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Summary. We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, T'] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution
of this LRT process under the general alternative that there exist m QTL on [0, T]. This theo-
retical result allows us to propose to estimate the number of QTL and their positions using the
LASSO. Our method does not require the choice of cofactors contrary to Composite Interval
Mapping (CIM). Besides, our method is not affected by interactions.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, x? process.

1. Introduction

We study a backcross population: A x (A x B), where A and B are purely homozygous lines
and we address the problem of detecting Quantitative Trait Loci, so-called QTL (genes influ-
encing a quantitative trait which is able to be measured) on a given chromosome. The trait
is observed on n individuals (progenies) and we denote by Y;, j = 1,...,n, the observations,
which we will assume to be independent and identically distributed (iid). The mechanism
of genetics, or more precisely of meiosis, implies that among the two chromosomes of each
individual, one is purely inherited from A while the other (the “recombined" one), consists
of parts originated from A and parts originated from B, due to crossing-overs. The Haldane
(1919) modelling assumes that crossovers occur as a Poisson process. Using the Haldane
(1919) distance and modelling, each chromosome will be represented by a segment [0, T7.
The distance on [0, 7] is called the genetic distance (which is measured in Morgans).

In a famous article, Lander and Botstein (1989) proposed, with the help of genetic mark-
ers, to scan the chromosome, performing a likelihood ratio test (LRT) of the absence of a
QTL at every location ¢ € [0,7]. It leads to a “likelihood ratio test process" A,(.), and
then a natural statistic is the supremum of such a process. This method is called “interval
mapping". There have been many papers related to the supremum of the LRT process.
For example, we can mention Feingold and al. (1993), Churchill and Doerge (1994), Rebai
and al. (1994), Rebal and al. (1995), Cierco (1998), Piepho (2001), Chang and al. (2009),
Rabier (2010).

The problem is that considering the supremum of the process as a test statistic is appro-
priate when there is only one QTL on the chromosome but it becomes inappropriate when
there are several QTL located on the chromosome. Besides, generally geneticists have no
intuition if there is one or several QTL segregating on the chromosome. As a consequence,
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a more general approach has to be considered. When multiple QTL occur on the same
chromosome, they affect simultanously the LRT process. For instance, when two QTL are
located in two different marker interval close but not adjacent, a peak is often found between
these two marker interval : it is a ghost QTL (Martinez and Curnow (1992)). Jansen (1993)
and Zeng (1994) proposed independently the “Composite Interval Mapping", which consists
in combining interval mapping on two flanking markers and multiple regression analysis on
other markers (Wu and al. (2007)). This way, the QTL not located in the marker interval
tested do not affect anymore the LRT process. Their effects are removed due to multiple
regression analysis. Howewer, the choice of markers as cofactor is very complicated. It is
still an open question today. Until now, there has been no mathematical proof which could
help us on how to choose the set of markers rigorously. In this context, the aim of our paper
is to propose an alternative to “Composite Interval Mapping", that is to say a new method
which does not require the choice of cofactors.

As mentioned before, in Rabier (2010), the authors suppose that there is no more than one
QTL on the chromosome (it is located at t* € [0,7]). They show that the LRT process is
asymptotically the square of a “non linear interpolated process" centered under Hy (ie. no
QTL on the chromosome) and uncentered of a mean function under the alternative. This
mean function depends on the QTL effect and its location t*. In this paper, we generalize
these results to the general alternative that there exist m QTL on [0,7] at tf,--- , ¢}, with
additive effects q1,--- , ¢m.-

The main differences between the alternative of only one QTL and the general alternative,
is in the distribution of the trait Y. When there is only one QTL at t* € [0, 7], the trait Y,
conditionally to information brought by genetic markers located on the chromosome, obeys
to a mixture model with known weights :

P(t") futa.o () + {1 = p(E)} fu—g.0) () (1)

where f(,, »)(.) denotes a Gaussian density with mean y and variance o2, (u, q, o) are the
unknown parameters.

When there are m QTL segregating, the distribution of the trait Y, is a mixture of 2™
components of the form :

om
Z wozf(Ma,a) ()
a=1

where the w,s and the M,s are known functions of the unknown parameters u, m, t7, ...,
t:n,a q1, -+ 9m-

In this context, we show that under the general alternative, the LRT process is still asymp-
totically the square of a “non linear interpolated process". Howewer, the mean function
depends this time on the number of QTL, their positions and their effects. This theoret-
ical result allows us to propose a new method to estimate the number of QTL and their
positions using the LASSO. Note that in this paper, as in Broman and Speed (2002), the
focus is mainly on the estimation of the number of QTL and their positions, rather than
on the estimation of the QTL effects. Nevertheless, the effects can be obtained easily with
the method that we propose.

The originality of our paper is twofold. First, with our asymptotic study of the LRT pro-
cess under the general alternative, we are now able to explain mathematically some strange
situations which happen when we analyze data. Typically, we generally find a ghost QTL
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between two true QTL. Secondly, the originality is in the fact that we propose a new method
to find QTL. Our method is very easy to implement and does not require the choice of mark-
ers as cofactors which is a major drawback of Composite Interval Mapping. Besides, we
prove that our method is not affected by interactions. With the help of simulated data,
we show that our method performs better than the Composite Interval Mapping which is
largely used in the genetic community. We refer to the book of Van der Vaart (1998) for
element of asymptotic statistics used in proofs.

2. Model and Notations

The chromosome is the segment [0, T]. K genetic markers are located on the chromosome,
one at each extremity. t; = 0 < to < ... < tx = T are the locations of the markers. The
“genome information" at ¢ will be denoted X (¢). The Haldane (1919) model, which assumes
that crossovers occur as a Poisson process, can be written mathematically : let N(t) be a
standard Poisson process, the law of X (t) is 1 (61 +d_1) and X (¢) = (=1)N® X (t;). The
Haldane (1919) function r : [0, 7)° — [0, 3] is such as :

r(t,t') = BX ()X (') = —1) = P(IN(t) = N(¢')] odd) = = (1 —e~2lt=])

1
2
7(t,t') will be the function equal to 1 — r(¢,t').

r(t,t") denotes the probability of recombination between two loci (ie. positions) located at
t and ¢'. 7(t,t') denotes the absence of recombination. Note that a recombination occurs if
there is an odd number of crossovers between the two loci.

