (resp. 40
M) of the position tested. Se
ondly, we
onsider two ways of 
omputing the thresholds : one obtained using 1000 permutations and
alled Shuff here (Chur
hill and Doerge (1994)), and another whi
h is obtained theoreti-
ally under H0 (6.76 a

ording to Rabier (2010)).In order to 
ount the number of QTL for CIM, for ea
h marker interval, we 
ount one QTLif the supremum of the pro
ess is above the threshold (it 
orresponds to the de�nition ofCIM). Besides, for CIM, we will say that a QTL is truly identi�ed if the QTL is �nd in aneighbourhood of 5
M of the true position. For instan
e, if a QTL is lo
ated at 10
M, thesupremum in the marker interval (0
M;20
M) has to be obtained between 5
M and 15
M.Howewer, if we 
onsider a QTL lo
ated at 40
M (ie on the third marker), we will 
onsiderthat this QTL is truly identi�ed if the supremum in the marker interval (20
M;40
M) is ob-tained between 35
M and 40
M, or if it is obtained between 40
M and 45
M in the markerinterval (40
M;60
M).A

ording to Figure 6, if we 
onsider 2QTL at 10
M and 70
M with e�e
ts −0.6 and 0.8,we 
an see that CIMH0

(20) is the best way to perform CIM : we �nd 1.84 QTL and the



14 Céline Delmastrue QTL are largely found. However, if we 
onsider the same 2 QTL but with e�e
ts 0.4and −0.6, CIMH0
(20) performs badly. CIMShuff (20) seems to the best way to performCIM : the true QTL are largely found but we �nd 3.26 QTL. If we 
onsider 3 QTL, thebest way to perform CIM is CIMShuff (40) but we �nd 4.97 QTL. As a 
onsequen
e, the
hoi
e of the 
ofa
tors and the 
hoi
e of the thresholds highly depends of the 
on�guration: CIM is very empiri
al. If now we have a look on our method in Figure 6, we obtain ni
eresults : the QTL are largely found and the number of QTL found is good whatever the
on�guration studied. Same 
on
lusions hold with 4 QTL (see Figure 7).

6.3. Our method is not affected by epistasisUntil now, we have supposed that the QTL e�e
ts were additives and that there were nointera
tion between them (
f. Se
tion 2). However, there are many intera
tions betweenlo
i in the genome (ie. epistasis). That's why we propose here to integrate intera
tionsin the model 
onsidered. We remind that m refer to the number of additive QTL and qsto the QTL e�e
t of the sth additive QTL. Its position is t⋆s. We will 
all m̃ the numberof intera
tions and q̃s the e�e
t of the sth intera
tion. The lo
i 
orresponding to the sthintera
tion will be 
alled t̃2s−1 and t̃2s. In this 
ontext, the quantitative trait Y veri�es :
Y = µ +

m
∑

s=1

X(t⋆s) qs +

m̃
∑

s=1

X(t̃2s−1)X(t̃2s) q̃s + σεwhere ε is a Gaussian white noise.We introdu
e two new hypothesis :
Ha~t⋆, bt̃ : � there are m additive QTL lo
ated respe
tively at t⋆1, ..., t⋆m and with e�e
t
q1 = a1√

n
, ..., qm = am√

n
where (a1, ..., am) ∈ R

m⋆and there are m̃ intera
tions : between lo
i t̃1 and t̃2, ..., between lo
i t̃2m̃−1 and t̃2m̃, withe�e
ts respe
tively q̃1 = b1√
n
, ..., q̃m̃ = bm̃√

n
where (b1, ..., bm̃) ∈ R

m̃⋆ ".
H0, bt̃ : � there is not any additive QTL on [0, T ]and there are m̃ intera
tions : between lo
i t̃1 and t̃2, ..., between lo
i t̃2m̃−1 and t̃2m̃, withe�e
ts respe
tively q̃1 = b1√

n
, ..., q̃m̃ = bm̃√

n
where (b1, ..., bm̃) ∈ R

m̃⋆ ".Proposition Under H0, bt̃ and under Ha~t⋆, bt̃

∀k Sn(tk) = Z⋆(tk) + oP (1) and Λn(tk) = {Z⋆(tk)}2 + oP (1)where Z⋆(.) is the Gaussian pro
ess of the theorem (
f. Se
tion 4.1) su
h as Z⋆(.) is 
enteredunder H0, bt̃ and with the mean fun
tion m~t⋆(.) of the theorem under Ha~t⋆, bt̃.The proof is given in Se
tion 7.2. A

