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Abstract— This paper deals with simple integrator consensus
problems. It is well-known that introducing a delay leads ingen-
eral to a reduction of performances or to instability. Therefore,
investigating the effect of time-delays in consensus probdms is
an important issue. The objective is the design of a improved
consensus algorithm for continuous-time multi-agent sysims.
The novel algorithm proposes to sampled, in an appropriate
manner, part of the multi-agent systems information such that
the algorithm converges, assuming that at each instant, agés
control laws will also consider the sampled past informatio of
its neighbors. Stability conditions expressed in terms of Ml’s
and based on algebraic communication matrix structure are
provided. The efficiency of the method is tested for differeh
network communication schemes.

. INTRODUCTION
systems with a communication network used between s

sors, actuators, and identifies control over networks as o
of the key future directions for control. Their primary

advantages includes their low cost, reduced weight, an
power requirements, simple installation and maintenancg

and higher reliability.
This means NCS's applications can be found in a lar

mote surgery, haptic collaboration over Internet, mutat
systems ([2]), automated highway systems, averaging
communication networks ([3]) and formation control ([4]).

Several results have appeared in recent literature that con
sider systems with different motion models, symmetry of
communication and network interactions. A recent review of

the vast literature in the field can be found in [5], [6] an

[7].

We consider a "consensus” algorithm (or protocol) a

ge
range of areas such as mobile sensor networks ([1]), r

Grenoble, France

and actuation, must be reevaluated before they can be dpplie
to NCSs. For most applications, delays lead to a reduce of
performances or can even lead to instability. However there
exists some cases where the introduction of a delay in the
control loop can help to stabilize a system which would not

be stable without it (see [9], [10]).

In the present article, we will prove that the simple inte-
grator consensus algorithm belongs to this class of systems
and provide a novel consensus algorithm based on sampling
approach. To do so, the classical consensus algotitftin=
—Lz(t) is modified into a new algorithm (see Figure 1),
whered € R andr > 0 are additional parameters. Note that
if & and/orr are taken as zeros, then the classical algorithm
is retrieved. As the delay is now a control parameter, we can

eq:hoose it of the most appropriate form. In this article, wi wi

fonsider a sampling delay(t) =t — tx, tx <t < tps1 ,

Affeady used in [11] or in [12] where thg,’s satisfies

O0=tg <t < .. <t <..

. corresponds to the sampling
Hstants. For the sake of si

mplicity, we will assume that the
ampling process is periodic, i.e. the difference between t
successive sampling instartis,; — ¢, = 7' , is constant.
e_From computational point of view, this choice is relevant
with respect to the introduction of a constant defagince

in the sampling delay case, only one data is held in the
MNori .

algorithm whereas in the case of a constant delay, all values
[t — 7 t] should be kept in memory.

of = in the interval

an interaction rule that specifies the information exchange
between an agent and all of its neighbors over the network
in order to reach an agreement regarding a certain quarftity o

interest that depends on the state of all agents. Howewer, th A method to design the algorithm parameters, including

use of a shared network introduces new challenges, such;gs appropriated sampling period T, on a “optimal” way is

delays over communications, packet losses or even Commykynosed based on a LMI's formulation. The communication
nication blackout, witch can dramatically affect "consesi's graphs are supposed to be directed and undirected.

convergence rate and cooperative control laws efficiency This paper is organized as follows: Section 2 presents the

([8]). Here, we consider that agents are assumed t0 Obgyohiem treated in this article. Section 3 will be dedicated
a simple integrator model. _ , the establishment of the appropriated model, and in Sedtion
_ Conventional control theories with many ideal assumnge |l proceed to stability analysis of the algorithm. Sent
tions, such as synchronized control and nondelayed sensiggnc|ydes illustrating simulation results and performeanc
gnalysis, and finally, Section 6 will present our conclusion
and indicate possible future research efforts.

Fig. 1. Corresponding schema for the proposed algorithm.

This work was supported by the European Project FeedNetBac
http://www.feednetback.eu/.