We are interested in a quantitative trait Y which is affected by several QTL located on the
chromosome. m will refer to the number of QTL and g5 to the QTL effect of the sth QTL.
Its position will be called t;. We impose 0 < ¢ < ... < t, < T and we will suppose that
the QTL effects are additives and there is no interaction between them. In this context,
the quantitative trait Y verifies :

Y=p+ Y X(t3) g + oc

s=1

where ¢ is a Gaussian white noise.

Besides, the “genome information" is available only at locations of genetic markers, that
is to say at ti,t2,...,tx. We denote by X;(t) the value of the variable X (¢) for the jth
observation. So, in fact, our observation on each individual is (Y;, X;(t1), ..., X;(tk)).
These observations are supposed to be iid.

3. LRT process under the alternative of only one QTL located on [0,7] (Rabier
(2010))

Before etablishing the general result of this paper, we first should focus on the work of
Rabier (2010), that is to say the case where there is only one QTL lying on [0,7] (ie.
m = 1). It will be a good way to introduce the LRT process and will make the reading
of our paper easier. In order to sum up this previous work, we will consider the same
elements and notations used by the authors. As said previously, the authors focus on the
famous “Interval Mapping" of Lander and Botstein (1989) which consists in scanning the
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chromosome, performing a likelihood ratio test (LRT) of the absence of a QTL at every
location t € [0, T7].

We consider values of the parameter ¢ that are distinct of the markers positions, and the
result will be prolonged by continuity at the markers positions. For t € [t1,tx]|\Tx where
Tx = {t1,...,tx }, we define t* and ¢" as :

t'=sup{ty €Ty 1ty <t} , t" =inf{ty € Typ:t <t}
In other words, ¢ belongs to the “Marker interval" (t/,¢"). We define p(t) the weight such
as p(t) =P {X(t) = 1| X ("), X (t")}.
By the Bayes rule,

p(t) = Qtl’l ]-X(te):l]-X(ﬁ'):l + Q%’il ].X(té):l].x(t'r):_l

+ QM Lxpo=1lxery=1 + Q" Ixqoy=1lx(r)=—1 (2)
where :
1 () T, -1 T ) r(ttn)
N I (TR 7))

—1,—-1 1,1 —1,1 1,—1
Q, =1-Q; and @ =1-Q;

Let 0 = (q, u, o) be the parameter of the model at ¢ fixed and 8y = (0, p, o) the true value
of the parameter under Hy. The likelihood of the triplet (Y, X (t), X (")) with respect
to the measure A ® N ® N, A being the Lebesgue measure, N the county measure on N, is
vt € [tht7]

L(@, t) = [p(t)f(/t—i-q,a) (y) + {1 - p(t)} f(,u—q,a) (y)} g(t) (3)

where ¢(t) is a function independent of 6.

The likelihood L,,(0,t) for n observations is obtained by the product of n terms as above.
0 = (G, fi, 6) will be the maximum likelihood estimator (MLE) of 6.

Under Hy, there is no QTL lying on the interval [0,T]. Besides, under H;, it is supposed
that there is only one location where the QTL lies (ie. m = 1). In order to deal with this
alternative, the location of the QTL, t* (¢* € [0,T]), has to be added in the definition of
H;. So, the alternative hypothesis can be written :

Hga+ - “the QTL is located at the position t* with effect ¢ = a//n where a € R* "

In this context, the authors show that the LRT process, A,(.), converges weakly to the
square of a “non linear interpolated process". It means that the LRT statistics at each
point can easily be deduced from the Wald or score statistics calculated at markers positions.
Besides, this “non linear interpolated process" is centered under Hy and uncentered of a
mean function my-(t) under Hyg». This mean function depends on the location of the QTL
t*, the position tested ¢t and the parameter a linked to the QTL effect. It is also a “non linear
interpolated fonction" (same interpolation as the process). Then, since they suppose that
there is only one QTL on [0, T, the authors have a close formula (due to the interpolation)
to compute the supremum of A,,(.).
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4. LRT process under the general alternative of m QTL on [0, T

In the previous Section, it has been supposed that there was only one QTL lying on the
interval [0,7]. As a consequence, the test statistic used was a natural statistic, that is to
say the supremum of the process. The interest is now on studying the same process as
previously, A, (.), but under the presence of several QTL on the interval [0, 7. In this case,
the goal is not to perform a test anymore, but to be able to run a model selection in order
to estimate the number of QTL and their locations.

Let denote i* the quantity refering to the locations of the QTL. H, .~ Will be the following
assumption :

H_: “ there are m QTL located respectively at ¢7, ..., ¢, and with effect
= \(;—157 v Qe = a\/_,% where (al, "'7am) c Rm* 1

We remind that we suppose that the QTL effects are additives and that there is no interac-
tion between them. We will consider values t, t}, ..., ¢, of the parameters that are distinct
of the markers positions, and the result will be prolonged by continuity at the markers
positions.

4.1. Results
Theorem With the previous defined notations,

Su() = 2*() , Aa() T {27 ()

as n tends to infinity, under Hy and H ;. where :

e S,.(.) is the score process for n observations

. Fd. . L ) -
e = is the weak convergence and = is the convergence of finite-dimensional distribu-
tions

o 7*(.) is a Gaussian process with unit variance.

e Z*(.) is the continuous and the “non linear interpolated process" such as :

Z°(t) = { alt) 2*(t") + 5(t) Z2°(¢") } /B [{26t) —17°]

The mean function of Z*(.) :
e under Hy, m(t) =0

e under H ;. , m = {a(t) mp (t°) + B(t) mp (")} /4/E [{2]9(75) - 1}2}

The different quantities are :

all) = Q'+ QT =1, B = QT - QY Cov{Z(t), 2(t)} = e
= tf): iase—m
and E [{2p(t) — 1°] = {a()} + {800 + 2a(t) f(1)e 20 ).

m

=t /o, mp(th) = Zas e 28l ) o

s=1
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The proof is given in Section 7.1.