ording to the proposition, our method whi
h is basedonly on points of the pro
ess taken at marker positions, is not a�e
ted by epistasis. Indeed,under Ha~t⋆, bt̃, the mean fun
tion at marker position is the same as previously.Figures 8 to 11 illustrate this phenomenon. The same map as previously is 
onsidered.In Figures 8 and 9, we 
onsider two additive QTL on the 
hromosome : one with e�e
t
−0.6 at 10
M and the other with e�e
t 0.8 at 70
M. To begin, in Figure 8, we 
onsider oneintera
tion : we have 
hoosen to study an intera
tion between the two QTL. We 
onsider twodi�erent e�e
ts for this intera
tion (−0.4 and 0.7). Note that the 
orresponding heritabilityis mentioned (additive+intera
tion). We 
an observe that the two additive QTL are largely



A new method for QTL detection 15found and the number of additive QTL found is good. Then, in Figure 9, we 
onsider thistime 10 and 20 intera
tions (keeping the intera
tion between the QTL with e�e
t −0.4). Theresults are still ni
e : the performan
es of our method are not a�e
ted by the intera
tions (asexpe
ted with the Proposition). Same 
on
lusions hold with 4 additive QTL (see Figures10 and 11). Note that for Figure 11, we kept the same intera
tion between QTL as on theleft side of Figure 10, and we added other intera
tions.
6.4. Our method is suitable for dense mapTo 
on
lude, we would like to mention that our method is also suitable for dense map (iea large number of geneti
 markers 
lose to ea
h other). In this 
ase, we will perform onlytests on geneti
 markers. In Figure 12, we 
onsider, as previously, a 
hromosome of length
T = 100
M, but geneti
 markers are now lo
ated every 5
M. We look for QTL every 5
M.We 
ompare here our method and a 
lassi
al LASSO method whi
h 
onsists of a linearmodel where the trait Y is the variable to explain and the regressors are the markers. Inorder to perform the 
lassi
al LASSO, we used 0.1 as a tuning parameter instead of 5 fold
ross-validation. It was a good 
ompromise (between the QTL found and their number)sin
e the results of the 
ross-validation were not good at all. A

ording to the Figure(using the same rules to �ll the table as in Se
tion 6.1), we 
an see that our method giveslargely better results than the 
lassi
al LASSO. Note that our method is still theoreti
allyuna�e
ted by any intera
tions.
7. Proofs

7.1. Proof of the theoremWe will 
onsider values t, t⋆1, ..., t⋆m of the parameters that are distin
t of the markerspositions, and the result will be prolonged by 
ontinuity at the markers positions.Study under H0 :There is no QTL on the 
hromosome. The proof is fully given in Rabier (2010).Nevertheless, we remind that the s
ore test statisti
 for n observations veri�es at position
t :

Sn(t) =

n
∑

j=1

(yj − µ) (2 pj(t)− 1)

σ
√
n

√

E

[

{2p(t)− 1}2
]

(7)where E

[

{2p(t)− 1}2
]

= {α(t)}2 + {β(t)}2 + 2 α(t) β(t)e−2(tr−tℓ).It will be useful for the study of the general alternative.Study under Ha~t⋆ :There are several QTL lo
ated on the 
hromosome. We suppose that the QTL e�e
ts areadditives and that there is no intera
tion between them.In this 
ontext, the quantitative trait Y veri�es :
Yj = µ +

m
∑

s=1

Xj(t
⋆
s) qs + σεj (8)where εj is a Gaussian white noise.Let's introdu
e some notations :
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• ξ : number of �Marker intervals" whi
h 
ontain the QTL.
γ = 1, ..., ξ will refer to the di�erent intervals.

• mγ : number of QTL in the interval γ.
τ = 1, ...,mγ refers to the τth QTL in the interval γ.