Throughout the paper, the superscriptstands for matrix the previous algorithm is modified into a new algorithm
transpositionR™ denote thex-dimensional Euclidean space, defined by
andR™*™ is the set ofi x m real matrices. The sé&f* stands )
for the set of symmetric matrices &"*". I represents the #(t) = (=pd + (1 = 0)A)a(t) + 0 Az(ty), (4)

identity matr‘iz;l. Finally, for any matrix\/, the notatior(Mt)é whereA is the adjacency matrix of the communication graph.
denotes the™ line of M and A (M) represents theé As said before, there exists some cases where the intro-

eigenvalue of\/. The notatiory.| corresponds the Euclidean g, qtion of a delay in the control loop can have stabilizing
norm and, for any functiog : [—7, 0] — R", the notation properties.

4| corresponds tanaxge |- o [¢(6)]- _ Consider further that all the the sampling period is cortstan
For the graphG with N vertices and edge set given byand equal ta’. Then (4) can be written as:

E = {(i,j) : j € N;} the adjacency matrixd = A(G) = ' '

(a;j) is the N x N matrix given bya;; = 1, if (¢,j) € E and N (T

a;; = 0, otherwise. Thelegreed; of vertexi is defined as the &(t) = (=L — 6A)x(t) + 0 Az (ty) (5)

number of its neighboring vertices, i#. = #; : (i,j) € E. By the Leibnitz formula, we haver(ty) = z(t) —

Let A be theV x V diagonal matrix oid;’s. TheLaplacian — r* ;(5)ds, for all differentiable functions:. System (5) can

of G is the matrixL = A — A. For an undirected graph the g rewritten as:

Laplacian matrix is symmetric positive semidefinite. Zeso i

t
a simple eigenvalue of. (the corresponding eigenvector is i(t) = —La(t) — 5A/ i(s)ds. (6)
the vector of ones1) if and only if the associated directed t,
graph has a directed spanning tree. Note that the matrix./ — A corresponds to the Laplacian

A. Preliminary lemmas and definitions matrix. This representation is a way to understand how the
| der to clarify th tati definiti ; delay affects the consensus problem. From the point of view
nt_olr ?rb.?.tc ar_llflyb etp:ecsjer:] ation, a deninition of eXpo-,¢ agenti, the stater; is available at every timeé without

nentiai stabiity witl be stated here. . any delay. However the data coming from the other agents
Definition 1: ([13]) Let « > 0 be some positive, constant,

; . : | € N; are received by ageritafter a time-delay (samplin
real number. The system is said to be exponentially sta y ad y( Ping

Seriod) chosen for control.
with the decay ratev, or a-stable, if there exists a scalar )

F > 1 such that the solution(t; to, ¢) satisfies: )
|2t to, 9)] < Flolre o710, €N G ©
In the sequel we will say that a system dsstable if the
solution of the system are exponentially stable with a decay © ©
rate ay,. \@
[l. PROBLEM STATEMENT
Graph 0 Graph 1

In this paper the following problem in addressed. Consider
the classical simple integrator consensus algorithm Fig. 2. Corresponding graphs of the matrides and L.

xl(t) = ZjEN} aij(mj(ﬁk) — l‘i(l‘,)) 1€ {1, R N}, (2)

wherex represents the vector containing the agents varf>- Definition of an appropriate model
ables. This algorithm is distributed in the sense that each This section focuses on the definition of a suitable model-
vehicle needs only information from its neighbors. Moraove ing of the consensus algorithm (5) to analyze its convergenc
consensus algorithms can be archived asymptotically if anchowing that the vectorl is an eigenvector associated to
only if the graph associated to the Laplaciaias a directed the eigenvalue) of the Laplacian matrix, it is possible to
spanning tree (page 25 [14]). We then derive the control lavind a change of coordinatas= W such that:

i(t) = —La(t) 3)

with 2(t) = [21(t), .., 2nx ()]
In this paper we will proposed an improved algorithm for U

simple integrator agents. The goal is a performance corwherelU = [ U; ] =W~ andU; = (U)y. In the case of
paraison between the proposed and the classical algortihg1symmetriC matfix4, the rest of the Laplacian eigenvalues
where memory’s effects on system’s stability will be bringg e g positive. We denote them By< \» < ... < \y. It
forward. Assuming that there exists a constant and positi¥g,s means thaB < R® is a diagonal matrix Witﬁ—)\i for
scalary such that: graphs containing a directed spanning tree.

