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Summary. We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, T ] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution
of this LRT process under the general alternative that there exist m QTL on [0, T ]. This theo-
retical result allows us to propose to estimate the number of QTL and their positions using the
LASSO. Our method does not require the choice of cofactors contrary to Composite Interval
Mapping (CIM). Besides, our method is not affected by interactions.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, χ2 process.

1. IntroductionWe study a bakross population: A×(A×B), where A and B are purely homozygous linesand we address the problem of deteting Quantitative Trait Loi, so-alled QTL (genes in�u-ening a quantitative trait whih is able to be measured) on a given hromosome. The traitis observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, the observations,whih we will assume to be independent and identially distributed (iid). The mehanismof genetis, or more preisely of meiosis, implies that among the two hromosomes of eahindividual, one is purely inherited from A while the other (the �reombined" one), onsistsof parts originated from A and parts originated from B, due to rossing-overs. The Haldane(1919) modelling assumes that rossovers our as a Poisson proess. Using the Haldane(1919) distane and modelling, eah hromosome will be represented by a segment [0, T ].The distane on [0, T ] is alled the geneti distane (whih is measured in Morgans).In a famous artile, Lander and Botstein (1989) proposed, with the help of geneti mark-ers, to san the hromosome, performing a likelihood ratio test (LRT) of the absene of aQTL at every loation t ∈ [0, T ]. It leads to a �likelihood ratio test proess" Λn(.), andthen a natural statisti is the supremum of suh a proess. This method is alled �intervalmapping". There have been many papers related to the supremum of the LRT proess.For example, we an mention Feingold and al. (1993), Churhill and Doerge (1994), Rebaïand al. (1994), Rebaï and al. (1995), Ciero (1998), Piepho (2001), Chang and al. (2009),Rabier (2010).The problem is that onsidering the supremum of the proess as a test statisti is appro-priate when there is only one QTL on the hromosome but it beomes inappropriate whenthere are several QTL loated on the hromosome. Besides, generally genetiists have nointuition if there is one or several QTL segregating on the hromosome. As a onsequene,



2 Céline Delmasa more general approah has to be onsidered. When multiple QTL our on the samehromosome, they a�et simultanously the LRT proess. For instane, when two QTL areloated in two di�erent marker interval lose but not adjaent, a peak is often found betweenthese two marker interval : it is a ghost QTL (Martinez and Curnow (1992)). Jansen (1993)and Zeng (1994) proposed independently the �Composite Interval Mapping", whih onsistsin ombining interval mapping on two �anking markers and multiple regression analysis onother markers (Wu and al. (2007)). This way, the QTL not loated in the marker intervaltested do not a�et anymore the LRT proess. Their e�ets are removed due to multipleregression analysis. Howewer, the hoie of markers as ofator is very ompliated. It isstill an open question today. Until now, there has been no mathematial proof whih ouldhelp us on how to hoose the set of markers rigorously. In this ontext, the aim of our paperis to propose an alternative to �Composite Interval Mapping", that is to say a new methodwhih does not require the hoie of ofators.As mentioned before, in Rabier (2010), the authors suppose that there is no more than oneQTL on the hromosome (it is loated at t⋆ ∈ [0, T ]). They show that the LRT proess isasymptotially the square of a �non linear interpolated proess" entered under H0 (ie. noQTL on the hromosome) and unentered of a mean funtion under the alternative. Thismean funtion depends on the QTL e�et and its loation t⋆. In this paper, we generalizethese results to the general alternative that there exist m QTL on [0, T ] at t⋆1, · · · , t⋆m withadditive e�ets q1, · · · , qm.The main di�erenes between the alternative of only one QTL and the general alternative,is in the distribution of the trait Y . When there is only one QTL at t⋆ ∈ [0, T ], the trait Y ,onditionally to information brought by geneti markers loated on the hromosome, obeysto a mixture model with known weights :
p(t⋆)f(µ+q,σ)(.) + {1− p(t⋆)} f(µ−q,σ)(.) (1)where f(µ,σ)(.) denotes a Gaussian density with mean µ and variane σ2. (µ, q, σ) are theunknown parameters.When there are m QTL segregating, the distribution of the trait Y , is a mixture of 2momponents of the form :

2m
∑

α=1

wαf(Mα,σ)(.)where the wαs and the Mαs are known funtions of the unknown parameters µ, m, t⋆1, ...,
t⋆m, q1, ..., qm.In this ontext, we show that under the general alternative, the LRT proess is still asymp-totially the square of a �non linear interpolated proess". Howewer, the mean funtiondepends this time on the number of QTL, their positions and their e�ets. This theoret-ial result allows us to propose a new method to estimate the number of QTL and theirpositions using the LASSO. Note that in this paper, as in Broman and Speed (2002), thefous is mainly on the estimation of the number of QTL and their positions, rather thanon the estimation of the QTL e�ets. Nevertheless, the e�ets an be obtained easily withthe method that we propose.The originality of our paper is twofold. First, with our asymptoti study of the LRT pro-ess under the general alternative, we are now able to explain mathematially some strangesituations whih happen when we analyze data. Typially, we generally �nd a ghost QTL



A new method for QTL detection 3between two true QTL. Seondly, the originality is in the fat that we propose a new methodto �nd QTL. Our method is very easy to implement and does not require the hoie of mark-ers as ofators whih is a major drawbak of Composite Interval Mapping. Besides, weprove that our method is not a�eted by interations. With the help of simulated data,we show that our method performs better than the Composite Interval Mapping whih islargely used in the geneti ommunity. We refer to the book of Van der Vaart (1998) forelement of asymptoti statistis used in proofs.
2. Model and NotationsThe hromosome is the segment [0, T ]. K geneti markers are loated on the hromosome,one at eah extremity. t1 = 0 < t2 < ... < tK = T are the loations of the markers. The�genome information" at t will be denoted X(t). The Haldane (1919) model, whih assumesthat rossovers our as a Poisson proess, an be written mathematially : let N(t) be astandard Poisson proess, the law of X(t) is 1

2 (δ1 + δ−1) and X(t) = (−1)N(t)X(t1). TheHaldane (1919) funtion r : [0, T ]
2 7−→

[

0, 1
2

] is suh as :
r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) = 1

2
(1− e−2|t−t′|)

r̄(t, t′) will be the funtion equal to 1− r(t, t′).
r(t, t′) denotes the probability of reombination between two loi (ie. positions) loated at
t and t′. r̄(t, t′) denotes the absene of reombination. Note that a reombination ours ifthere is an odd number of rossovers between the two loi.We are interested in a quantitative trait Y whih is a�eted by several QTL loated on thehromosome. m will refer to the number of QTL and qs to the QTL e�et of the sth QTL.Its position will be alled t⋆s. We impose 0 < t⋆1 < ... < t⋆m < T and we will suppose thatthe QTL e�ets are additives and there is no interation between them. In this ontext,the quantitative trait Y veri�es :