4.2. lllustration of the theorem and of the Ghost QTL phenomenon

0 3
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N/\

;:/ 15
N

1
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18 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
o 20 40 60 8 100 o 20 40 60 8 100
t(cM) t(cM)
2
Process Z*(.) Process {Z*(.)}

Fig. 1. A path under Hy of the processes Z*(.) and {Z*(.)}* (T' = 100cM, 6 markers equally spaced
every 20cM)
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Fig. 2. Mean function mz (t) as a function of the number m of QTL, their positions t3, and the
parameters a; linked to the QTL effects (T" = 100cM, 6 markers equally spaced every 20cM)
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Fig. 3. Same path of Z*(.) and {Z*(.)}” as under H, but under H, (m = 2, t{ = 30cM, t5 = 70cM,
a1 = 4, T = 100cM, 6 markers equally spaced every 20cM)
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In order to illustrate the theorem, we will consider a genetic map which consists of
a chromosome of size 7' = 100cM with 6 markers equally spaced every 20cM. Figure 1
refers to the absence of QTL on the chromosome. On the left-side, a path of the process
Z*(.) is represented under Hy. As there is not any QTL, it corresponds only to noise.
Besides, we can observe the interpolation obtained between genetic markers. The same
path corresponding to the process {Z*(.)}2 has been added on the right-side : in genetics,
we call this path "a likelihood profile". It is usually this path that we obtain when we
analyze data. Note that many authors, instead of computing the process A, (.), focus on
the LOD process, LOD,(.),, where LOD,,(.) = A,(.)/ {21og(10)}.

Figure 2 represents the signal. On the left-side, we present some mean functions mg (t)
when only one QTL (m = 1) is located on the chromosome. As expected, the supremum
of these interpolated functions is obtained at the location of the QTL. Besides, the larger
the QTL effect is, the stronger the signal is. On the right-side, the focus is on mz (t) when
m = 2. According to the theorem, mg (t) is obtained by summing the mean functions
corresponding to the case m = 1. As a consequence, the functions mg (t) of the graph of
the right-side are easily obtained from those of the graph of the left-side. Let’s focus on the
curve in solid line. The two QTL are located respectively at ¢7 = 30cM and t5 = 70cM. So,
the marker interval (40cM, 60cM) is adjacent to the two marker intervals where the QTL
are located. As a result, we can observe on the graph that the biggest peak is obtained in
the interval (40cM,60cM) and that the supremum is obtained in the middle of this marker
interval, at 50cM. Note that it is obtained exactly at 50cM since we consider exactly the
same effect (a7 = as = 4) and that there is symmetry due to the location of the QTL
and the length of the chromosome. If now we consider a larger effect for the second QTL
(ag = 6) located at t5 = 70cM (dashed line), we can observe almost the same two peaks in
the intervals (40cM,60cM) and (80cM,100cM). Besides, the supremum of the mean function
is obtained at 52cM. It is like a barycenter : some weights are affected to the QTL as a
function of their effects, so the signal and the location of the supremum is affected by these
weights.

Figure 3 is the analogous of Figure 1 under the alternative of 2 QTL located at ¢; = 30cM
and t5 = 70cM. As in Figure 1, the path of the process Z*(.) is on the left-side whereas
the one corresponding to {Z*(.)}2 is on the right-side. According to the theorem, in order
to obtain the path of Z*(.) under H ;. , we have to sum the path of Z*(.) under Hy (ie.
the noise), and the mean function mz (¢) (ie. the signal). In other words, the path of
Z*(.) under H_z has been obtained by adding the path of Z*(.) presented in Figure 1 and
the mean function of the graph of the right-side of Figure 2. Note that on the right-side
of Figure 3, the likelihood profile (ie. the path of {Z*(.)}?) has easily been obtained by
computation of the square of Z*(.). We can observe in Figure 3 that, when the effects of
the two QTL are the same (ie. the solid lines), the biggest peak is obtained between 40cM
and 60cM which is a marker interval where there is no QTL : such a peak is called a ghost
QTL (Martinez and Curnow (1992)). It was expected since the supremum of the signal was
obtained at 50cM.

Note that when we increase the effect of the second QTL (ie. the dashed lines), the biggest
peak is obtained in the marker interval (60cM, 80cM) which is the interval which contains
the second QTL. It is due to the noise since the signal is almost the same in the intervals
(40cM,60cM) and (60cM,80cM) whereas the values of Z*(.) are larger under Hy in the
marker interval (60cM, 80cM) than in the interval (40cM, 60cM).

To conclude, we wanted to highlight here the fact that the likelihood profiles in QTL
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detection, are the results of two components : the noise and the signal which contains
informations on the number of QTL, their effects and positions. Besides, when two QTL
are located in two different markers intervals close but not adjacent, a ghost QTL is often
found between these two markers intervals : it is due to the signal (cf. Figure 2). We can
only say “often" because of the noise which affects also the likelihood profiles.

5. A new method for QTL detection

In this section, the goal is to propose a method to estimate the number of QTL, their effects
and their positions combining results of the theorem and a penalized likelihood method.

5.1. Introducing our method
According to the theorem, if we discretize the score process at markers positions, we have
when n is large :

where S, = (Su(t1), Sn(t2), .., Sul(tx)) , Mg = (ma(t), ma(ta) , ..., mp(tx))
and €~ N(0,%) with Xy = e~ 2te—tw ],

It will be useful to decorrelate the components of S, for running the penalized likelihood
method. That’s why, we propose to keep only points of the process taken at marker positions
: we can perform a Cholesky decomposition of ¥ (we remind that S,, is an “interpolated
process"). However, we will look for QTL not only on markers postions.