Z s — . The following lemma provides an appropriate way to

z_]_/j/a Ze{la"'aN}7 . . .
rewrite (6) based on the properties of the mattix

()

U(—pl + A)W = [ B 6],

0T 0

JEN;



Lemma 1: The system (6) can be rewritten in the follow- As seen previously, and fare [0, N — 1] we have

in.g " Z1(t) = (=N +0(Ni + ) z1i(t) — (N + ) z14(tr). (12)
Al) = (=B +(B+ MI))ZI(_) OB +ul)z(ty), (83) For sake of simplicity, také = 6(\; + ), and

Z(t) = —pza(t) + pza(ty), (8b)
5 i t) = —)\,‘ b i t)—b i tr). 13
wherez, € RV, z, € R and the matrixB in given in fult) = ( 0)zua(t) = beuilte) (13)

(11). By integrating the previous equation, we can have the
following recurrence equation

Proof: Consider system (6) iltent) = A, 0, T)Zli(tk) (14)

. = ’ t
][ ST LA o s o e e
T system’s (14) stablllty increases a$)\l, 0, T) decreases.
! In this section we will prove that by varyingandT values
A’ ] =UAW and A = (UAW)y. We can then ¢jqq6 to zero, we can achieve a performance improvement
rewrite (5) into two equations wherg = Ujz € RW-1D  for VA;, if
andz, = Uz € RY represent respectively th¥ — 1 first

where [

components and the last componentzoffrom (7), simple AN, 0,T)
matrix calculations lead us to 5T <0, for some 6 values (15a)
§A(N;,6,T)
———— <0, for some T values (15b)
|:i1t:|:UAW: |:B;‘T/JI 0] (9) 56
2 . From (14), by derivation ofdA();,d,T), we have
Using the Leibnitz formula, (5) can be rewritten as
4(t) = — Bz (t) + 5(3 ) [}z (s)ds, 0AN 0, T) _ {(_ A\t b)eHﬁwT} N (16a)
. (10) oT (*)\i + b)
Zo(t) = = ftk Zo(s)ds.
. . oy 38 ' (EXi+b)
The consensus prob!em is now expressed into an approprlate iy (=i (A + 1) i+ p . b(\; + 1)
form to perform stability criteria. In the case of a symmetri € (s +0)2 Chtb)  (h 10y
network, the matri¥V" is an orthogonal matrix which means ’ ' ’ (16b)

U= WT Then if the last column ofV is 3 1 , thenU; =
1/(BN) 1 which means that, corresponds to the average When we evaluate the previous equation for~ 0 and
of the position of all agents. This does not hold always fofor 4 ~ 0, respectively, we have

asymmetric communication network. SA(N;,8,T)

In the sequel, a stability analysis of the algorithm IST =-A<0 (17a)
proposed for any graph with a directed spanning tree, rePre&sA(\;, 6,7) o 1 P
sented by the Laplaciah. Requiring a directed spanning T =e (N +p)(T + )\—i) - ( X ) <0
tree is less stringent than requiring a strongly connected (17b)
and balanced graph ([14]). Also, an inherent assumption is
that all agents are synchronized and share the same clogls 4Qu0T) — _ ). is negative semi-definite for all value

This analysis is composed by two parts, one dealing witps 5, angw is also negative semi definite for small

the stability of the algorithm and another concerning th@ajyes of T, we can then conclude that for small values of
agreement of the agents. More particularly, we will proposgnd 7 system (14) tends to converge rapidly when compare

a method to choose appropriately the algorithm parametersyith the trivial algorithm. The pertinent problem of how to
andT for a givenL, considering a performance optimisation.chose theses parameters values has been rased here, and will

be treated in the next section.
I11. DOES THIS ALGORITHM ALWAYS IMPROVE

STANDARD PERFORMANCES® IV. STABILITY ANALYSIS

Assume that the Laplacian graph corresponds to a sym: Preliminary stability analysis
metric graph. LetB be the diagonal matrix of the Laplacian

eigenvalues defined before. We know that This section deals with the stability analysis of (8b). The

following lemma holds.
N 0 Lemma 2: The system defined in (8b) is stable for any

B o ] (11) sampling periodl” and anyd. The variablez, is constant

0 ce )\Nfl Vta 22(t> = 22(0) (18)
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(a) Exponential decay rate fa@¥o (b) Exponential decay rate faF

Fig. 3. Convergence rate of the consensus algorithm forralevalues of §,7") and for the communication graplisy and G1.