Y = µ +

m
∑

s=1

X(t⋆s) qs + σεwhere ε is a Gaussian white noise.Besides, the �genome information" is available only at loations of geneti markers, thatis to say at t1, t2, ..., tK . We denote by Xj(t) the value of the variable X(t) for the jthobservation. So, in fat, our observation on eah individual is (Yj , Xj(t1), ..., Xj(tK)).These observations are supposed to be iid.
3. LRT process under the alternative of only one QTL located on [0, T ] (Rabier

(2010))Before etablishing the general result of this paper, we �rst should fous on the work ofRabier (2010), that is to say the ase where there is only one QTL lying on [0, T ] (ie.
m = 1). It will be a good way to introdue the LRT proess and will make the readingof our paper easier. In order to sum up this previous work, we will onsider the sameelements and notations used by the authors. As said previously, the authors fous on thefamous �Interval Mapping" of Lander and Botstein (1989) whih onsists in sanning the



4 Céline Delmashromosome, performing a likelihood ratio test (LRT) of the absene of a QTL at everyloation t ∈ [0, T ].We onsider values of the parameter t that are distint of the markers positions, and theresult will be prolonged by ontinuity at the markers positions. For t ∈ [t1, tK ]\TK where
TK = {t1, ..., tK}, we de�ne tℓ and tr as :

tℓ = sup {tk ∈ Tk : tk < t} , tr = inf {tk ∈ Tk : t < tk}In other words, t belongs to the �Marker interval" (tℓ, tr). We de�ne p(t) the weight suhas p(t) = P
{

X(t) = 1
∣

∣X(tℓ), X(tr)
}.By the Bayes rule,

p(t) = Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 (2)where :
Q1,1

t =
r̄(tℓ, t) r̄(t, tr)

r̄(tℓ, tr)
, Q1,−1

t =
r̄(tℓ, t) r(t, tr)

r(tℓ, tr)

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

tLet θ = (q, µ, σ) be the parameter of the model at t �xed and θ0 = (0, µ, σ) the true valueof the parameter under H0. The likelihood of the triplet (Y, X(tℓ), X(tr)
) with respetto the measure λ⊗N ⊗N , λ being the Lebesgue measure, N the ounty measure on N, is

∀t ∈ [tℓ, tr] :
L(θ, t) =

[

p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)
]

g(t) (3)where g(t) is a funtion independent of θ.The likelihood Ln(θ, t) for n observations is obtained by the produt of n terms as above.
θ̂ = (q̂, µ̂, σ̂) will be the maximum likelihood estimator (MLE) of θ.Under H0, there is no QTL lying on the interval [0, T ]. Besides, under H1, it is supposedthat there is only one loation where the QTL lies (ie. m = 1). In order to deal with thisalternative, the loation of the QTL, t⋆ (t⋆ ∈ [0, T ]), has to be added in the de�nition of
H1. So, the alternative hypothesis an be written :

Hat⋆ : �the QTL is loated at the position t⋆ with e�et q = a/
√
n where a ∈ R

⋆ "In this ontext, the authors show that the LRT proess, Λn(.), onverges weakly to thesquare of a �non linear interpolated proess". It means that the LRT statistis at eahpoint an easily be dedued from the Wald or sore statistis alulated at markers positions.Besides, this �non linear interpolated proess" is entered under H0 and unentered of amean funtion mt⋆(t) under Hat⋆ . This mean funtion depends on the loation of the QTL
t⋆, the position tested t and the parameter a linked to the QTL e�et. It is also a �non linearinterpolated fontion" (same interpolation as the proess). Then, sine they suppose thatthere is only one QTL on [0, T ], the authors have a lose formula (due to the interpolation)to ompute the supremum of Λn(.).



A new method for QTL detection 5

4. LRT process under the general alternative of m QTL on [0, T ]In the previous Setion, it has been supposed that there was only one QTL lying on theinterval [0, T ]. As a onsequene, the test statisti used was a natural statisti, that is tosay the supremum of the proess. The interest is now on studying the same proess aspreviously, Λn(.), but under the presene of several QTL on the interval [0, T ]. In this ase,the goal is not to perform a test anymore, but to be able to run a model seletion in orderto estimate the number of QTL and their loations.Let denote ~t⋆ the quantity refering to the loations of the QTL. Ha~t⋆ will be the followingassumption :
Ha~t⋆ : � there are m QTL loated respetively at t⋆1, ..., t⋆m and with e�et
q1 = a1√

n
, ..., qm = am√

n
where (a1, ..., am) ∈ R

m⋆ "We remind that we suppose that the QTL e�ets are additives and that there is no intera-tion between them. We will onsider values t, t⋆1, ..., t⋆m of the parameters that are distintof the markers positions, and the result will be prolonged by ontinuity at the markerspositions.
4.1. ResultsTheorem With the previous de�ned notations,

Sn(.) ⇒ Z⋆(.) , Λn(.)
F.d.→ {Z⋆(.)}2as n tends to in�nity, under H0 and Ha~t⋆ where :

• Sn(.) is the sore proess for n observations
• ⇒ is the weak onvergene and F.d.→ is the onvergene of �nite-dimensional distribu-tions
• Z⋆(.) is a Gaussian proess with unit variane.
• Z⋆(.) is the ontinuous and the �non linear interpolated proess" suh as :

Z⋆(t) =
{

α(t) Z⋆(tℓ) + β(t) Z⋆(tr)
}

/

√

E

[

{2p(t)− 1}2
]The mean funtion of Z⋆(.) :

• under H0, m(t) = 0

• under Ha~t⋆ , m~t⋆(t) =
{

α(t) m~t⋆(t
ℓ) + β(t) m~t⋆(t

r)
}

/

√

E

[

{2p(t)− 1}2
]The di�erent quantities are :

α(t) = Q1,1
t +Q1,−1

t − 1, β(t) = Q1,1
t −Q1,−1

t , Cov {Z(tℓ), Z(tr)
}

= e−2(tr−tℓ)

m~t⋆(t
ℓ) =

m
∑

s=1

as e
−2|t⋆s−tℓ| / σ , m~t⋆(t

r) =

m
∑

s=1

as e
−2|tr−t⋆s | / σ ,and E

[

{2p(t)− 1}2
]

= {α(t)}2 + {β(t)}2 + 2 α(t) β(t)e−2(tr−tℓ).