• the sth QTL on [0, T ], 
an be rewritten, s = (τ, γ) =
{

∑γ−1
i=1 mi

}

+ τLet θa~t⋆ = (q1, ..., qm, µ, σ) and θ0~t⋆ = (0, ..., 0, µ, σ).After some 
al
ulations, the likelihood of (Y, X {t⋆ℓ(1,1)} , X
{

t⋆r(1,1)

}

, ..., X
{

t⋆ℓ(1,ξ)

}

, X
{

t⋆r(1,ξ)

})with respe
t to the measure λ⊗N ⊗ ...⊗N , λ being the Lebesgue measure, N the 
ountymeasure on N, veri�es :
L⋆(θa~t⋆) =

∑

(u1,...,um)∈{−1,1}m

f(µ+u1q1+...+umqm,σ)(y)

×
{(

ξ
∏

γ=1

A
{

t⋆ℓ(τ,γ) , t
⋆
(τ,γ)

}

[mγ−1
∏

τ=1

R
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

]

A
{

t⋆r(mγ ,γ)
, t⋆(mγ ,γ)

}

)

g⋆(~t⋆)

}where
us = u(τ,γ)

A
{

t , t⋆(τ,γ)

}

= r
{

t , t⋆(τ,γ)

}

1X(t)u(τ,γ)=−1 + r̄
{

t , t⋆(τ,γ)

}

1X(t)u(τ,γ)=1

R
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

= r̄
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

1u(τ,γ)u(τ+1,γ)=1

+ r
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

1u(τ,γ)u(τ+1,γ)=−1

g⋆(~t⋆) =
1

2

ξ−1
∏

γ=1

D
{

t⋆r(mγ ,γ)
, t⋆ℓ(1,γ+1)

}

D(t, t′) = r̄(t, t′) 1X(t)X(t′)=1 + r(t, t′) 1X(t)X(t′)=−1The likelihood L⋆
n(θa~t⋆) for n observations is obtained by the produ
t of n terms as above.Let Qn and Pn two sequen
es of probability measures de�ned on the same spa
e (Ωn, An).

Qn (respe
tively Pn) is the law 
orresponding to the density L⋆
n(θa~t⋆) (resp L⋆

n(θ0~t⋆)). Wewill 
all the log likelihood ratio log dQn

dPn
. It veri�es : log dQn

dPn
= log

{

L⋆
n(θa~t⋆ )

L⋆
n(θ0~t⋆ )

}.As the model is di�erentiable in quadrati
 mean at θa~t⋆ and a

ording to the 
entral limittheorem :
log

(

dQn

dPn

)

H0→ N(−1

2
ϑ2, ϑ2) with ϑ2 ∈ R

+⋆By the iii) of Le Cam's �rst lemma, we have Qn ⊳ Pn.Let oPθ0
(1) be short for a sequen
e of random ve
tors that 
onverges to zeros in probabilityunder H0 (i.e. no QTL on the whole interval studied).Besides, a

ording to Rabier (2010) :

Λn(t) = {Sn(t)}2 + oPθ0
(1)



A new method for QTL detection 17where Sn(t) is given in formula (7).Let oPθ
0~t⋆

(1) be a sequen
e of random ve
tors that 
onverges to zeros if there is no QTL at
t⋆1, ..., t⋆m. Then, it is 
lear that :

Λn(t) = {Sn(t)}2 + oPθ
0~t⋆

(1)Let oPθ
a~t⋆

(1) be a sequen
e of random ve
tors that 
onverges to zeros if there are m QTLat t⋆1, ..., t⋆m. As Qn ⊳ Pn, a

ording to iv) of Le Cam's �rst lemma :
Λn(t) = {Sn(t)}2 + oPθ

a~t⋆
(1)So, 
al
ulations 
an be done with the s
ore test statisti
.A

ording to Rabier (2010), the s
ore test statisti
 at t 
an be obtained by a non linearinterpolation :

Sn(t) =
α(t) Sn(t

ℓ) + β(t) Sn(t
r)

√

E

[

{2p(t)− 1}2
]where α(t) = Q1,1

t +Q1,−1
t − 1 and β(t) = Q1,1

t −Q1,−1
t .Let m~t⋆(.) be the asymptoti
 mean fun
tion of the s
ore pro
ess Sn(.). It 
omes :

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)