Let consider the Cholesky decomposition ¥ = AA’. It comes :

A1S, :A”B(%, "7’”) oAl

. . . J— J— *
where B is a matrix of size K x m such as Bys = e 2lte—t:l,

The problem is that the number m of QTL and their positions ¢7,...,t7, are unknown. So,
we consider a new discretization of [0, 7] corresponding to all the locations where we think
the QTL can be located : 0 < t; <ty < ... <ty <T. ay,...,ar will be the corresponding
effects divided by o. As a consequence, we can rewrite the model :

AT'S, = A7'B(ay , ..., an) + AT'E (4)

where B is a matrix of size K x L such as Bkl = e_2|t"'_£’|.
At this time, we would like to know which of the coefficients a1, ...,ar are exactly 0 : it
will tell us where the QTL are located. As a consequence, a natural approach is to use the

LASSO Tibshirani (1996) :

N ~ 2
AYS, A By, .., aL)’H provided that || + ... + |ar| < ¢

argming, ... a.)

¢ is a tuning parameter. It will control the amount of shrinkage that is applied to the
estimates Tibshirani (1996). A large (resp. small) ¢ will lead to the estimation of a large
(resp. small) number of QTL m. We will estimate ¢ using cross validation as described in
Chapter 7 of Hastie and al. (2001).
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5.2. Computing the score and the Wald processes

In order to run our method, we need to calculate the score process discretized at marker
locations. We remind that ¢, refers to the location of marker k. According to Rabier (2010),
the score statistic on marker k verifies :

Sn(tk) _ Xn: (yj B ,u) {i 1\);%(15&)_1 - 1} (5)

According to Prohorov and by contiguity (cf. Section 7.1), the score test can be obtained,
1/2

j=1

replacing p by 7 := 2?21 yj/n and o by {ﬁ Z?Zl(yj - ﬂ)Q}

Besides, let W,,(.) the Wald process for n observations. As the model is regular and by
contiguity, we have V¢ € [0,T], S, (¢t) = Wy (t) + op(1) where op(1) is a sequence which
converges to 0 in probability under Hy and H ..

As a consequence, our method for QTL detection is also suitable with the Wald process
Wi () (just replace S,, by W, in Section 5.1). In this case, according to Rabier (2010) :

1/2

Wi(tk) =n g/ (y; —9)°

1

n

J

where ¢ is the maximum likelihood estimator of g.

5.3. How to improve our method

Our method is based on the asymptotic result of the theorem. As a consequence, we have
to consider a number of observations n large enough to run the method. We remind that
we have n observations since we consider n individuals. On the other hand, in the model
(4), we have this time only K observations which correspond to the score statistic (obtained
from the n individuals) on markers and decorrelated. Besides, there are L parameters aj,
..., ar, to estimate (if we except ¢). We remind that #1,... ,t; denote the location where we
are going to look for QTL. In most of cases, as we don’t have any idea where the QTL are
lying, we will look for QTL on markers and between markers. If we consider d positions in
each marker interval, then L = K(d + 1) — d. It comes L >> K. In such a situation, the
LASSO is suitable. Howewer, in order to improve the performance of the LASSO, it would
be nice if we could deal with a large number of observations K. The problem is that K refers
to the number of genetic marker which is constant. So, we have to find an alternative. In
an asymptotic study, the question is always the same : how many individuals n are needed
to reach the asymptotic 7 We have to keep in mind that even if n is very large, we will
only deal with K observations (ie. the number of markers) in model (4). As a result, we
propose to split the individuals into groups and to analyze these groups separately, that is
to say computing the score (or Wald) process for each group. Obviously, we have to deal
with a number of individuals large enough in each group in order to reach the asymptotic.
We consider groups of same sizes and we call I the number of groups : n/I is the number of
individuals in each group. S%(.) denotes the score process for the ith group. According to
the theorem, S%(.) is asymptotically the square of a “non linear interpolated process" with
a mean function 77z ;(.) under the alternative, verifying

mp. (1) = {a(t) mg (1) + B(2) m;*7l(tr)} /\/E [{gp(t) - 1}2}
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where

L
m;*71(tz) = Zas e ?
s=1

Note that /I at the denominator comes from the fact that the QTL effects have been
defined as a function of the total number of individuals n.

So, since the groups are independent, we can easily adapt our method of Section 5.1. We
have now :

L
S @VT) ) = Y as e 0V
s=1

— -\ /
(S}, s S}) = (mf*,lv e mf*,[) + @, .., 8
where i ; = (g, (t1)  m g (t2) o g (), S = (Si(h), Si(t2) s Siltx)
and &; iid of size 1 x K such as each & ~ N(0,%) with Xy = e 2/t~ tw |,
In the same way as previously (cf. Section 5.1) provided that this time ai, ..., ar are the

effects divided by ov/T :
= Y ,

I is a square matrix of size KI such as I' = Diag [A™", ..., A71].

Z is a column vector of components A~ B replicated I times.
To conclude, we propose to use the LASSO Tibshirani (1996) :

2

= = /
r (S}, S,f) —Z (a1, .., ay)'|  provided that |a| + ... + |ar| < ¢

argming, .. a.)

6. Simulations

In this Section, we perform our method using Wald processes (cf. Section 5.2) and 5 fold
cross validation for the LASSO. We consider 100 populations of size n = 320. We use mainly
MATLAB to perform our method. We used R to perform The LASSO with package LARS
of Hastie and Efron. Composite Interval Mapping was performed using (R/qtl Broman and
al. (2003)).

6.1. How does our method perform?

In order to illustrate the performances of our method, we consider a sparse map which
consists of 6 genetic markers equally spaced every 20cM on a chromosome of length T' =
100cM. We look for a QTL every 5¢cM. In order to make groups, we have to find a good
compromise between having enough individuals in each group to reach the asymptotic, and
having a large number of groups to increase the performances of the LASSO. We split here
our 320 individuals into 8 groups of 40 individuals in order to improve the method (cf.
Section 5.3). Indeed, it is reasonable to consider the asymptotic to be reached with 40
individuals (Rabier (2010)). As a consequence, we have now L = 21 parameters to estimate
with 6 X 8 = 48 observations (6 markers and 8 groups).