6 Céline DelmasThe proof is given in Setion 7.1.
4.2. Illustration of the theorem and of the Ghost QTL phenomenon
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A new method for QTL detection 9In order to illustrate the theorem, we will onsider a geneti map whih onsists ofa hromosome of size T = 100M with 6 markers equally spaed every 20M. Figure 1refers to the absene of QTL on the hromosome. On the left-side, a path of the proess
Z⋆(.) is represented under H0. As there is not any QTL, it orresponds only to noise.Besides, we an observe the interpolation obtained between geneti markers. The samepath orresponding to the proess {Z⋆(.)}2 has been added on the right-side : in genetis,we all this path "a likelihood pro�le". It is usually this path that we obtain when weanalyze data. Note that many authors, instead of omputing the proess Λn(.), fous onthe LOD proess, LODn(.)� where LODn(.) = Λn(.)/ {2 log(10)}.Figure 2 represents the signal. On the left-side, we present some mean funtions m~t⋆(t)when only one QTL (m = 1) is loated on the hromosome. As expeted, the supremumof these interpolated funtions is obtained at the loation of the QTL. Besides, the largerthe QTL e�et is, the stronger the signal is. On the right-side, the fous is on m~t⋆(t) when
m = 2. Aording to the theorem, m~t⋆(t) is obtained by summing the mean funtionsorresponding to the ase m = 1. As a onsequene, the funtions m~t⋆(t) of the graph ofthe right-side are easily obtained from those of the graph of the left-side. Let's fous on theurve in solid line. The two QTL are loated respetively at t⋆1 = 30M and t⋆2 = 70M. So,the marker interval (40M, 60M) is adjaent to the two marker intervals where the QTLare loated. As a result, we an observe on the graph that the biggest peak is obtained inthe interval (40M,60M) and that the supremum is obtained in the middle of this markerinterval, at 50M. Note that it is obtained exatly at 50M sine we onsider exatly thesame e�et (a1 = a2 = 4) and that there is symmetry due to the loation of the QTLand the length of the hromosome. If now we onsider a larger e�et for the seond QTL(a2 = 6) loated at t⋆2 = 70M (dashed line), we an observe almost the same two peaks inthe intervals (40M,60M) and (80M,100M). Besides, the supremum of the mean funtionis obtained at 52M. It is like a baryenter : some weights are a�eted to the QTL as afuntion of their e�ets, so the signal and the loation of the supremum is a�eted by theseweights.Figure 3 is the analogous of Figure 1 under the alternative of 2 QTL loated at t⋆1 = 30Mand t⋆2 = 70M. As in Figure 1, the path of the proess Z⋆(.) is on the left-side whereasthe one orresponding to {Z⋆(.)}2 is on the right-side. Aording to the theorem, in orderto obtain the path of Z⋆(.) under Ha~t⋆ , we have to sum the path of Z⋆(.) under H0 (ie.the noise), and the mean funtion m~t⋆(t) (ie. the signal). In other words, the path of
Z⋆(.) under Ha~t⋆ has been obtained by adding the path of Z⋆(.) presented in Figure 1 andthe mean funtion of the graph of the right-side of Figure 2. Note that on the right-sideof Figure 3, the likelihood pro�le (ie. the path of {Z⋆(.)}2) has easily been obtained byomputation of the square of Z⋆(.). We an observe in Figure 3 that, when the e�ets ofthe two QTL are the same (ie. the solid lines), the biggest peak is obtained between 40Mand 60M whih is a marker interval where there is no QTL : suh a peak is alled a ghostQTL (Martinez and Curnow (1992)). It was expeted sine the supremum of the signal wasobtained at 50M.Note that when we inrease the e�et of the seond QTL (ie. the dashed lines), the biggestpeak is obtained in the marker interval (60M, 80M) whih is the interval whih ontainsthe seond QTL. It is due to the noise sine the signal is almost the same in the intervals(40M,60M) and (60M,80M) whereas the values of Z⋆(.) are larger under H0 in themarker interval (60M, 80M) than in the interval (40M, 60M).To onlude, we wanted to highlight here the fat that the likelihood pro�les in QTL



10 Céline Delmasdetetion, are the results of two omponents : the noise and the signal whih ontainsinformations on the number of QTL, their e�ets and positions. Besides, when two QTLare loated in two di�erent markers intervals lose but not adjaent, a ghost QTL is oftenfound between these two markers intervals : it is due to the signal (f. Figure 2). We anonly say �often" beause of the noise whih a�ets also the likelihood pro�les.
5. A new method for QTL detectionIn this setion, the goal is to propose a method to estimate the number of QTL, their e�etsand their positions ombining results of the theorem and a penalized likelihood method.
5.1. Introducing our methodAording to the theorem, if we disretize the sore proess at markers positions, we havewhen n is large :

~Sn = ~m~t⋆ + ~εwhere ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK))
′ , ~m~t⋆ = (m~t⋆(t1) , m~t⋆(t2) , ... , m~t⋆(tK))

′and ~ε ∼ N(0,Σ) with Σkk′ = e−2|tk−tk′ |.It will be useful to deorrelate the omponents of ~Sn for running the penalized likelihoodmethod. That's why, we propose to keep only points of the proess taken at marker positions: we an perform a Cholesky deomposition of Σ (we remind that Sn is an �interpolatedproess"). However, we will look for QTL not only on markers postions.Let onsider the Cholesky deomposition Σ = AA′. It omes :
A−1~Sn = A−1B

(a1
σ

, ... ,
am
σ

)′
+ A−1~εwhere B is a matrix of size K ×m suh as Bks = e−2|tk−t⋆s |.The problem is that the number m of QTL and their positions t⋆1,...,t⋆m are unknown. So,we onsider a new disretization of [0, T ] orresponding to all the loations where we thinkthe QTL an be loated : 0 6 t̃1 < t̃2 < ... < t̃L 6 T . ã1, ..., ãL will be the orrespondinge�ets divided by σ. As a onsequene, we an rewrite the model :

A−1~Sn = A−1B̃ (ã1 , ... , ãL)
′ + A−1~ε (4)where B̃ is a matrix of size K × L suh as B̃kl = e−2|tk−t̃l|.At this time, we would like to know whih of the oe�ients ã1, ..., ãL are exatly 0 : itwill tell us where the QTL are loated. As a onsequene, a natural approah is to use theLASSO Tibshirani (1996) :

argmin(ã1,...,ãL)′

∥

∥

∥
A−1~Sn −A−1B̃ (ã1 , ... , ãL)