√

E

[

{2p(t)− 1}2
]Let 
al
ulate the quantities m~t⋆(t

ℓ) and m~t⋆(t
r).We remind that tk refers to the lo
ation of marker k. A

ording to Rabier (2010), the s
orestatisti
 on marker k veri�es :

Sn(tk) =

n
∑

j=1

(yj − µ)
{

2 1Xj(tk)=1 − 1
}

σ
√
nA

ording to formula (8) :

Sn(tk) =
1√
n

n
∑

j=1

εj
{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

= S0
n(tk) +

1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
} (9)where S0

n(tk) is the s
ore obtained under H0 at lo
ation tk.By the law of large number :
1

n

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

→ E

[{

m
∑

s=1

X(t⋆s) as

}

{

2 1X(tk)=1 − 1
}

]
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ording to Rabier (2010), we have :
E

[{

m
∑

s=1

X(t⋆s) as

}

{

2 1X(tk)=1 − 1
}

]

=

m
∑

s=1

as e
−2|t⋆s−tk|It 
omes :

m~t⋆(tk) =
1

σ

m
∑

s=1

as e
−2|t⋆s−tk|As a 
onsequen
e :

m~t⋆(t
ℓ) =

1

σ

m
∑

s=1

as e
−2|t⋆s−tℓ| , m~t⋆(t

r) =
1

σ

m
∑

s=1

as e
−2|t⋆s−tr |Weak 
onvergen
e of the s
ore pro
ess :The proof is exa
tly the same as in Rabier (2010).

7.2. Proof of the proposition
m̃ is the number of intera
tions and q̃s the e�e
t of the sth intera
tion. The lo
i 
orre-sponding to the sth intera
tion are t̃2s and t̃2s−1. In this 
ontext, the quantitative trait Yveri�es :

Y = µ +

m
∑

s=1

X(t⋆s) qs +

m̃
∑

s=1

X(t̃2s−1)X(t̃2s) q̃s + σε (10)where ε is a Gaussian white noise.We will 
onsider values of t̃1, ..., t̃2m̃ and t⋆1, ..., t⋆m distin
t of marker positions, and theresult will be prolonged by 
ontinuity.Let oPθ
0~t⋆,0t̃

(1) be a sequen
e of random ve
tors that 
onverges to zeros if there is no additiveQTL at t⋆1, ..., t⋆m and no intera
tions between lo
i t̃1 and t̃2, ...., no intera
tions betweenlo
i t̃2m̃−1 and t̃2m̃. In the same way as in the proof of the theorem, it is 
lear that :
Λn(tk) = {Sn(tk)}2 + oPθ

0~t⋆,0t̃
(1)where Sn(tk) is given in formula (5) of Se
tion 5.2.In order to adapt the proof of the theorem, we just have to 
onsider the likelihood of Y andthe �anking markers of the additive QTL (as previously) but we have to add the �ankingmarkers of t̃1, ...,t̃2m̃. The model is still di�erentiable in quadrati
 mean.Let oPθ

a~t⋆,bt̃
(1) be a sequen
e of random ve
tors that 
onverges to zeros if there are madditive QTL at t⋆1, ..., t⋆m and m̃ intera
tions : lo
i t̃1 and t̃2, ...., lo
i t̃2m̃−1 and t̃2m̃.Then, a

ording to iv) of Le Cam's �rst lemma :

Λn(tk) = {Sn(tk)}2 + oPθ
a~t⋆,bt̃

(1)
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ording to formula (10), we have :
Sn(tk) =

1√
n

n
∑

j=1

εj
{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
}

= S0
n(tk) +

1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
} (11)where S0

n(tk) is the s
ore obtained under the null hypothesis that there is no additive QTLand no intera
tions on [0, T ] (same S0
n as in formula (9) of the proof of the theorem). A
-
ording to the proof of the theorem, we have 1

σn

∑n
j=1 {

∑m
s=1 Xj(t

⋆
s) as}

{

2 1Xj(tk)=1 − 1
}whi
h tends to m~t⋆(tk). Besides,

1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
}

→ E

[{

m̃
∑

s=1

X(t̃2s−1)Xj(t̃2s)bs

}

{

2 1X(tk)=1 − 1
}

]We have :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 2 E
[

X(t̃2s−1)X(t̃2s)1X(tk)=1

]