We study several situations with 2, 3 and 4 QTL. We will say that a QTL is truly identified
if the QTL is find in a neighbourhood of 5¢cM of the true position (ie an interval of length
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10cM centered on the true location). Besides, in order to count the number of QTL found,
we have choosen not to penalize if several QTL were found in the 10cM intervals centered
on the true locations, whereas we have choosen to penalize a lot for any QTL found outside
of the intervals. As a consequence, we count only one QTL if 2 or 3 QTL are found in the
10cM intervals centered on the true locations and we count one QTL for every QTL found
outside these intervals.

In Figure 4, we study a situation with 2 QTL located on the chromosome. First, two
QTL linked in repulsion (ie with opposite signs) are located at positions 10cM and 70cM
on the chromosome. We have to keep in mind that as our method is based on contiguity,
the QTL effects have to be close to 0. However, we can see in Figure 4, that the method
gives good results even when the effects are not so close to 0. Note that the heritability is
indicated just for information but it is not linked to the performances of our method since
the bigger the effects are the bigger the heritability is. The number of QTL found is slightly
greater than 2, but it is reasonable since we penalize a lot when we are outside of the QTL
intervals. We obtain the same conclusions for the two QTL linked in coupling (ie. with
same signs) presented on the right side of Figure 4. Good performances of the methods are
also illustrated in Figure 5 when 3 and 4 QTL are located on the chromosome.

6.2. Comparison with the Composite Interval Mapping

We propose here to compare our method with the Composite Interval Mapping (CIM) of
Jansen (1993) and Zeng (1994), largely used in the genetic community. We remind that
CIM consists in combining interval mapping on two flanking markers and multiple regres-
sion analysis on other selected markers (Wu and al. (2007)). This way, the QTL not located
in the marker interval tested don’t affect the test statistics anymore. As a consequence, it is
possible to perform separately interval mapping in each marker interval to test the presence
of a QTL in the interval. However, the choice of the markers as cofactors is very empirical
: we don’t know how to choice the set of markers in a mathematical point of view.

For the comparison between our method and CIM, we use the same configuration as in Sec-
tion 6.1. We study several situations with 2, 3 and 4 QTL on the chromosome (see Figures
6 and 7). We compute 4 kinds of CIM. First, we consider two ways of choosing the cofactors
: CIM(20) (resp. CIM(40)) refers to CIM with markers considered as covariates if they
do not belong to a window size of 20cM (resp. 40cM) of the position tested. Secondly, we
consider two ways of computing the thresholds : one obtained using 1000 permutations and
called Shuf f here (Churchill and Doerge (1994)), and another which is obtained theoreti-
cally under Hy (6.76 according to Rabier (2010)).

In order to count the number of QTL for CIM, for each marker interval, we count one QTL
if the supremum of the process is above the threshold (it corresponds to the definition of
CIM). Besides, for CIM, we will say that a QTL is truly identified if the QTL is find in a
neighbourhood of 5cM of the true position. For instance, if a QTL is located at 10cM, the
supremum in the marker interval (0cM;20cM) has to be obtained between 5¢cM and 15¢M.
Howewer, if we consider a QTL located at 40cM (ie on the third marker), we will consider
that this QTL is truly identified if the supremum in the marker interval (20cM;40cM) is ob-
tained between 35cM and 40cM, or if it is obtained between 40cM and 45cM in the marker
interval (40cM;60cM).

According to Figure 6, if we consider 2QTL at 10cM and 70cM with effects —0.6 and 0.8,
we can see that CTMp,(20) is the best way to perform CIM : we find 1.84 QTL and the
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true QTL are largely found. However, if we consider the same 2 QTL but with effects 0.4
and —0.6, CIMpg,(20) performs badly. CIMgp,sr(20) seems to the best way to perform
CIM : the true QTL are largely found but we find 3.26 QTL. If we consider 3 QTL, the
best way to perform CIM is CIMgpysr(40) but we find 4.97 QTL. As a consequence, the
choice of the cofactors and the choice of the thresholds highly depends of the configuration
: CIM is very empirical. If now we have a look on our method in Figure 6, we obtain nice
results : the QTL are largely found and the number of QTL found is good whatever the
configuration studied. Same conclusions hold with 4 QTL (see Figure 7).

6.3. Our method is not affected by epistasis

Until now, we have supposed that the QTL effects were additives and that there were no
interaction between them (cf. Section 2). However, there are many interactions between
loci in the genome (ie. epistasis). That’s why we propose here to integrate interactions
in the model considered. We remind that m refer to the number of additive QTL and ¢,
to the QTL effect of the sth additive QTL. Its position is ¢;. We will call m the number
of interactions and §s the effect of the sth interaction. The loci corresponding to the sth
interaction will be called #25_1 and tss. In this context, the quantitative trait Y verifies :

m m
Y=p+ Y X(t)as + > X(fae1)X(f2s) Gs + o0
s=1 s=1
where ¢ is a Gaussian white noise.
We introduce two new hypothesis :

H,;. 4+ there are m additive QTL located respectively at {7, ..., {3, and with effect

q = %, ey @, = “7"% where (a1, ..., a,) € R™*

and there are m interactions : between loci ¢; and ts, ..., between loci to;7_1 and to, with
effects respectively §; = %, ey Gy = f/—’% where (by, ..., by) € R™* ",

Hy 7+ “ there is not any additive QTL on [0, 7]

and there are /m interactions : between loci #; and t~2, ..., between loci tam—1 and fg,;“ with

effects respectively ¢; = %, ey Gy = f/?% where (by, ..., bs) € R™* .

Proposition Under H, ,; and under H,z. ;

Yk Su(tr) = Z*(th) + op(1) and An(ty) = {Z*(t)}> + op(1)

where Z*(.) is the Gaussian process of the theorem (cf. Section 4.1) such as Z*(.) is centered
under H, ; and with the mean function mg. () of the theorem under H . ;.