′
∥

∥

∥

2 provided that |ã1|+ ...+ |ãL| 6 ζ

ζ is a tuning parameter. It will ontrol the amount of shrinkage that is applied to theestimates Tibshirani (1996). A large (resp. small) ζ will lead to the estimation of a large(resp. small) number of QTL m. We will estimate ζ using ross validation as desribed inChapter 7 of Hastie and al. (2001).
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5.2. Computing the score and the Wald processesIn order to run our method, we need to alulate the sore proess disretized at markerloations. We remind that tk refers to the loation of marker k. Aording to Rabier (2010),the sore statisti on marker k veri�es :
Sn(tk) =

n
∑

j=1

(yj − µ)
{

2 1Xj(tk)=1 − 1
}

σ
√
n

(5)Aording to Prohorov and by ontiguity (f. Setion 7.1), the sore test an be obtained,replaing µ by ȳ :=
∑n

j=1 yj/n and σ by { 1
n−1

∑n
j=1(yj − ȳ)2

}1/2.Besides, let Wn(.) the Wald proess for n observations. As the model is regular and byontiguity, we have ∀t ∈ [0, T ], Sn(t) = Wn(t) + oP (1) where oP (1) is a sequene whihonverges to 0 in probability under H0 and Ha~t⋆ .As a onsequene, our method for QTL detetion is also suitable with the Wald proess
Wn(.) (just replae Sn by Wn in Setion 5.1). In this ase, aording to Rabier (2010) :

Wn(tk) = n q̂/







n
∑

j=1

(yj − ȳ)2







1/2where q̂ is the maximum likelihood estimator of q.
5.3. How to improve our methodOur method is based on the asymptoti result of the theorem. As a onsequene, we haveto onsider a number of observations n large enough to run the method. We remind thatwe have n observations sine we onsider n individuals. On the other hand, in the model(4), we have this time only K observations whih orrespond to the sore statisti (obtainedfrom the n individuals) on markers and deorrelated. Besides, there are L parameters ã1,..., ãL to estimate (if we exept ζ). We remind that t̃1,... ,t̃L denote the loation where weare going to look for QTL. In most of ases, as we don't have any idea where the QTL arelying, we will look for QTL on markers and between markers. If we onsider d positions ineah marker interval, then L = K(d + 1)− d. It omes L >> K. In suh a situation, theLASSO is suitable. Howewer, in order to improve the performane of the LASSO, it wouldbe nie if we ould deal with a large number of observationsK. The problem is thatK refersto the number of geneti marker whih is onstant. So, we have to �nd an alternative. Inan asymptoti study, the question is always the same : how many individuals n are neededto reah the asymptoti ? We have to keep in mind that even if n is very large, we willonly deal with K observations (ie. the number of markers) in model (4). As a result, wepropose to split the individuals into groups and to analyze these groups separately, that isto say omputing the sore (or Wald) proess for eah group. Obviously, we have to dealwith a number of individuals large enough in eah group in order to reah the asymptoti.We onsider groups of same sizes and we all I the number of groups : n/I is the number ofindividuals in eah group. Si

I(.) denotes the sore proess for the ith group. Aording tothe theorem, Si
I(.) is asymptotially the square of a �non linear interpolated proess" witha mean funtion ~m~t⋆,I(.) under the alternative, verifying

m~t⋆,I(t) =
{

α(t) m~t⋆,I(t
ℓ) + β(t) m~t⋆,I(t

r)
}

/

√

E

[

{2p(t)− 1}2
]



12 Céline Delmaswhere
m~t⋆,I(t

ℓ) =

L
∑

s=1

as e
−2|t⋆s−tℓ| / (σ

√
I) , m~t⋆,I(t

r) =

L
∑

s=1

as e
−2|tr−t⋆s | / (σ

√
I)Note that √

I at the denominator omes from the fat that the QTL e�ets have beende�ned as a funtion of the total number of individuals n.So, sine the groups are independent, we an easily adapt our method of Setion 5.1. Wehave now :
(

~S1
I , ... , ~SI

I

)′
=
(

~m~t⋆,I , ... , ~m~t⋆,I

)′
+ (~ε1 , ... , ~εI)

′where ~m~t⋆,I =
(

m~t⋆,I(t1) , m~t⋆,I(t2) , ... , m~t⋆,I(tK)
) , ~Si

I =
(

Si
I(t1) , S

i
I(t2) , ... , S

i
I(tK)

)and ~εi iid of size 1×K suh as eah ~εi ∼ N(0,Σ) with Σkk′ = e−2|tk−tk′ |.In the same way as previously (f. Setion 5.1) provided that this time ã1, ..., ãL are thee�ets divided by σ
√
I :
Γ
(

~S1
I , ... , ~SI

I

)′
= Ξ (ã1 , ... , ãL)

′
+ Γ ~ε (6)

Γ is a square matrix of size KI suh as Γ = Diag
[

A−1 , ... , A−1
].

Ξ is a olumn vetor of omponents A−1B̃ repliated I times.To onlude, we propose to use the LASSO Tibshirani (1996) :
argmin(ã1,...,ãL)′

∥

∥

∥

∥

Γ
(

~S1
I , ... , ~SI

I

)′
− Ξ (ã1 , ... , ãL)