− e−2|t̃2s−t̃2s−1|If tk < t̃2s−1 < t̃2s , then :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0If t̃2s−1 < tk < t̃2s , then :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0As a 
onsequen
e :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0It 
on
ludes the proof for under Ha~t⋆, bt̃. In order to obtain the result under H0, bt̃, we justhave to deal with 
ontiguity, 
onsidering the likelihood of Y and only the �anking markersof t̃1, ...,t̃2m̃ (ie the lo
i for the intera
tions). Then, we do the same 
al
ulations as informula (11) but this time there is not anymore the additive term (ie the se
ond term). It
on
ludes the proof of the Proposition.
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lo
ations (in 
M) (10 ; 70) (30 ; 80)QTL e�e
ts (−0.6 ; 0.8) (−0.8 ; 0.8) (0.4 ; −0.6) (0.6 ; 0.6) (0.6 ; 0.8) (0.6 ; 0.4)
h2 42% 47% 27% 50% 57% 41%QTL found (88% ; 100%) (100% ; 94%) (75% ; 96%) (97% ; 98%) (96% ; 100%) (100% ; 94%)nb of QTL found 2.49 2.71 2.46 2.49 2.42 2.68

Fig. 4. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects, their locations (h2 refers to the heritablities). 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM).
2 QTL lie on the chromosome. We look for QTL every 5cM. In the notation (a, b), a refers to the first
QTL and b to the second one.

nb of QTL 3 4lo
ations (in 
M) (10 ; 40 ; 90) (10 ; 50 ; 70 ; 90)QTL e�e
ts (−0.6 ; −0.6 ; 0.4) (−0.6 ; −0.6 ; 0.6) (0.4 ; 0.4 ; 0.4 ; 0.4) (0.6 ; 0.6 ; 0.6 ; 0.6)
h2 50% 52% 61% 78%QTL found (94% ; 85% ; 56%) (94% ; 86% ; 86%) (77% ; 71% ; 96% ; 81%) (83% ; 66% ; 97% ; 81%)nb of QTL found 3.54 3.70 4.21 4.24

Fig. 5. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the number of QTL, their effects and their locations. 100 populations of n = 320
individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM). We look
for QTL every 5cM.
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ations (in 
M) (10 ; 70) (10 ; 70) (10 ; 40 ; 80)QTL e�e
ts (-0.6 ; 0.8) (0.4 ; -0.6) (0.4 ; 0.7 ; -0.8)
h2 42% 27% 48%this paper { QTL found (88% ; 100%) (75% ; 96%) (67% ; 87% ; 100%)nb of QTL found 2.49 2.46 3.53

CIMShuff (20)

{ QTL found (98% ; 28%) (81% ; 95%) (79% ; 79% ; 71%)nb of QTL found 4.36 3.26 4.92
CIMH0

(20)

{ QTL found (73% ; 97%) (9% ; 57%) (14% ; 70% ; 56%)nb of QTL found 1.84 0.7 3.99
CIMShuff (40)

{ QTL found (89% ; 87%) (76% ; 71%) (74% ; 100% ; 100%)nb of QTL found 4.86 4.38 4.97
CIMH0

(40)

{ QTL found (69% ; 77%) (13% ; 48%) (6% ; 100% ; 98%)nb of QTL found 3.29 1.70 4.08
Fig. 6. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL
found) as a function of the number of QTL, their effects, their locations and the method. CIMShuff

(resp. CIMH0
) refers to CIM using a permutation threshold (resp. threshold obtained with no QTL).

CIM(20) (resp. CIM(40)) refers to CIM with markers considered as covariates if they do not belong
to a window size of 20cM (resp. 40cM) of the position tested. 100 populations of n = 320 individuals
are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM). We look for QTL
every 5cM.QTL e�e
ts (-0.4 ; -0.7 ; 0.9 ; 0.8) (-0.8 ; -0.8 ; 0.8 ; 0.8) (-0.4 ; -0.4 ; 0.6 ; 0.8)

h2 66% 70% 58%this paper { QTL found (72% ; 68% ; 77% ; 100%) (97% ; 83% ; 57% ; 100%) (78% ; 54% ; 57% ; 100%)nb of QTL found 4.08 3.94 3.55
CIMShuff (20)

