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Abstract— This paper deals with simple integrator consensus
problems. It is well-known that introducing a delay leads ingen-
eral to a reduction of performances or to instability. Therefore,
investigating the effect of time-delays in consensus problems is
an important issue. The objective is the design of a improved
consensus algorithm for continuous-time multi-agent systems.
The novel algorithm proposes to sampled, in an appropriate
manner, part of the multi-agent systems information such that
the algorithm converges, assuming that at each instant, agent’s
control laws will also consider the sampled past information of
its neighbors. Stability conditions expressed in terms of LMI’s
and based on algebraic communication matrix structure are
provided. The efficiency of the method is tested for different
network communication schemes.

I. I NTRODUCTION

Network control systems (NCS) are spatially distributed
systems with a communication network used between sen-
sors, actuators, and identifies control over networks as one
of the key future directions for control. Their primary
advantages includes their low cost, reduced weight, and
power requirements, simple installation and maintenance,
and higher reliability.

This means NCS’s applications can be found in a large
range of areas such as mobile sensor networks ([1]), re-
mote surgery, haptic collaboration over Internet, multi-robot
systems ([2]), automated highway systems, averaging in
communication networks ([3]) and formation control ([4]).
Several results have appeared in recent literature that con-
sider systems with different motion models, symmetry of
communication and network interactions. A recent review of
the vast literature in the field can be found in [5], [6] and
[7].

We consider a ”consensus” algorithm (or protocol) as
an interaction rule that specifies the information exchange
between an agent and all of its neighbors over the network
in order to reach an agreement regarding a certain quantity of
interest that depends on the state of all agents. However, the
use of a shared network introduces new challenges, such as
delays over communications, packet losses or even commu-
nication blackout, witch can dramatically affect ”consensus”
convergence rate and cooperative control laws efficiency
([8]). Here, we consider that agents are assumed to obey
a simple integrator model.

Conventional control theories with many ideal assump-
tions, such as synchronized control and nondelayed sensing
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and actuation, must be reevaluated before they can be applied
to NCSs. For most applications, delays lead to a reduce of
performances or can even lead to instability. However there
exists some cases where the introduction of a delay in the
control loop can help to stabilize a system which would not
be stable without it (see [9], [10]).

In the present article, we will prove that the simple inte-
grator consensus algorithm belongs to this class of systems
and provide a novel consensus algorithm based on sampling
approach. To do so, the classical consensus algorithmẋ(t) =
−Lx(t) is modified into a new algorithm (see Figure 1),
whereδ ∈ R andτ ≥ 0 are additional parameters. Note that
if δ and/orτ are taken as zeros, then the classical algorithm
is retrieved. As the delay is now a control parameter, we can
choose it of the most appropriate form. In this article, we will
consider a sampling delay,τ(t) = t − tk, tk ≤ t < tk+1 ,
already used in [11] or in [12] where thetk ’s satisfies
0 = t0 < t1 < ... < tk < ... corresponds to the sampling
instants. For the sake of simplicity, we will assume that the
sampling process is periodic, i.e. the difference between two
successive sampling instantstk+1 − tk = T , is constant.

From computational point of view, this choice is relevant
with respect to the introduction of a constant delayτ since
in the sampling delay case, only one data is held in the
algorithm whereas in the case of a constant delay, all values
of x in the interval[t − τ t] should be kept in memory.
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Fig. 1. Corresponding schema for the proposed algorithm.

A method to design the algorithm parameters, including
the appropriated sampling period T, on a ”optimal” way is
proposed based on a LMI’s formulation. The communication
graphs are supposed to be directed and undirected.

This paper is organized as follows: Section 2 presents the
problem treated in this article. Section 3 will be dedicatedto
the establishment of the appropriated model, and in Section4
we will proceed to stability analysis of the algorithm. Section
5 includes illustrating simulation results and performance
analysis, and finally, Section 6 will present our conclusions
and indicate possible future research efforts.