′
∥

∥

∥

∥

2 provided that |ã1|+ ...+ |ãL| 6 ζ

6. SimulationsIn this Setion, we perform our method using Wald proesses (f. Setion 5.2) and 5 foldross validation for the LASSO. We onsider 100 populations of size n = 320. We use mainlyMATLAB to perform our method. We used R to perform The LASSO with pakage LARSof Hastie and Efron. Composite Interval Mapping was performed using (R/qtl Broman andal. (2003)).
6.1. How does our method perform?In order to illustrate the performanes of our method, we onsider a sparse map whihonsists of 6 geneti markers equally spaed every 20M on a hromosome of length T =
100M. We look for a QTL every 5M. In order to make groups, we have to �nd a goodompromise between having enough individuals in eah group to reah the asymptoti, andhaving a large number of groups to inrease the performanes of the LASSO. We split hereour 320 individuals into 8 groups of 40 individuals in order to improve the method (f.Setion 5.3). Indeed, it is reasonable to onsider the asymptoti to be reahed with 40individuals (Rabier (2010)). As a onsequene, we have now L = 21 parameters to estimatewith 6× 8 = 48 observations (6 markers and 8 groups).We study several situations with 2, 3 and 4 QTL. We will say that a QTL is truly identi�edif the QTL is �nd in a neighbourhood of 5M of the true position (ie an interval of length
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10M entered on the true loation). Besides, in order to ount the number of QTL found,we have hoosen not to penalize if several QTL were found in the 10M intervals enteredon the true loations, whereas we have hoosen to penalize a lot for any QTL found outsideof the intervals. As a onsequene, we ount only one QTL if 2 or 3 QTL are found in the
10M intervals entered on the true loations and we ount one QTL for every QTL foundoutside these intervals.In Figure 4, we study a situation with 2 QTL loated on the hromosome. First, twoQTL linked in repulsion (ie with opposite signs) are loated at positions 10M and 70Mon the hromosome. We have to keep in mind that as our method is based on ontiguity,the QTL e�ets have to be lose to 0. However, we an see in Figure 4, that the methodgives good results even when the e�ets are not so lose to 0. Note that the heritability isindiated just for information but it is not linked to the performanes of our method sinethe bigger the e�ets are the bigger the heritability is. The number of QTL found is slightlygreater than 2, but it is reasonable sine we penalize a lot when we are outside of the QTLintervals. We obtain the same onlusions for the two QTL linked in oupling (ie. withsame signs) presented on the right side of Figure 4. Good performanes of the methods arealso illustrated in Figure 5 when 3 and 4 QTL are loated on the hromosome.
6.2. Comparison with the Composite Interval MappingWe propose here to ompare our method with the Composite Interval Mapping (CIM) ofJansen (1993) and Zeng (1994), largely used in the geneti ommunity. We remind thatCIM onsists in ombining interval mapping on two �anking markers and multiple regres-sion analysis on other seleted markers (Wu and al. (2007)). This way, the QTL not loatedin the marker interval tested don't a�et the test statistis anymore. As a onsequene, it ispossible to perform separately interval mapping in eah marker interval to test the preseneof a QTL in the interval. However, the hoie of the markers as ofators is very empirial: we don't know how to hoie the set of markers in a mathematial point of view.For the omparison between our method and CIM, we use the same on�guration as in Se-tion 6.1. We study several situations with 2, 3 and 4 QTL on the hromosome (see Figures6 and 7). We ompute 4 kinds of CIM. First, we onsider two ways of hoosing the ofators: CIM(20) (resp. CIM(40)) refers to CIM with markers onsidered as ovariates if theydo not belong to a window size of 20M (resp. 40M) of the position tested. Seondly, weonsider two ways of omputing the thresholds : one obtained using 1000 permutations andalled Shuff here (Churhill and Doerge (1994)), and another whih is obtained theoreti-ally under H0 (6.76 aording to Rabier (2010)).In order to ount the number of QTL for CIM, for eah marker interval, we ount one QTLif the supremum of the proess is above the threshold (it orresponds to the de�nition ofCIM). Besides, for CIM, we will say that a QTL is truly identi�ed if the QTL is �nd in aneighbourhood of 5M of the true position. For instane, if a QTL is loated at 10M, thesupremum in the marker interval (0M;20M) has to be obtained between 5M and 15M.Howewer, if we onsider a QTL loated at 40M (ie on the third marker), we will onsiderthat this QTL is truly identi�ed if the supremum in the marker interval (20M;40M) is ob-tained between 35M and 40M, or if it is obtained between 40M and 45M in the markerinterval (40M;60M).Aording to Figure 6, if we onsider 2QTL at 10M and 70M with e�ets −0.6 and 0.8,we an see that CIMH0

(20) is the best way to perform CIM : we �nd 1.84 QTL and the



14 Céline Delmastrue QTL are largely found. However, if we onsider the same 2 QTL but with e�ets 0.4and −0.6, CIMH0
(20) performs badly. CIMShuff (20) seems to the best way to performCIM : the true QTL are largely found but we �nd 3.26 QTL. If we onsider 3 QTL, thebest way to perform CIM is CIMShuff (40) but we �nd 4.97 QTL. As a onsequene, thehoie of the ofators and the hoie of the thresholds highly depends of the on�guration: CIM is very empirial. If now we have a look on our method in Figure 6, we obtain nieresults : the QTL are largely found and the number of QTL found is good whatever theon�guration studied. Same onlusions hold with 4 QTL (see Figure 7).

6.3. Our method is not affected by epistasisUntil now, we have supposed that the QTL e�ets were additives and that there were nointeration between them (f. Setion 2). However, there are many interations betweenloi in the genome (ie. epistasis). That's why we propose here to integrate interationsin the model onsidered. We remind that m refer to the number of additive QTL and qsto the QTL e�et of the sth additive QTL. Its position is t⋆s. We will all m̃ the numberof interations and q̃s the e�et of the sth interation. The loi orresponding to the sthinteration will be alled t̃2s−1 and t̃2s. In this ontext, the quantitative trait Y veri�es :
Y = µ +

m
∑

s=1

X(t⋆s) qs +

m̃
∑

s=1

X(t̃2s−1)X(t̃2s) q̃s + σεwhere ε is a Gaussian white noise.We introdue two new hypothesis :
Ha~t⋆, bt̃ : � there are m additive QTL loated respetively at t⋆1, ..., t⋆m and with e�et
q1 = a1√

n
, ..., qm = am√

n
where (a1, ..., am) ∈ R

m⋆and there are m̃ interations : between loi t̃1 and t̃2, ..., between loi t̃2m̃−1 and t̃2m̃, withe�ets respetively q̃1 = b1√
n
, ..., q̃m̃ = bm̃√

n
where (b1, ..., bm̃) ∈ R

m̃⋆ ".
H0, bt̃ : � there is not any additive QTL on [0, T ]and there are m̃ interations : between loi t̃1 and t̃2, ..., between loi t̃2m̃−1 and t̃2m̃, withe�ets respetively q̃1 = b1√

n
, ..., q̃m̃ = bm̃√

n
where (b1, ..., bm̃) ∈ R

m̃⋆ ".Proposition Under H0, bt̃ and under Ha~t⋆, bt̃

∀k Sn(tk) = Z⋆(tk) + oP (1) and Λn(tk) = {Z⋆(tk)}2 + oP (1)where Z⋆(.) is the Gaussian proess of the theorem (f. Setion 4.1) suh as Z⋆(.) is enteredunder H0, bt̃ and with the mean funtion m~t⋆(.) of the theorem under Ha~t⋆, bt̃.The proof is given in Setion 7.2. Aording to the proposition, our method whih is basedonly on points of the proess taken at marker positions, is not a�eted by epistasis. Indeed,under Ha~t⋆, bt̃, the mean funtion at marker position is the same as previously.Figures 8 to 11 illustrate this phenomenon. The same map as previously is onsidered.In Figures 8 and 9, we onsider two additive QTL on the hromosome : one with e�et
−0.6 at 10M and the other with e�et 0.8 at 70M. To begin, in Figure 8, we onsider oneinteration : we have hoosen to study an interation between the two QTL. We onsider twodi�erent e�ets for this interation (−0.4 and 0.7). Note that the orresponding heritabilityis mentioned (additive+interation). We an observe that the two additive QTL are largely