{ QTL found (59% ; 93% ; 96% ; 98%) (90% ; 96% ; 75% ; 96%) (53% ; 56% ; 86% ; 98%)nb of QTL found 4.87 5.00 4.52
CIMH0

(20)

{ QTL found (02% ; 71% ; 95% ; 97%) (95% ; 77% ; 86% ; 93%) (09% ; 06% ; 75% ; 100%)nb of QTL found 3.71 4.82 2.54
CIMShuff (40)

{ QTL found (63% ; 100% ; 59% ; 00%) (91% ; 100% ; 48% ; 24%) (68% ; 89% ; 41% ; 18%)nb of QTL found 4.81 5.00 4.82
CIMH0

(40)

{ QTL found (03% ; 84% ; 58% ; 00%) (86% ; 98% ; 52% ; 30%) (11% ; 32% ; 46% ; 14%)nb of QTL found 3.79 4.94 3.20
Fig. 7. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects and the method. CIMShuff (resp. CIMH0

) refers to CIM using
a permutation threshold (resp. threshold obtained with no QTL). CIM(20) (resp. CIM(40)) refers
to CIM with markers considered as covariates if they do not belong to a window size of 20cM (resp.
40cM) of the position tested. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (T = 100cM). 4 QTL lie on the chromosome at 10cM, 40cM,
70cM and 90cM. We look for QTL every 5cM.
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t of the intera
tion between the two QTL −0.4 0.7
h2 47% 54%additive QTL found (86% ; 98%) (80% ; 93%)nb of additive QTL found 2.61 2.53

Fig. 8. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the effect of the interaction. 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM).
2 additive QTL lie on the chromosome with effects −0.6 at 10cM and 0.8 at 70cM. We look for additive
QTL every 5cM.

nb of intera
tions 10 20
h2 54% 59%additive QTL found (82% ; 93%) (74% ; 91%)nb of additive QTL found 2.60 2.57

Fig. 9. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (h2) considered. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (T = 100cM). 2 additive QTL lie on the chromosome with
effects −0.6 at 10cM and 0.8 at 70cM. We look for additive QTL every 5cM.

intera
tions between QTL (1 and 3 ; 2 and 4) (1 and 4 ; 2 and 3)e�e
ts of the intera
tions (−0.4 ; −0.6) (−0.4 ; −0.6)
h2 71% 75%additive QTL found (61% ; 76% ; 64% ; 100%) (66% ; 70% ; 65% ; 100%)nb of additive QTL found 3.79 3.86

Fig. 10. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the interactions considered and their effects. 100
populations of n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM
(T = 100cM). 4 additive QTL lie on the chromosome with effects −0.4 at 10cM, −0.7 at 40cM, 0.9 at
70cM, 0.8 at 90cM. We look for additive QTL every 5cM.
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number of intera
tions 6 10
h2 75% 77%additive QTL found (72% ; 79% ; 61% ; 100%) (58% ; 65% ; 57% ; 100%)nb of additive QTL 3.86 3.67

Fig. 11. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (h2). 100 populations of n = 320 individuals are considered. 6 genetic markers are
equally spaced every 20cM (T = 100cM). 4 additive QTL lie on the chromosome with effects −0.4 at
10cM, −0.7 at 40cM, 0.9 at 70cM, 0.8 at 90cM. We look for additive QTL every 5cM.

nb of intera
tions 0 10 20
h2 48% 60% 64%this paper { additive QTL found (100% ; 88% ; 100%) (100% ; 76% ; 93%) (99% ; 71% ; 91%)nb of additive QTL found 3.44 3.13 3.05LASSO { additive QTL found (83% ; 67% ; 72%) (82% ; 73% ; 71%) (88% ; 70% ; 71%)nb of additive QTL found 5.67 5.95 5.76

Fig. 12. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions, the heritability (h2) and
the method considered. 100 populations of n = 320 individuals are considered. 21 genetic markers
are equally spaced every 5cM (T = 100cM). 3 additive QTL lie on the chromosome with effects −0.8
at 5cM, 0.8 at 45cM, −0.8 at 70cM. We look for additive QTL every 5cM.
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