The proof is given in Section 7.2. According to the proposition, our method which is based
only on points of the process taken at marker positions, is not affected by epistasis. Indeed,
under H . 7, the mean function at marker position is the same as previously.

Figures 8 to 11 illustrate this phenomenon. The same map as previously is considered.
In Figures 8 and 9, we consider two additive QTL on the chromosome : one with effect
—0.6 at 10cM and the other with effect 0.8 at 70cM. To begin, in Figure 8, we consider one
interaction : we have choosen to study an interaction between the two QTL. We consider two
different effects for this interaction (—0.4 and 0.7). Note that the corresponding heritability
is mentioned (additive+interaction). We can observe that the two additive QTL are largely
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found and the number of additive QTL found is good. Then, in Figure 9, we consider this
time 10 and 20 interactions (keeping the interaction between the QTL with effect —0.4). The
results are still nice : the performances of our method are not affected by the interactions (as
expected with the Proposition). Same conclusions hold with 4 additive QTL (see Figures
10 and 11). Note that for Figure 11, we kept the same interaction between QTL as on the
left side of Figure 10, and we added other interactions.

6.4. Our method is suitable for dense map

To conclude, we would like to mention that our method is also suitable for dense map (ie
a large number of genetic markers close to each other). In this case, we will perform only
tests on genetic markers. In Figure 12, we consider, as previously, a chromosome of length
T = 100cM, but genetic markers are now located every 5¢cM. We look for QTL every 5¢cM.
We compare here our method and a classical LASSO method which consists of a linear
model where the trait Y is the variable to explain and the regressors are the markers. In
order to perform the classical LASSO, we used 0.1 as a tuning parameter instead of 5 fold
cross-validation. It was a good compromise (between the QTL found and their number)
since the results of the cross-validation were not good at all. According to the Figure
(using the same rules to fill the table as in Section 6.1), we can see that our method gives
largely better results than the classical LASSO. Note that our method is still theoretically
unaffected by any interactions.

7. Proofs

7.1. Proof of the theorem
We will consider values t, t7, ..., t5, of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.

Study under Hj :

There is no QTL on the chromosome. The proof is fully given in Rabier (2010).
Nevertheless, we remind that the score test statistic for n observations verifies at position
t:

n

(y — 1) 2pi(t) = 1)
Su(t) =Y —Y : (7)
Loy [E [{2p(t) - 1))

where B [{217(75) - 1}2} = {a®)} + {81} + 2a(t) B(t)e 2"~
It will be useful for the study of the general alternative.

Study under H ;. :

There are several QTL located on the chromosome. We suppose that the QTL effects are
additives and that there is no interaction between them.

In this context, the quantitative trait Y verifies :

Yi=u+ Y X;(t}) a5 + oc (8)

s=1

where ¢; is a Gaussian white noise.
Let’s introduce some notations :



16 Céline Delmas

e ¢ : number of “Marker intervals" which contain the QTL.
v =1,...,& will refer to the different intervals.

e m, : number of QTL in the interval .
T =1,...,m, refers to the 7th QTL in the interval .

e the sth QTL on [0, 7], can be rewritten, s = (1,7) = {ZW 1 m7} T

Let 0,7 = (g1, s gm, &, o) and 6yz = (0, ..., 0, p, o).

After some calculations, the likelihood of (Y, X {t?f 1)} X {t’(*lr 1)} , X {t?f &)} X {t?lr &)})
with respect to the measure A @ N ® ... ® N, X being the Lebesgue measure, N the county
measure on N, verifies :

L*(Qm‘;) = Z f(/L+u1ql+...+umqm,a) (y)

(ug,eoyum)e{—1,1}"

{(ﬁ {(m : ?m} lmﬁlR{ () ° ?mm}

where

T T
A{t?"wv) ’ t?mw,'y)} >g*(t )}

U(r,y)

{ T'Y)} 0 t(T’Y } 1X(t)"(7'7')’):_1 + F{t7 t?‘r,'y)} ]'X(t)u(T,’y)zl

R{tm)v (r+1, 'v)} {tm) , t<f+1n>} Lurucr1,7m)=1

*

t

_|_

r ) ‘r+1 »y)} 1u(‘r,'y)u(‘r+1,'y):71

mo~

—»

* 1 r *£
=3 H D{me)vtu,w)}
=1

y
D(t t) (t,tl) ]-X(t)X(t’):l + T(t,tl) ]-X(t)X(t’):—l

The likelihood L} (6,7 ) for n observations is obtained by the product of n terms as above.
Let @, and P, two sequences of probability measures defined on the same space (£, A,,).
Qn (respectively P,) is the law corresponding to the density L} (6,7 ) (resp L7 (6,5 )). We

will call the log likelihood ratio log 5 49u Tt verifies : log 55 49n — Jog { izl EZZ:::; }

As the model is differentiable in quadratlc mean at 0 . and according to the central limit
theorem :

dQy 1 .
log (dC]-?’n) ! N(—§192, ¥?) with 92 € R
By the iii) of Le Cam’s first lemma, we have @Q,, < P,,.

Let op,, (1) be short for a sequence of random vectors that converges to zeros in probability
under Hy (i.e. no QTL on the whole interval studied).

Besides, according to Rabier (2010) :

An(t) = {Su(8)}* + op,, (1)



A new method for QTL detection 17

where Sy, (t) is given in formula (7).