A new method for QTL detection 15found and the number of additive QTL found is good. Then, in Figure 9, we onsider thistime 10 and 20 interations (keeping the interation between the QTL with e�et −0.4). Theresults are still nie : the performanes of our method are not a�eted by the interations (asexpeted with the Proposition). Same onlusions hold with 4 additive QTL (see Figures10 and 11). Note that for Figure 11, we kept the same interation between QTL as on theleft side of Figure 10, and we added other interations.
6.4. Our method is suitable for dense mapTo onlude, we would like to mention that our method is also suitable for dense map (iea large number of geneti markers lose to eah other). In this ase, we will perform onlytests on geneti markers. In Figure 12, we onsider, as previously, a hromosome of length
T = 100M, but geneti markers are now loated every 5M. We look for QTL every 5M.We ompare here our method and a lassial LASSO method whih onsists of a linearmodel where the trait Y is the variable to explain and the regressors are the markers. Inorder to perform the lassial LASSO, we used 0.1 as a tuning parameter instead of 5 foldross-validation. It was a good ompromise (between the QTL found and their number)sine the results of the ross-validation were not good at all. Aording to the Figure(using the same rules to �ll the table as in Setion 6.1), we an see that our method giveslargely better results than the lassial LASSO. Note that our method is still theoretiallyuna�eted by any interations.
7. Proofs

7.1. Proof of the theoremWe will onsider values t, t⋆1, ..., t⋆m of the parameters that are distint of the markerspositions, and the result will be prolonged by ontinuity at the markers positions.Study under H0 :There is no QTL on the hromosome. The proof is fully given in Rabier (2010).Nevertheless, we remind that the sore test statisti for n observations veri�es at position
t :

Sn(t) =

n
∑

j=1

(yj − µ) (2 pj(t)− 1)

σ
√
n

√

E

[

{2p(t)− 1}2
]

(7)where E

[

{2p(t)− 1}2
]

= {α(t)}2 + {β(t)}2 + 2 α(t) β(t)e−2(tr−tℓ).It will be useful for the study of the general alternative.Study under Ha~t⋆ :There are several QTL loated on the hromosome. We suppose that the QTL e�ets areadditives and that there is no interation between them.In this ontext, the quantitative trait Y veri�es :
Yj = µ +

m
∑

s=1

Xj(t
⋆
s) qs + σεj (8)where εj is a Gaussian white noise.Let's introdue some notations :
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• ξ : number of �Marker intervals" whih ontain the QTL.
γ = 1, ..., ξ will refer to the di�erent intervals.

• mγ : number of QTL in the interval γ.
τ = 1, ...,mγ refers to the τth QTL in the interval γ.

• the sth QTL on [0, T ], an be rewritten, s = (τ, γ) =
{

∑γ−1
i=1 mi

}

+ τLet θa~t⋆ = (q1, ..., qm, µ, σ) and θ0~t⋆ = (0, ..., 0, µ, σ).After some alulations, the likelihood of (Y, X {t⋆ℓ(1,1)} , X
{

t⋆r(1,1)

}

, ..., X
{

t⋆ℓ(1,ξ)

}

, X
{

t⋆r(1,ξ)

})with respet to the measure λ⊗N ⊗ ...⊗N , λ being the Lebesgue measure, N the ountymeasure on N, veri�es :
L⋆(θa~t⋆) =

∑

(u1,...,um)∈{−1,1}m

f(µ+u1q1+...+umqm,σ)(y)

×
{(

ξ
∏

γ=1

A
{

t⋆ℓ(τ,γ) , t
⋆
(τ,γ)

}

[mγ−1
∏

τ=1

R
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

]

A
{

t⋆r(mγ ,γ)
, t⋆(mγ ,γ)

}

)

g⋆(~t⋆)

}where
us = u(τ,γ)

A
{

t , t⋆(τ,γ)

}

= r
{

t , t⋆(τ,γ)

}

1X(t)u(τ,γ)=−1 + r̄
{

t , t⋆(τ,γ)

}

1X(t)u(τ,γ)=1

R
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

= r̄
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

1u(τ,γ)u(τ+1,γ)=1

+ r
{

t⋆(τ,γ) , t
⋆
(τ+1,γ)

}

1u(τ,γ)u(τ+1,γ)=−1

g⋆(~t⋆) =
1

2

ξ−1
∏

γ=1

D
{

t⋆r(mγ ,γ)
, t⋆ℓ(1,γ+1)

}

D(t, t′) = r̄(t, t′) 1X(t)X(t′)=1 + r(t, t′) 1X(t)X(t′)=−1The likelihood L⋆
n(θa~t⋆) for n observations is obtained by the produt of n terms as above.Let Qn and Pn two sequenes of probability measures de�ned on the same spae (Ωn, An).

Qn (respetively Pn) is the law orresponding to the density L⋆
n(θa~t⋆) (resp L⋆

n(θ0~t⋆)). Wewill all the log likelihood ratio log dQn

dPn
. It veri�es : log dQn

dPn
= log

{

L⋆
n(θa~t⋆ )

L⋆
n(θ0~t⋆ )

}.As the model is di�erentiable in quadrati mean at θa~t⋆ and aording to the entral limittheorem :
log

(

dQn

dPn

)

H0→ N(−1

2
ϑ2, ϑ2) with ϑ2 ∈ R

+⋆By the iii) of Le Cam's �rst lemma, we have Qn ⊳ Pn.Let oPθ0
(1) be short for a sequene of random vetors that onverges to zeros in probabilityunder H0 (i.e. no QTL on the whole interval studied).Besides, aording to Rabier (2010) :

Λn(t) = {Sn(t)}2 + oPθ0
(1)



A new method for QTL detection 17where Sn(t) is given in formula (7).Let oPθ
0~t⋆

(1) be a sequene of random vetors that onverges to zeros if there is no QTL at
t⋆1, ..., t⋆m. Then, it is lear that :

Λn(t) = {Sn(t)}2 + oPθ
0~t⋆

(1)Let oPθ
a~t⋆

(1) be a sequene of random vetors that onverges to zeros if there are m QTLat t⋆1, ..., t⋆m. As Qn ⊳ Pn, aording to iv) of Le Cam's �rst lemma :
Λn(t) = {Sn(t)}2 + oPθ

a~t⋆
(1)So, alulations an be done with the sore test statisti.Aording to Rabier (2010), the sore test statisti at t an be obtained by a non linearinterpolation :

Sn(t) =
α(t) Sn(t

ℓ) + β(t) Sn(t
r)