Throughout the paper, the superscript ‘T ’ stands for matrix
transposition,Rn denote then-dimensional Euclidean space,
andR

n×m is the set ofn×m real matrices. The setS
n stands

for the set of symmetric matrices ofR
n×n. I represents the

identity matrix. Finally, for any matrixM , the notation(M)i

denotes theith line of M and λk(M) represents thekth

eigenvalue ofM . The notation|.| corresponds the Euclidean
norm and, for any functionφ : [−τ, 0] → R

n, the notation
|φ|τ corresponds tomaxθ∈[−τ, 0] |φ(θ)|.

For the graphG with N vertices and edge set given by
E = {(i, j) : j ∈ Ni} the adjacency matrixA = A(G) =
(aij) is theN×N matrix given byaij = 1, if (i, j) ∈ E and
aij = 0, otherwise. Thedegreedi of vertexi is defined as the
number of its neighboring vertices, i.e.di = #j : (i, j) ∈ E.
Let ∆ be theN ×N diagonal matrix ofdi’s. TheLaplacian
of G is the matrixL = ∆−A. For an undirected graph the
Laplacian matrix is symmetric positive semidefinite. Zero is
a simple eigenvalue ofL (the corresponding eigenvector is
the vector of ones,

−→
1 ) if and only if the associated directed

graph has a directed spanning tree.

A. Preliminary lemmas and definitions

In order to clarify the presentation, a definition of expo-
nential stability will be stated here.

Definition 1: ([13]) Let α > 0 be some positive, constant,
real number. The system is said to be exponentially stable
with the decay rateα, or α-stable, if there exists a scalar
F ≥ 1 such that the solutionx(t; t0, φ) satisfies:

|x(t; t0, φ)| ≤ F |φ|τe−α(t−t0). (1)

In the sequel we will say that a system isα-stable if the
solution of the system are exponentially stable with a decay
rateαg.

II. PROBLEM STATEMENT

In this paper the following problem in addressed. Consider
the classical simple integrator consensus algorithm

ẋi(t) =
∑

j∈Ni
aij(xj(tk) − xi(t)) i ∈ {1, . . . , N},

(2)
wherex represents the vector containing the agents vari-

ables. This algorithm is distributed in the sense that each
vehicle needs only information from its neighbors. Moreover,
consensus algorithms can be archived asymptotically if and
only if the graph associated to the LaplacianL has a directed
spanning tree (page 25 [14]). We then derive the control law:

ẋ(t) = −Lx(t) , (3)

with x(t) = [x1(t), .., xN (t)]T .
In this paper we will proposed an improved algorithm for

simple integrator agents. The goal is a performance com-
paraison between the proposed and the classical algortihm,
where memory’s effects on system’s stability will be bring
forward. Assuming that there exists a constant and positive
scalarµ such that:

∑

j∈Ni

aij = µ, i ∈ {1, . . . , N},

the previous algorithm is modified into a new algorithm
defined by

ẋ(t) = (−µI + (1 − δ)A)x(t) + δAx(tk), (4)

whereA is the adjacency matrix of the communication graph.
As said before, there exists some cases where the intro-

duction of a delay in the control loop can have stabilizing
properties.

Consider further that all the the sampling period is constant
and equal toT . Then (4) can be written as:

ẋ(t) = (−L − δA)x(t) + δAx(tk) (5)

By the Leibnitz formula, we havex(tk) = x(t) −
∫ t

tk

ẋ(s)ds, for all differentiable functionsx. System (5) can
be rewritten as:

ẋ(t) = −Lx(t) − δA

∫ t

tk

ẋ(s)ds. (6)

Note that the matrixµI −A corresponds to the Laplacian
matrix. This representation is a way to understand how the
delay affects the consensus problem. From the point of view
of agenti, the statexi is available at every timet without
any delay. However the data coming from the other agents
j ∈ Ni are received by agenti after a time-delay (sampling
period) chosen for control.
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Fig. 2. Corresponding graphs of the matricesL0 andL1.

A. Definition of an appropriate model

This section focuses on the definition of a suitable model-
ing of the consensus algorithm (5) to analyze its convergence.
Knowing that the vector

−→
1 is an eigenvector associated to

the eigenvalue0 of the Laplacian matrix, it is possible to
find a change of coordinatesx = Wz such that:

U(−µI + A)W =

[

B ~0
~0T 0

]

, (7)

whereU =

[

U1

U2

]

= W−1 andU2 = (U)N . In the case of

a symmetric matrixA, the rest of the Laplacian eigenvalues
are all positive. We denote them by0 < λ2 ≤ . . . ≤ λN . It
thus means thatB ∈ R

x is a diagonal matrix with−λi for
graphs containing a directed spanning tree.