Let o Py, (1) be a sequence of random vectors that converges to zeros if there is no QTL at
o

T, ..., tr,. Then, it is clear that :

An(t) = {Su(D)}” + op, (1)

ot*
Let op, o (1) be a sequence of random vectors that converges to zeros if there are m QTL
at t¥, ..., t¥,. As @ < P,, according to iv) of Le Cam’s first lemma :

An(t) = {Su(D)}” + op, (1)

at*

So, calculations can be done with the score test statistic.
According to Rabier (2010), the score test statistic at ¢ can be obtained by a non linear
interpolation :

5, (1) = A Salt) + BE) Sult")
I [{217(75) - 1}2}

where a(t) = Q;' + Q' — 1 and B(t) = —Qr
Let mz (.) be the asymptotic mean function of the score process S, (.). It comes :

_a(t) mp Y + B(t) ma(t)
E[{2p(t) - 1)’]

Let calculate the quantities mz (t) and mg, (¢7).
We remind that ¢, refers to the location of marker k. According to Rabier (2010), the score
statistic on marker k verifies :

(v =) {2 1x00)=1 — 1}
Sy (tr) = E It
= o /n
According to formula (8) :

n

—%Zej {21x,00=1 — 1} + 0_1712{2)( (t3) }{2 Ly, (tp)=1 — 1}
= Sa(tr) anzn:{iX (t3) }{2 Ly ()=1 1} 9)

Jj=1

where S9(t) is the score obtained under Hy at location tj.
By the law of large number :

n

%Z{ZX (t%) } {21x,40)=1 — 1} 2 E

{Z X(t2) as} {2 1x ()21 — 1}]
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According to Rabier (2010), we have :

E {Z X (t%) as} {2 1x(1)=1 — 1}] — Zas e—2lts—txl
s=1 s=1
It comes :
mz () = 1 ias e 2t —tkl
f o

As a consequence :

¢ 1 —2|t; -t r 1 ¢ —20tr—t"|
m;*(t)ZEZase s , m;*(t)ZEZase s
s=1 s=1

Weak convergence of the score process :
The proof is exactly the same as in Rabier (2010).

7.2. Proof of the proposition

m is the number of interactions and s the effect of the sth interaction. The loci corre-
sponding to the sth interaction are tos and t25—1. In this context, the quantitative trait Y
verifies :

Vot SOX) 4 + S0 Xl )X (B) 4, + oe (10)

s=1 s=1

where ¢ is a Gaussian white noise.

We will consider values of #1, ..., tos and t}, ..., t%, distinct of marker positions, and the
result will be prolonged by continuity.

Let OPs ., o (1) be a sequence of random vectors that converges to zeros if there is no additive

QTL at t}, ..., t*, and no interactions between loci #; and o, ...., no interactions between
loci t27—1 and tos. In the same way as in the proof of the theorem, it is clear that :

An(tr) = {Sn(tr)}> + op, . (1)

0t* 0t
where Sy, (t) is given in formula (5) of Section 5.2.
In order to adapt the proof of the theorem, we just have to consider the likelihood of Y and
the flanking markers of the additive QTL (as previously) but we have to add the flanking
markers of ¢1, ...,f2,5. The model is still differentiable in quadratic mean.
Let OPeaf*.bE(l) be a sequence of random vectors that converges to zeros if there are m

additive QTL at t7, ..., t;, and m interactions : loci t1 and o, ..., loci tam_1 and top.

Then, according to iv) of Le Cam’s first lemma :

An(te) = {Sn(te)}? + op,

at* bt

(1)
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According to formula (10), we have :

n m

Z g5 {2 1x,0=1 — 1} + %Z{ZXj(t:) as}{2 Ly, (tp)=1 — 1}

J: j=1 \s=1

m

1 n
U—Z{ZX t2s-1) X (f2s) s}{ﬂxjuk)—l—l}

252( Z{ZX S}{2 1Xj(tk-):1_1}

J=1
1 n
Z{ZX t25—1)X; (t2s) s} {21x,04)=1 — 1} (11)
j=1

where S9(t) is the score obtained under the null hypothesis that there is no additive QTL
and no interactions on [0, T (same S? as in formula (9) of the proof of the theorem). Ac-
cording to the proof of the theorem, we have — E; A XG(tE) ask {2 1x,0)=1 — 1}
which tends to mp. (t). Besides,

J—ln Z {ZX fos_1)X;(fas) S} {21x,040)21 — 1} 2 E
We have :
E [X (f25-1)X (f25) {2 Ix(tp)=1 — 1}] = 2 E [X (f25-1) X (fs) L (1 )=1] — €7
If tj, < tos_1 < tas , then :
E [X (f25-1) X (f25) {2 1x (121 — 1}] =0
If tos_1 <t < tas , then :

E [X (t25-1)X (f25) {2 1x(t)=1 — 1}] =0

{ZXtQS 1) X (E2s) g}{21m 1—1}]

£2s _525— 1 |

As a consequence :
E [X (f2s—1)X (t2s) {2 1x(10)=1 — 1}] =0

It concludes the proof for under H ;. ;. In order to obtain the result under H, ,;, we just
have to deal with contiguity, considering the likelihood of Y and only the flanking markers
of t1, ...,f27 (ie the loci for the interactions). Then, we do the same calculations as in
formula (11) but this time there is not anymore the additive term (ie the second term). It
concludes the proof of the Proposition.
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locations (in cM) (10; 70) (30; 80)
QTL effects (C06;08) | (—08;08) | (04; —06) | (0.6;06) | (0.6;08) 0.6 04)
h? 42% 47% 27% 50% 57% 41%
QTL found | (88% ; 100%) | (100% ; 94%) | (75% ; 96%) | (97% ; 98%) | (96% ; 100%) | (100% ; 94%)
nb of QTL found 2.49 2.71 2.46 2.49 2.42 2.68

Fig. 4. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects, their locations (h* refers to the heritablities). 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (7' = 100cM).
2 QTL lie on the chromosome. We look for QTL every 5cM. In the notation (a, b), a refers to the first

QTL and b to the second one.

nb of QTL 3 4
locations (in cM) (10 ; 40 ; 90) (10; 50; 70 ; 90)
QTL effects (-0.6; —0.6; 0.4) | (-0.6; —0.6; 0.6) (04;04;04;04) (0.6 ; 0.6; 0.6; 0.6)
h? 50% 52% 61% 78%
QTL found | (94% ; 85% ; 56%) | (94% ; 86% ; 86%) | (77%; 71%; 96% ; 81%) | (33% ; 66% ; 97% ; 81%)
nb of QTL found 3.54 3.70 4.21 4.24