Proof: Considerk > 0 and anyt € [t tx+1[ and any for all scalarsT” andr € [0 T are given by
parameterd’, §. The previous ordinary differential equation (T —r
has known solutions of the form fa(T,7) = (227 — 1)/2q,

9o (T, 7) = 2T (1 — e7297) /20, (24)
29(t) = e Ont=ta) oy — 29(tg) (19) ha(T, 7) = é [62;;?1 _ 62a7i| )

whereC| € R represent the initial condition of the ordinaryThen, the consensus algorithm (5) with the paraméter

d_ifferential equation. The_initial condition is determéhat 5.4 the sampling perio@ is thusa—stable. Moreover the
time ¢t = ¢;. We then obtairCy = 0 and thus consensus equ”ibrium is given by

Vt € [tk tk+1[, Zg(t) = Zg(tk) (20) x(oo) _ UQQ’J(O). (25)
Proof: Consider the consensus algorithm (5). Using

Then, we deduce . ; ) -
Lemma 1, the algorithm is rewritten as (8). The stability of

2o(tx) = 22(0) the second equation (8b) is ensured based on the discrete
) _ time Lyapunov theorem. Consider € R and a positive
which means that; is constant B definite matrixP € R*Y which defines a Lyapunov function

V for the discrete-time system defined by = z(t;) given

by V(k) = zF Pxzj,. The objective is to ensure that the
Consider the consensus algorithm (5) rewritten in the forimcrementAV,, is negative definite ([15]):

of (8). For z; dynamics analysis, we can establish

B. Stability analysis of the consensus algorithm

AV, =V(k+1)—e 2TV (k) < 0.

21(t) = A(6)z1 (1) + Aa(6) 21 (), (21)  we introduce here a novel type of functional for alle
With A(8) = (= B+ (B + uI)) and Ag(5) = —6(B + u). [t tral
The following theorem holds based on the result of [12]. Wa(t,zt) = fo (T, 7)CE (#)][S1¢0(t) + 2S274]
Theorem 1:Consider the proposed consensus algorithm +fa(T,7) ftt €T (s)MT RMo&(s)ds (26)
(5) associated to a given Laplaciamrepresenting a commu- Ho (T, 7)2l Xy,
nication graph with a directed spanning tree, a gisen 0,
§>0andT > 0. where ¢o(t) = z(t) — zg, &(s) = [z7(s) 2}]T and

Assume that there exigt > 0, R > 0 andS; andX € S™ H,(T,7) = e’i‘” Tl 1]

and two matricesS, € R™*™ and N € R?"*" that satisfy Denotel (¢, z;) = ﬁ(tigz(t) + é}l (£, 22).

Iy + ho (T, 0)MT X My + fo(T,0)I1, < 0, (22) Consid_er a positive scaldr < e < T and the functional
W, at time t, — e and ¢, + e. Since (o(tx + ¢) and
foa(Tk—1,Tr—1 —€) tend to0 ase — 0 for all « > 0, the

Hl + ha(Ta T)M2TXM2 ga(Ta T)N

* —9.(T,T)R <0, (23) following equalities are satisfied
where lime o Wa(tr — €24, —) = lime_o Wa(tr + €, 24, 1c) = 0.
I, = 2MTP(Mo + aMy) — MT (S Ms + 2S5 Ms) — 2NMs o (27)
Ty = MT (RMy + 251 M3 + 2S5 My), This ensures that the extended functiofalis continuous
with respect tot at all sampling instants and differentiable
and My = [ A(0) Aa(0) |, My = [I 0], My = over[ty tgs1[ andWe (tks1, o, y) — Wa (i, z,,) = 0. NO