The following lemma provides an appropriate way to
rewrite (6) based on the properties of the matrixL.



Lemma 1:The system (6) can be rewritten in the follow-
ing way:

ż1(t) = (−B + δ(B + µI))z1(t) − δ(B + µI)z1(tk), (8a)

ż2(t) = −µz2(t) + µz2(tk), (8b)

where z1 ∈ RN−1, z2 ∈ R and the matrixB in given in
(11).

Proof: Consider system (6)
[

ż1(t)
ż2(t)

]

= −

[

B ~0
~0T 0

] [

z1(t)
z2(t)

]

−

[

A′
1

A′
2

]
∫ t

t−τ

ż(s)ds,

where

[

A′
1

A′
2

]

= UAW andA′
2 = (UAW )N . We can then

rewrite (5) into two equations wherez1 = U1x ∈ R
(N−1)

andz2 = U2x ∈ R
N represent respectively theN − 1 first

components and the last component ofz. From (7), simple
matrix calculations lead us to

[

A1t

A2t

]

= UAW =

[

B + µI ~0
~0T µ

]

(9)

Using the Leibnitz formula, (5) can be rewritten as

ż1(t) = −Bz1(t) + δ(B + µI)
∫ t

tk

ż1(s)ds,

ż2(t) = −δµ
∫ t

tk

ż2(s)ds.
(10)

The consensus problem is now expressed into an appropriate
form to perform stability criteria. In the case of a symmetric
network, the matrixW is an orthogonal matrix which means
U = WT . Then if the last column ofW is β

−→
1 , thenU2 =

1/(βN)
−→
1 , which means thatz2 corresponds to the average

of the position of all agents. This does not hold always for
asymmetric communication network.

In the sequel, a stability analysis of the algorithm is
proposed for any graph with a directed spanning tree, repre-
sented by the LaplacianL. Requiring a directed spanning
tree is less stringent than requiring a strongly connected
and balanced graph ([14]). Also, an inherent assumption is
that all agents are synchronized and share the same clock.
This analysis is composed by two parts, one dealing with
the stability of the algorithm and another concerning the
agreement of the agents. More particularly, we will propose
a method to choose appropriately the algorithm parametersδ
andT for a givenL, considering a performance optimisation.

III. D OES THIS ALGORITHM ALWAYS IMPROVE

STANDARD PERFORMANCES?

Assume that the Laplacian graph corresponds to a sym-
metric graph. LetB be the diagonal matrix of the Laplacian
eigenvalues defined before. We know that

B = −







λi . . . 0
...

. . .
...

0 . . . λN−1






. (11)

As seen previously, and fori ∈ [0, N − 1] we have

ż1i(t) = (−λi + δ(λi +µ))z1i(t)− δ(λi +µI)z1i(tk). (12)

For sake of simplicity, takeb = δ(λi + µ), and

ż1i(t) = (−λi + b)z1i(t) − bz1i(tk). (13)

By integrating the previous equation, we can have the
following recurrence equation

z1i(tk+1) = A(λi, δ, T )z1i(tk), (14)

with A(λi, δ, T ) = exp(−λi+b)T −λi

−λi+b
+ b

−λi+b
. Note that

system’s (14) stability increases asA(λi, δ, T ) decreases.
In this section we will prove that by varyingδ andT values

close to zero, we can achieve a performance improvement
for ∀λi, if

δA(λi, δ, T )

δT
≤ 0, for some δ values (15a)

δA(λi, δ, T )

δδ
≤ 0, for some T values (15b)

From (14), by derivation ofA(λi, δ, T ), we have

δA(λi, δ, T )

δT
=

[

(−λi + b)e(−λi+b)T
] −λi

(−λi + b)
(16a)

δA(λi, δ, T )

δδ
= T (λi + µ)e(−λi+b)T

(

−λi

(−λi + b)

)

− e(λi+b)T

(

−λi(λi + µ)