Fig. 5. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the number of QTL, their effects and their locations. 100 populations of n = 320
individuals are considered. 6 genetic markers are equally spaced every 20cM (7' = 100cM). We look

for QTL every 5¢cM.
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nb of QTL 2 2 3
locations (in ¢cM) (10 ; 70) (10 ; 70) (10 ; 40 ; 80)
QTL effects (-0.6 ; 0.8) (0.4 ;-0.6) (0.4;0.7;-0.8)
h? 42% 27% 48%

QTL found (88% ; 100%)  (75% ; 96%)  (67% ; 87% ; 100%)
nb of QTL found 2.49 2.46 3.53

QTL found (98% ; 28%) (81% ; 95%) (79% ; 79% ; T1%)
nb of QTL found 4.36 3.26 4.92

QTL found (73% ; 97%) (9% ; 57%) (14% ; 70% ; 56%)
nb of QTL found 1.84 0.7 3.99

QTL found (89% ; 87%)  (76% ;T1%)  (74% ; 100% ; 100%)
nb of QTL found 4.86 4.38 4.97

QTL found 69% ; TT%)  (13% ;48%) (6% ; 100% ; 98%)
nb of QTL found 3.29 1.70 4.08

Fig. 6. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL
found) as a function of the number of QTL, their effects, their locations and the method. CIMgp.
(resp. CIMpy,) refers to CIM using a permutation threshold (resp. threshold obtained with no QTL).
CIM(20) (resp. CIM (40)) refers to CIM with markers considered as covariates if they do not belong
to a window size of 20cM (resp. 40cM) of the position tested. 100 populations of n = 320 individuals

are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM). We look for QTL
every 5¢cM.

QTL effects (-0.4;-0.7;0.9;0.8) (-0.8;-0.8;0.8;0.8) (-0.4;-0.4;0.6;0.8)

h? 66% 70% 58%

QTL found (72% ; 68% 5 T7% ; 100%)  (97% ; 83% ; 57% ; 100%)  (78% ; 54% ; 57% ; 100%)
nb of QTL found 4.08 3.94 3.55

QTL found (59% ; 93% ; 96% ; 98%)  (90% ; 96% ; 75% ; 96%)  (53% ; 56% ; 86% ; 98%)
nb of QTL found 4.87 5.00 4.52

QTL found (02% ; 71% ; 95% ; 97%)  (95% ; 77% ; 86% ; 93%)  (09% ; 06% ; 75% ; 100%)
nb of QTL found 3.71 4.82 2.54

QTL found (63% ; 100% ; 59% ; 00%) (91% ; 100% ; 48% ; 24%) (68% ; 89% ; 41% ; 18%)
nb of QTL found 4.81 5.00 4.82

QTL found (03% ; 84% ; 58% ; 00%)  (86% ; 98% ; 52% ; 30%)  (11% ; 32% ; 46% ; 14%)
nb of QTL found 3.79 4.94 3.20

Fig. 7. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects and the method. CIMgy.55 (resp. CIMpy,) refers to CIM using
a permutation threshold (resp. threshold obtained with no QTL). CIM (20) (resp. CI1M (40)) refers
to CIM with markers considered as covariates if they do not belong to a window size of 20cM (resp.
40cM) of the position tested. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (7' = 100cM). 4 QTL lie on the chromosome at 10cM, 40cM,
70cM and 90cM. We look for QTL every 5¢cM.
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effect of the interaction between the two QTL —-0.4 0.7
h? 47% 54%

additive QTL found (86% ; 98%) | (80% ; 93%)
nb of additive QTL found 2.61 2.53

Fig. 8. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the effect of the interaction. 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (7' = 100cM).
2 additive QTL lie on the chromosome with effects —0.6 at 10cM and 0.8 at 70cM. We look for additive
QTL every 5cM.

nb of interactions 10 20
h? 54% 59%
additive QTL found (82% ; 93%) | (74% ; 91%)
nb of additive QTL found 2.60 2.57

Fig. 9. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (h?) considered. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (7" = 100cM). 2 additive QTL lie on the chromosome with
effects —0.6 at 10cM and 0.8 at 70cM. We look for additive QTL every 5cM.

interactions between QTL (1 and 3 ; 2 and 4) (1 and 4 ;2 and 3)
effects of the interactions (—=0.4; —0.6) (—=0.4; —0.6)
h? 71% 75%
additive QTL found (61% ; 76% ; 64% ; 100%) | (66% ; 70% ; 656% ; 100%)
nb of additive QTL found 3.79 3.86

Fig. 10. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the interactions considered and their effects. 100
populations of n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM
(T = 100cM). 4 additive QTL lie on the chromosome with effects —0.4 at 10cM, —0.7 at 40cM, 0.9 at
70cM, 0.8 at 90cM. We look for additive QTL every 5cM.
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number of interactions 6 10
h? 5% 7%
additive QTL found (72% ; 79% ; 61% ; 100%) | (58% ; 656% ; 57% ; 100%)
nb of additive QTL 3.86 3.67

Fig. 11. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (r?). 100 populations of n = 320 individuals are considered. 6 genetic markers are
equally spaced every 20cM (T' = 100cM). 4 additive QTL lie on the chromosome with effects —0.4 at
10cM, —0.7 at 40cM, 0.9 at 70cM, 0.8 at 90cM. We look for additive QTL every 5cM.

nb of interactions 0 10 20
h? 48% 60% 64%
s ooy | 2dditive QTL found (100% ; 88% ; 100%) (100% ; 76% ; 93%) (99% ; T1% ; 91%)
PAPEE b of additive QTL found 3.44 3.13 3.05
LASSO additive QTL found (83% ;67% ;5 72%) (82% ; 73% ; T1%)  (88% ; 70% ; T1%)
nb of additive QTL found 5.67 5.95 5.76

Fig. 12. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions, the heritability (h*) and
the method considered. 100 populations of n = 320 individuals are considered. 21 genetic markers
are equally spaced every 5¢cM (7' = 100cM). 3 additive QTL lie on the chromosome with effects —0.8
at 5¢cM, 0.8 at 45¢cM, —0.8 at 70cM. We look for additive QTL every 5¢cM.
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