[0 I],M3=][1I —I]. The functionsf., g. andh, additional constraint is introduced gfy andS,, W, is not



necessary positive definite within two sampling instants.
yields

AQV(k) = V(tk+1, J)tk+1) — 6_201T‘7(tk, l‘tk)
— ¢—20T f{:+1 d [620‘7—(62‘/(57-%5)} )
=e 2l [ 20T (V (s, 24) + 2aV (s, x5))ds
The rest of the proof consists in ensurifiig= V(s,:cs) +
20V (s,zs) < 0. From (24), we have, for aln € R
and for all7 € [0,T%], fo(T,7) + 2afa(T,7) = —1 and
4 (e2°T Hod) = hoA. This leads to

V(t ) = 227 (0 Pi(t) — ¢ (£)[S1Go(t) + 2504]
+2fa (T, T):t(t)T[RM()g(t) —+ 251{() (t) + ZSQl‘k]
t+ho (T, 7)2t Xx), + 202 (t) Pa(t)

- fttk fT(S)M()TRM()f(S)d5~
(28)
Consider a matrixV € R?"*" and the following equality

2N [2(t) — an] = /t [2Ni(s)] ds :/

tr tr

t

[2N Moé(s)] ds.
(29)

Since R > 0 and consequently non singular, a classical

bounding ensures that for all € [tx, tr41][ and for all
s € [tg, t]

| This leads to (22) and (23) using the Schur complement.
The global algorithm (8) is then exponentially stable with a
decay ratex. Moreover,z; — 0 andz; — 22(00), and thus
the consensus equilibrium is

—

= z3(c0) 1.

2(00) = Wa(oo) = [W1 1] [ On—1x1 ]

22(00)

The proof is concluded by noting that = Usx and that
z9(00) is expressed in (18) [ ]

V. EXAMPLES

Cooperative control of under-water vehicles network under
varying-topology and communications constraints havenbee
studied in order to implement the proposed algorithms.
Consider a set of six and four agents connected through,
respectively, the undirected and directed graphs shown in
Figure 2.

To each graph is associated a Laplacian matrix given by

26T ()N Mo&(s) < ET#)NRINTE(E) + €1 (s) MT RMo&(s).

Integrating the previous inequality ovgy,, ¢], the following
inequality is obtained

— [ €7 () M RMo&(s)ds < —267 ()N [a(t) — 4]
7T ()NRINTE(),
(30)

Noting that

o(t) = Ax(t) + Agw(ty) = Mo&(t), x(t) = Mi&(t),
x(ty) = M2b(t), Co(t) = x(t) — x(ty) = M3&(t),

and adding (30) to (28), the following inequality is obtaine
for all ¢ € [tg, trt1]

V(t,x:) < ET) [ 4 folT, 7))y + TNR™NTIE().
(31)
The previous inequality does not depend linearlyrobut
on bothr and a non linear function of, f,(T, ).

-1 05 0 05 0 05
05 -1 05 0 0 0
;_| 0 05 105 0 0
"1 0 0 05 -1 05 0 |’
0 0 0 05 —1 05
05 0 0 0 05 —1
-1 1 0 0
0 -1 1 0
Li=1 9 o -1 1
1 0 0 -1

For simulations purposes we took as initial conditions:
zF(0) =[3025 150 —10 —20] andz7 (0) = [30 25 15 0].
Those two graphs are balanced, witch implies that consensus
equilibrium value will be defined as the average of initial
conditions presented just before.

The objective is to find the highest value far(on the
vertical axis) that guarantees algorithm (5) convergence.
Figure 3, as a 3-D representation of stability results,
shows the maximum convergence rate satisfying Theorem
1 for several values of andT', and for Ly and L;, with
T € [0,1.5]s and o € [0,2]. We can identified a crest for
specific values ofd, T') meaning a improved behavior, and

The solution proposed here is to use the convexity propertie best positive value af is obtained whenT)=(2;0.32)

of the exponential function ensuring thet®*™ > 1 + 2ar.

Consequently, the following upper-bound is obtained
7 < (27 —1)/2a < e227(1 — e 297) 20, < go (T, 7).

Since R, consequenthy? ! is positive definite, we have

V(t,2) <T@ + folT, 72 + go(T, 7)NRTINTIE().