(−λi + b)2

)

+
λi + µ

(−λi + b)
+

b(λi + µ)

(−λi + b)2

(16b)

When we evaluate the previous equation forT ≃ 0 and
for δ ≃ 0, respectively, we have

δA(λi, δ, T )

δT
= −λi ≤ 0 (17a)

δA(λi, δ, T )

δδ
= e−λiT (λi + µ)(T +

1

λi

) −

(

λi + µ

λi

)

≤ 0

(17b)

As δA(λi,δ,T )
δT

= −λi is negative semi-definite for all value
of δ, and δA(λi,δ,T )

δδ
is also negative semi definite for small

values of T, we can then conclude that for small values ofδ
andT system (14) tends to converge rapidly when compare
with the trivial algorithm. The pertinent problem of how to
chose theses parameters values has been rased here, and will
be treated in the next section.

IV. STABILITY ANALYSIS

A. Preliminary stability analysis

This section deals with the stability analysis of (8b). The
following lemma holds.

Lemma 2:The system defined in (8b) is stable for any
sampling periodT and anyδ. The variablez2 is constant

∀t, z2(t) = z2(0) (18)
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Fig. 3. Convergence rate of the consensus algorithm for several values of (δ, T ) and for the communication graphsG0 andG1.

Proof: Considerk ≥ 0 and anyt ∈ [tk tk+1[ and any
parametersT , δ. The previous ordinary differential equation
has known solutions of the form

z2(t) = e−δµ(t−tk)C0 − z2(tk) (19)

whereC0 ∈ R represent the initial condition of the ordinary
differential equation. The initial condition is determined at
time t = tk. We then obtainC0 = 0 and thus

∀t ∈ [tk tk+1[, z2(t) = z2(tk) (20)

Then, we deduce

z2(tk) = z2(0)

which means thatz2 is constant

B. Stability analysis of the consensus algorithm

Consider the consensus algorithm (5) rewritten in the form
of (8). For z1 dynamics analysis, we can establish

ż1(t) = A(δ)z1(t) + Ad(δ)ż1(tk), (21)

with A(δ) = (−B + δ(B + µI)) andAd(δ) = −δ(B + µI).
The following theorem holds based on the result of [12].

Theorem 1:Consider the proposed consensus algorithm
(5) associated to a given LaplacianL representing a commu-
nication graph with a directed spanning tree, a givenα > 0,
δ > 0 andT > 0.

Assume that there existP > 0, R > 0 andS1 andX ∈ S
n

and two matricesS2 ∈ R
n×n andN ∈ R

2n×n that satisfy

Π1 + hα(T, 0)MT
2 XM2 + fα(T, 0)Π2 < 0, (22)

[

Π1 + hα(T, T )MT
2 XM2 gα(T, T )N

∗ −gα(T, T )R

]

< 0, (23)

where

Π1 = 2MT
1 P (M0 + αM1) − MT

3 (S1M3 + 2S2M2) − 2NM3

Π2 = MT
0 (RM0 + 2S1M3 + 2S2M2),

and M0 =
[

A(δ) Ad(δ)
]

, M1 =
[

I 0
]

, M2 =
[

0 I
]

, M3 =
[

I −I
]

. The functionsfα, gα andhα

for all scalarsT andτ ∈ [0 T ] are given by

fα(T, τ) = (e2α(T−τ) − 1)/2α,
gα(T, τ) = e2αT (1 − e−2ατ )/2α,

hα(T, τ) = 1
α

[

e2αT
−1

2αT
− e2ατ

]

.
(24)

Then, the consensus algorithm (5) with the parameterδ
and the sampling periodT is thusα−stable. Moreover the
consensus equilibrium is given by

x(∞) = U2x(0). (25)
Proof: Consider the consensus algorithm (5). Using

Lemma 1, the algorithm is rewritten as (8). The stability of
the second equation (8b) is ensured based on the discrete
time Lyapunov theorem. Considerα ∈ R and a positive
definite matrixP ∈ R

2N which defines a Lyapunov function
V for the discrete-time system defined byxk = x(tk) given
by V (k) = xT

k Pxk. The objective is to ensure that the
increment∆Vα is negative definite ([15]):

∆Vα = V (k + 1) − e−2αT V (k) < 0.