√

E

[

{2p(t)− 1}2
]where α(t) = Q1,1

t +Q1,−1
t − 1 and β(t) = Q1,1

t −Q1,−1
t .Let m~t⋆(.) be the asymptoti mean funtion of the sore proess Sn(.). It omes :

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)

√

E

[

{2p(t)− 1}2
]Let alulate the quantities m~t⋆(t

ℓ) and m~t⋆(t
r).We remind that tk refers to the loation of marker k. Aording to Rabier (2010), the sorestatisti on marker k veri�es :

Sn(tk) =

n
∑

j=1

(yj − µ)
{

2 1Xj(tk)=1 − 1
}

σ
√
nAording to formula (8) :

Sn(tk) =
1√
n

n
∑

j=1

εj
{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

= S0
n(tk) +

1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
} (9)where S0

n(tk) is the sore obtained under H0 at loation tk.By the law of large number :
1

n

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

→ E

[{

m
∑

s=1

X(t⋆s) as

}

{

2 1X(tk)=1 − 1
}

]



18 Céline DelmasAording to Rabier (2010), we have :
E

[{

m
∑

s=1

X(t⋆s) as

}

{

2 1X(tk)=1 − 1
}

]

=

m
∑

s=1

as e
−2|t⋆s−tk|It omes :

m~t⋆(tk) =
1

σ

m
∑

s=1

as e
−2|t⋆s−tk|As a onsequene :

m~t⋆(t
ℓ) =

1

σ

m
∑

s=1

as e
−2|t⋆s−tℓ| , m~t⋆(t

r) =
1

σ

m
∑

s=1

as e
−2|t⋆s−tr |Weak onvergene of the sore proess :The proof is exatly the same as in Rabier (2010).

7.2. Proof of the proposition
m̃ is the number of interations and q̃s the e�et of the sth interation. The loi orre-sponding to the sth interation are t̃2s and t̃2s−1. In this ontext, the quantitative trait Yveri�es :

Y = µ +

m
∑

s=1

X(t⋆s) qs +

m̃
∑

s=1

X(t̃2s−1)X(t̃2s) q̃s + σε (10)where ε is a Gaussian white noise.We will onsider values of t̃1, ..., t̃2m̃ and t⋆1, ..., t⋆m distint of marker positions, and theresult will be prolonged by ontinuity.Let oPθ
0~t⋆,0t̃

(1) be a sequene of random vetors that onverges to zeros if there is no additiveQTL at t⋆1, ..., t⋆m and no interations between loi t̃1 and t̃2, ...., no interations betweenloi t̃2m̃−1 and t̃2m̃. In the same way as in the proof of the theorem, it is lear that :
Λn(tk) = {Sn(tk)}2 + oPθ

0~t⋆,0t̃
(1)where Sn(tk) is given in formula (5) of Setion 5.2.In order to adapt the proof of the theorem, we just have to onsider the likelihood of Y andthe �anking markers of the additive QTL (as previously) but we have to add the �ankingmarkers of t̃1, ...,t̃2m̃. The model is still di�erentiable in quadrati mean.Let oPθ

a~t⋆,bt̃
(1) be a sequene of random vetors that onverges to zeros if there are madditive QTL at t⋆1, ..., t⋆m and m̃ interations : loi t̃1 and t̃2, ...., loi t̃2m̃−1 and t̃2m̃.Then, aording to iv) of Le Cam's �rst lemma :

Λn(tk) = {Sn(tk)}2 + oPθ
a~t⋆,bt̃

(1)



A new method for QTL detection 19Aording to formula (10), we have :
Sn(tk) =

1√
n

n
∑

j=1

εj
{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
}

= S0
n(tk) +

1

σn

n
∑

j=1

{

m
∑

s=1

Xj(t
⋆
s) as

}

{

2 1Xj(tk)=1 − 1
}

+
1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
} (11)where S0

n(tk) is the sore obtained under the null hypothesis that there is no additive QTLand no interations on [0, T ] (same S0
n as in formula (9) of the proof of the theorem). A-ording to the proof of the theorem, we have 1

σn

∑n
j=1 {

∑m
s=1 Xj(t

⋆
s) as}

{

2 1Xj(tk)=1 − 1
}whih tends to m~t⋆(tk). Besides,

1

σn

n
∑

j=1

{

m̃
∑

s=1

Xj(t̃2s−1)Xj(t̃2s) bs

}

{

2 1Xj(tk)=1 − 1
}

→ E

[{

m̃
∑

s=1

X(t̃2s−1)Xj(t̃2s)bs

}

{

2 1X(tk)=1 − 1
}

]We have :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 2 E
[

X(t̃2s−1)X(t̃2s)1X(tk)=1

]

− e−2|t̃2s−t̃2s−1|If tk < t̃2s−1 < t̃2s , then :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0If t̃2s−1 < tk < t̃2s , then :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0As a onsequene :
E
[

X(t̃2s−1)X(t̃2s)
{

2 1X(tk)=1 − 1
}]

= 0It onludes the proof for under Ha~t⋆, bt̃. In order to obtain the result under H0, bt̃, we justhave to deal with ontiguity, onsidering the likelihood of Y and only the �anking markersof t̃1, ...,t̃2m̃ (ie the loi for the interations). Then, we do the same alulations as informula (11) but this time there is not anymore the additive term (ie the seond term). Itonludes the proof of the Proposition.
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loations (in M) (10 ; 70) (30 ; 80)QTL e�ets (−0.6 ; 0.8) (−0.8 ; 0.8) (0.4 ; −0.6) (0.6 ; 0.6) (0.6 ; 0.8) (0.6 ; 0.4)
h2 42% 47% 27% 50% 57% 41%QTL found (88% ; 100%) (100% ; 94%) (75% ; 96%) (97% ; 98%) (96% ; 100%) (100% ; 94%)nb of QTL found 2.49 2.71 2.46 2.49 2.42 2.68

Fig. 4. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects, their locations (h2 refers to the heritablities). 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM).
2 QTL lie on the chromosome. We look for QTL every 5cM. In the notation (a, b), a refers to the first
QTL and b to the second one.

nb of QTL 3 4loations (in M) (10 ; 40 ; 90) (10 ; 50 ; 70 ; 90)QTL e�ets (−0.6 ; −0.6 ; 0.4) (−0.6 ; −0.6 ; 0.6) (0.4 ; 0.4 ; 0.4 ; 0.4) (0.6 ; 0.6 ; 0.6 ; 0.6)
h2 50% 52% 61% 78%QTL found (94% ; 85% ; 56%) (94% ; 86% ; 86%) (77% ; 71% ; 96% ; 81%) (83% ; 66% ; 97% ; 81%)nb of QTL found 3.54 3.70 4.21 4.24

Fig. 5. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the number of QTL, their effects and their locations. 100 populations of n = 320
individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM). We look
for QTL every 5cM.