To prove thatV is negative definite for alt, a convexity
property is employed. Since the previous inequality isdine

with respect tor, it is necessary and sufficient to ensure th

negativity at the edges. This leads to

Hl + fa(Ta O)HQ < 0;
I + go(T, T)YNR™NT < 0.

and ¢,T)=(2;0.2), for graph7y, and graph(z; respectively.
The stability conditions proposed in this article are suf-
ficient but not necessary conditions. Optimality is obtdine
for a certain value ofd, T'), and once it changes, this leads
to a reduction of performances, as it will be shown in the
following.
Figure (4) shows simulations of the classical algorithm (3)
as well as from the algorithm (5) consideridg, L, and
for several values of andT'. The aim here is to compare
systems performances with two different approaches and

efustify the interest of the proposed algorithm. Figure Bja-

show simulation results of the classical consensus algurit
Figure 4(c-d) show simulation results using the optimat pai
(6,T) according to Theorem 1 and recovered on Figure 3.We
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Fig. 4. System’s behavior for different settings

can see that they correspond to a faster algorithm whef] D. Dimarogonas and K. Kyriakopoulos, “A connection beam for-

compared with the trivial algorithm. In Figure 4(e-f), we

kept the optimal value of" and changed value. Finally,
for Figure 4(g-h), we kept the optimal value®and changed

T value. In 4(c-d-e-f) we can then see that convergenc
rate decreases when compared to the others results. t's al

possible to observe that the agreement value for the modified
[7] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consesniguob-

algorithm remains the average of the initial conditions.

VI. CONCLUSION

The influence of a sampled delays in consensus algd®]

rithms for simple integrator agents have been studied.

optimisation of controller parameters is proposed so that
exponential stability of the solutions is achieved based on
discrete-time Lyaponov Theorem and expressed in terms ﬁfL]
LMI. Also, conditions for improved performances based on

Laplacian’s eigenvalues are provided here. Simulationltes
show the efficiency of the proposed algorithm, as well

the conservation of averaging properties. Further workhinig

include asynchronous study of such systems.

REFERENCES

[1] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperativenitol of
mobile sensor networks: Adaptive gradient climbing in aribated
environment,”In EEE Trans.Automat. Contwvol. 49, no. 8, pp. 1292—

1302, 2004.

[2] R. Olffati-Saber and R. Murray, “Consensus problems itwoek of
agents with switching topology and time delay$ZEE Trans. on

Automatic Contrgl vol. 49, no. 9, 2004.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distried averaging,”

in 42th IEEE Conference on Decision and Contr2003.

mation infeasibility and velocity alignment in kinematicuti-agent
systems,”Automatica vol. 44, no. 10, pp. 2648-2654, 2008.

R. Olfati-Saber, A. Fax, and R. Murray, “Consensus andpavation
in networked multi-agent systems?roceedings of the IEE®oI. 95,
no. 1, pp. 215-233, 2007.

6] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A surveyeeent results

in networked control systems,” iRroceedings of IEEEvol. 95, 2007,
p. 1.

lems in multi-agent coordination/n American Control Conference
2005.

U. Muenz, A. Papachristodoulou, and F. Allgower, “Del@pustness
in consensus problemsTo appear in Automatiga2010.

K. Gu, V.-L. Kharitonov, and J. Chergtability of time-delay systems
Birkhauser, 2003.

] A. Seuret, C. Edwards, S. Spurgeon, and E. FridmantitStatput

feedback sliding mode control design via an artificial dizbp
delay,” |[EEE Trans. on Automatic Controbol. 54, no. 2, pp. 256265,
2007.

G. Rodrigues de Campos and A. Seuret, “Continous-timabh
integrator consensus algortihms improved by an appreps@atpling,”
274 |FAC workshop on Distributed estimation and Control in Net-
worked System£010.

A. Seuret, “A novel stability analysis of sampled-datgstems with
applications to multi-rate sampling and packet lossjbmitted to
Automatica 2010.

S.-I. Niculescu, C. E. D. Souza, L. Dugard, and J.-M. DitRobust
exponential stability and stabilization of uncertain sys$ with time-
varying delays,"lEEE Trans. on Automatic controlol. 43, no. 5, pp.
743-748, 1998.

W. Ren and R. W. BeardDistributed Consensus in Multi-vehicle
cooperative Control: theory and applicatians Springer, 2008.

E.I. Verriest and W. Michiels, “Stability analysis dhear systems with
stochastically varying delays3ystems and Control Letterol. 58, no.
10-11, pp. 783-791, 2009.