We introduce here a novel type of functional for allt ∈
[tk tk+1].

Wα(t, xt) = fα(T, τ)ζT
0 (t)[S1ζ0(t) + 2S2xk]

+fα(T, τ)
∫ t

tk

ξT (s)MT
0 RM0ξ(s)ds

+Hα(T, τ)xT
k Xxk

(26)

where ζ0(t) = x(t) − xk, ξ(s) = [xT (s) xT
k ]T and

Hα(T, τ) = e−2ατ

α

[

τ
T

e2αT
−1

2α
− e2ατ

−1
2α

]

.

DenoteV̄ (t, xt) = xT (t)Px(t) + Wα(t, xt).
Consider a positive scalar0 < ǫ < T and the functional

Wα at time tk − ǫ and tk + ǫ. Since ζ0(tk + ǫ) and
fα(Tk−1, Tk−1 − ǫ) tend to0 as ǫ → 0 for all α > 0, the
following equalities are satisfied

limǫ→0 Wα(tk − ǫ, xtk−ǫ) = limǫ→0 Wα(tk + ǫ, xtk+ǫ) = 0.
(27)

This ensures that the extended functionalV̄ is continuous
with respect tot at all sampling instants and differentiable
over [tk tk+1[ andWα(tk+1, xtk+1

) − Wα(tk, xtk
) = 0. No

additional constraint is introduced onS1 andS2, Wα is not



necessary positive definite within two sampling instants. It
yields

∆αV (k) = V̄ (tk+1, xtk+1
) − e−2αT V̄ (tk, xtk

)

= e−2αT
∫ tk+1

tk

d
[

e2ατ(s)V̄ (s, xs)
]

= e−2αT
∫ tk+1

tk

e2ατ(s)( ˙̄V (s, xs) + 2αV̄ (s, xs))ds

The rest of the proof consists in ensuringṼ = ˙̄V (s, xs) +
2αV̄ (s, xs) < 0. From (24), we have, for allα ∈ R

and for all τ ∈ [0, Tk], ḟα(T, τ) + 2αfα(T, τ) = −1 and
d
dτ

(e2ατHα4) = hα4. This leads to

Ṽ (t, xt) = 2xT (t)P ẋ(t) − ζT
0 (t)[S1ζ0(t) + 2S2xk]

+2fα(T, τ)ẋ(t)T [RM0ξ(t) + 2S1ζ0(t) + 2S2xk]
+hα(T, τ)xT

k Xxk + 2αxT (t)Px(t)

−
∫ t

tk

ξT (s)MT
0 RM0ξ(s)ds.

(28)
Consider a matrixN ∈ R

2n×n and the following equality

2N [x(t) − xk] =

∫ t

tk

[2Nẋ(s)] ds =

∫ t

tk

[2NM0ξ(s)] ds.

(29)
Since R > 0 and consequently non singular, a classical
bounding ensures that for allt ∈ [tk, tk+1[ and for all
s ∈ [tk, t]

2ξT (t)NM0ξ(s) ≤ ξT (t)NR−1NT ξ(t) + ξT (s)MT
0 RM0ξ(s).

Integrating the previous inequality over[tk, t], the following
inequality is obtained

−
∫ t

tk

ξT (s)MT
0 RM0ξ(s)ds ≤ −2ξT (t)N [x(t) − xk]

+τξT (t)NR−1NT ξ(t),
(30)

Noting that

ẋ(t) = Ax(t) + Adx(tk) = M0ξ(t), x(t) = M1ξ(t),
x(tk) = M2ξ(t), ζ0(t) = x(t) − x(tk) = M3ξ(t),

and adding (30) to (28), the following inequality is obtained
for all t ∈ [tk, tk+1[

Ṽ (t, xt) ≤ ξT (t)[Π1 + fα(T, τ)Π2 + τNR−1NT ]ξ(t).
(31)

The previous inequality does not depend linearly onτ but
on bothτ and a non linear function ofτ , fα(T, τ).