A new method for QTL detection 21nb of QTL 2 2 3loations (in M) (10 ; 70) (10 ; 70) (10 ; 40 ; 80)QTL e�ets (-0.6 ; 0.8) (0.4 ; -0.6) (0.4 ; 0.7 ; -0.8)
h2 42% 27% 48%this paper { QTL found (88% ; 100%) (75% ; 96%) (67% ; 87% ; 100%)nb of QTL found 2.49 2.46 3.53

CIMShuff (20)

{ QTL found (98% ; 28%) (81% ; 95%) (79% ; 79% ; 71%)nb of QTL found 4.36 3.26 4.92
CIMH0

(20)

{ QTL found (73% ; 97%) (9% ; 57%) (14% ; 70% ; 56%)nb of QTL found 1.84 0.7 3.99
CIMShuff (40)

{ QTL found (89% ; 87%) (76% ; 71%) (74% ; 100% ; 100%)nb of QTL found 4.86 4.38 4.97
CIMH0

(40)

{ QTL found (69% ; 77%) (13% ; 48%) (6% ; 100% ; 98%)nb of QTL found 3.29 1.70 4.08
Fig. 6. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL
found) as a function of the number of QTL, their effects, their locations and the method. CIMShuff

(resp. CIMH0
) refers to CIM using a permutation threshold (resp. threshold obtained with no QTL).

CIM(20) (resp. CIM(40)) refers to CIM with markers considered as covariates if they do not belong
to a window size of 20cM (resp. 40cM) of the position tested. 100 populations of n = 320 individuals
are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM). We look for QTL
every 5cM.QTL e�ets (-0.4 ; -0.7 ; 0.9 ; 0.8) (-0.8 ; -0.8 ; 0.8 ; 0.8) (-0.4 ; -0.4 ; 0.6 ; 0.8)

h2 66% 70% 58%this paper { QTL found (72% ; 68% ; 77% ; 100%) (97% ; 83% ; 57% ; 100%) (78% ; 54% ; 57% ; 100%)nb of QTL found 4.08 3.94 3.55
CIMShuff (20)

{ QTL found (59% ; 93% ; 96% ; 98%) (90% ; 96% ; 75% ; 96%) (53% ; 56% ; 86% ; 98%)nb of QTL found 4.87 5.00 4.52
CIMH0

(20)

{ QTL found (02% ; 71% ; 95% ; 97%) (95% ; 77% ; 86% ; 93%) (09% ; 06% ; 75% ; 100%)nb of QTL found 3.71 4.82 2.54
CIMShuff (40)

{ QTL found (63% ; 100% ; 59% ; 00%) (91% ; 100% ; 48% ; 24%) (68% ; 89% ; 41% ; 18%)nb of QTL found 4.81 5.00 4.82
CIMH0

(40)

{ QTL found (03% ; 84% ; 58% ; 00%) (86% ; 98% ; 52% ; 30%) (11% ; 32% ; 46% ; 14%)nb of QTL found 3.79 4.94 3.20
Fig. 7. Percentage of QTL truly identified (QTL found) and number of QTL found (nb of QTL found)
as a function of the QTL effects and the method. CIMShuff (resp. CIMH0

) refers to CIM using
a permutation threshold (resp. threshold obtained with no QTL). CIM(20) (resp. CIM(40)) refers
to CIM with markers considered as covariates if they do not belong to a window size of 20cM (resp.
40cM) of the position tested. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (T = 100cM). 4 QTL lie on the chromosome at 10cM, 40cM,
70cM and 90cM. We look for QTL every 5cM.



22 Céline Delmase�et of the interation between the two QTL −0.4 0.7
h2 47% 54%additive QTL found (86% ; 98%) (80% ; 93%)nb of additive QTL found 2.61 2.53

Fig. 8. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the effect of the interaction. 100 populations of
n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM (T = 100cM).
2 additive QTL lie on the chromosome with effects −0.6 at 10cM and 0.8 at 70cM. We look for additive
QTL every 5cM.

nb of interations 10 20
h2 54% 59%additive QTL found (82% ; 93%) (74% ; 91%)nb of additive QTL found 2.60 2.57

Fig. 9. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (h2) considered. 100 populations of n = 320 individuals are considered. 6 genetic
markers are equally spaced every 20cM (T = 100cM). 2 additive QTL lie on the chromosome with
effects −0.6 at 10cM and 0.8 at 70cM. We look for additive QTL every 5cM.

interations between QTL (1 and 3 ; 2 and 4) (1 and 4 ; 2 and 3)e�ets of the interations (−0.4 ; −0.6) (−0.4 ; −0.6)
h2 71% 75%additive QTL found (61% ; 76% ; 64% ; 100%) (66% ; 70% ; 65% ; 100%)nb of additive QTL found 3.79 3.86

Fig. 10. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the interactions considered and their effects. 100
populations of n = 320 individuals are considered. 6 genetic markers are equally spaced every 20cM
(T = 100cM). 4 additive QTL lie on the chromosome with effects −0.4 at 10cM, −0.7 at 40cM, 0.9 at
70cM, 0.8 at 90cM. We look for additive QTL every 5cM.
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number of interations 6 10
h2 75% 77%additive QTL found (72% ; 79% ; 61% ; 100%) (58% ; 65% ; 57% ; 100%)nb of additive QTL 3.86 3.67

Fig. 11. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions and as a function of
the heritability (h2). 100 populations of n = 320 individuals are considered. 6 genetic markers are
equally spaced every 20cM (T = 100cM). 4 additive QTL lie on the chromosome with effects −0.4 at
10cM, −0.7 at 40cM, 0.9 at 70cM, 0.8 at 90cM. We look for additive QTL every 5cM.

nb of interations 0 10 20
h2 48% 60% 64%this paper { additive QTL found (100% ; 88% ; 100%) (100% ; 76% ; 93%) (99% ; 71% ; 91%)nb of additive QTL found 3.44 3.13 3.05LASSO { additive QTL found (83% ; 67% ; 72%) (82% ; 73% ; 71%) (88% ; 70% ; 71%)nb of additive QTL found 5.67 5.95 5.76

Fig. 12. Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL
found (nb of additive QTL found) as a function of the number of interactions, the heritability (h2) and
the method considered. 100 populations of n = 320 individuals are considered. 21 genetic markers
are equally spaced every 5cM (T = 100cM). 3 additive QTL lie on the chromosome with effects −0.8
at 5cM, 0.8 at 45cM, −0.8 at 70cM. We look for additive QTL every 5cM.
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