The solution proposed here is to use the convexity property
of the exponential function ensuring thate2ατ ≥ 1 + 2ατ .
Consequently, the following upper-bound is obtained

τ ≤ (e2ατ − 1)/2α ≤ e2ατ (1 − e−2ατ )/2α,≤ gα(T, τ).

SinceR, consequentlyR−1 is positive definite, we have

Ṽ (t, xt) ≤ ξT (t)[Π1 + fα(T, τ)Π2 + gα(T, τ)NR−1NT ]ξ(t).

To prove thatṼ is negative definite for allτ , a convexity
property is employed. Since the previous inequality is linear
with respect toτ , it is necessary and sufficient to ensure the
negativity at the edges. This leads to

Π1 + fα(T, 0)Π2 < 0,
Π1 + gα(T, T )NR−1NT < 0.

This leads to (22) and (23) using the Schur complement.
The global algorithm (8) is then exponentially stable with a
decay rateα. Moreover,z1 → 0 andz2 → z2(∞), and thus
the consensus equilibrium is

x(∞) = Wz2(∞) = [W1
−→
1 ]

[

0n−1×1

z2(∞)

]

= z2(∞)
−→
1 .

The proof is concluded by noting thatz2 = U2x and that
z2(∞) is expressed in (18)

V. EXAMPLES

Cooperative control of under-water vehicles network under
varying-topology and communications constraints have been
studied in order to implement the proposed algorithms.
Consider a set of six and four agents connected through,
respectively, the undirected and directed graphs shown in
Figure 2.

To each graph is associated a Laplacian matrix given by

L0 =

















−1 0.5 0 0.5 0 0.5
0.5 −1 0.5 0 0 0
0 0.5 −1 0.5 0 0
0 0 0.5 −1 0.5 0
0 0 0 0.5 −1 0.5

0.5 0 0 0 0.5 −1

















,

L1 =









−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1









.

For simulations purposes we took as initial conditions:
xT

0 (0) = [30 25 15 0 −10 −20] andxT
1 (0) = [30 25 15 0].

Those two graphs are balanced, witch implies that consensus
equilibrium value will be defined as the average of initial
conditions presented just before.

The objective is to find the highest value forα (on the
vertical axis) that guarantees algorithm (5) convergence.
Figure 3, as a 3-D representation ofα stability results,
shows the maximum convergence rate satisfying Theorem
1 for several values ofδ and T , and for L0 and L1, with
T ∈ [0, 1.5]s and δ ∈ [0, 2]. We can identified a crest for
specific values of(δ, T ) meaning a improved behavior, and
the best positive value ofα is obtained when (δ,T)=(2;0.32)
and (δ,T)=(2;0.2), for graphG0 and graphG1 respectively.

The stability conditions proposed in this article are suf-
ficient but not necessary conditions. Optimality is obtained
for a certain value of(δ, T ), and once it changes, this leads
to a reduction of performances, as it will be shown in the
following.

Figure (4) shows simulations of the classical algorithm (3)
as well as from the algorithm (5) consideringL0, L1, and
for several values ofδ and T . The aim here is to compare
systems performances with two different approaches and
justify the interest of the proposed algorithm. Figure 4(a-b)
show simulation results of the classical consensus algorithm.
Figure 4(c-d) show simulation results using the optimal pair
(δ,T) according to Theorem 1 and recovered on Figure 3.We
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Fig. 4. System’s behavior for different settings

can see that they correspond to a faster algorithm when
compared with the trivial algorithm. In Figure 4(e-f), we
kept the optimal value ofT and changedδ value. Finally,
for Figure 4(g-h), we kept the optimal value ofδ and changed
T value. In 4(c-d-e-f) we can then see that convergence
rate decreases when compared to the others results. It’s also
possible to observe that the agreement value for the modified
algorithm remains the average of the initial conditions.

VI. CONCLUSION

The influence of a sampled delays in consensus algo-
rithms for simple integrator agents have been studied. An
optimisation of controller parameters is proposed so that
exponential stability of the solutions is achieved based on
discrete-time Lyaponov Theorem and expressed in terms of
LMI. Also, conditions for improved performances based on
Laplacian’s eigenvalues are provided here. Simulation results
show the efficiency of the proposed algorithm, as well as
the conservation of averaging properties. Further work might
include asynchronous study of such systems.
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