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Event-triggered sampling algorithms based on a Lyapunov function

Alexandre Seuret and Christophe Prieur

Abstract— Usually feedback laws are implemented in a pe-
riodic fashion on digital hardware. The main reason for using
this periodicity in the hardware comes from the difficulties
to analyze the stability of aperiodic or asynchronous systems.
However it also seems natural to hold the same control input
longer if the system behaves in a suitable way or shorter if the
system requires an updated input. In this paper, an algorithm
is suggested to sample the control input based on the behavior
of a Lyapunov-like function. This algorithm is called event-
triggered since the Lyapunov-like function directly depends on
the state of the systems.

I. INTRODUCTION

Over the years, research in control of nonlinear dynamical
systems has lead to many different tools to design globally
asymptotically stabilizing feedbacks, see e.g. [3], [5], [12],
[13]. In the quest for providing more flexible tools for
achieving the stabilization and performance tasks, research
efforts have focused on analyzing the effect of the switching
or on-line adaptation, in particular when implementing the
controllers in digital plateforms (see [1] and references
therein). This may complicate the analysis of the stability,
but also may reduce the cost, i.e. the number of times that
the feedback control uses the microprocessors, when closing
the loop in digital platforms. Traditionally, the sampling for
the controller is chosen periodic, since the analysis of the
discrete-time systems has been widely investigated for linear
systems [4]. Then several studies deal with the robustness
of sampled-data controllers with respect to uncertainties in
the sampling instants sequence [7], [8], [20]. These methods
ensure the stability of a linear sampled-data system if the
sampling period is included in a certain interval. These tech-
nics are very relevant but they consider the worst situation.
In recent years, an interesting method so-called Event-Based
Control suggests to adapt the sampling sequence to some
events concerning the state of the system [2], [10], [18],
[22].

One application of this kind of algorithms is for the
Networked Control Systems (see [11], [23]). Such systems
are controlled systems containing several distributed plants
which are connected through a communication network. In
this situation, the controlled system works in continuous-
time whereas the controller provides an discrete-time input
which is hold during a sampling period. In this situation, it is
relevant to reduce the among of control updates as suggested
in [2].
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To tackle this issue, the problem of the design of an event-
triggered algorithm is first rewritten in this paper as the
stability study of a system with a mixed continuous/discrete
dynamics (also called hybrid system), as considered e.g. [9],
[16], [17] in a different context. Using this framework and
the Lyapunov theory that is now well known on this kind
of nonlinear systems, we compute two new event-triggered
algorithms for the implementation of feedback controllers.
The first event-triggered algorithm makes a Lyapunov-like
function decrease (see Theorem 1 below for a precise state-
ment), whereas the second one allows, in general, to sample
less times the control loop to ensure the asymptotic stability
of the closed-loop system (see Theorem 2 below). These
results are first derived for nonlinear control systems for
which it is known a (nonlinear) stabilizing controller. Then
the method is particularized to linear control systems and
illustrated on (nonlinear and linear) systems borrowed from
the literature.

The paper is organized as follows. In Section II some
materials on hybrid systems are given, and the problem under
consideration in this paper is introduced. In Section III, two
event-triggered algorithms are given for nonlinear control
systems. Then both main results are applied to the linear
case in Section IV. Some numerical simulations illustrate the
stability results and the performances of both algorithms in
the nonlinear and in the linear cases (see Section V). Section
VI contains some concluding remarks and points out some
possible open research lines.

Notation. Throughout the article, the sets N, R+, Rn,
Rn×n and Sn denote respectively the sets of positive integers,
positive scalars, n-dimensional vectors, n × n matrices and
symmetric matrices of Rn×n. The notation | · | stands for
the Euclidean norm. Given a compact set A, the notation
|x|A = min{|x − y|, y ∈ A]} indicates the distance of the
vector x to the set A. The superscript ‘T ’ stands for matrix
transposition. A function µ is said to be of class K∞ if it
is continuous, zero at zero, increasing and unbounded. The
symbols I and 0 represent the identity and the zero matrices
of appropriate dimensions.

II. PROBLEM FORMULATION

Consider a continuous-time nonlinear system

ẋ = f(x, u),
x(t0) = φ0,

(1)

where x ∈ Rn and u ∈ Rm stand respectively for the state
variable and the input vector, φ0 ∈ Rn is the initial state and
f : Rn × Rm → Rn is a locally Lipschitz function.



Assume that the system (1) is globally asymptotically
stabilizable, i.e. that there exist a Lyapunov function V and
a state feedback control law ū such that the derivative of the
Lyapunov function along the trajectories of the closed-loop
system is negative definite. This means that:

Assumption 1: There exist a continuously differentiable
function V : Rn → R, some functions µ1, µ2 and µ3 in
K∞ and a continuous controller u : Rn → Rm such that
u(0) = 0 and for all x ∈ Rn,

µ1(|x|) ≤ V (x) ≤ µ2(|x|),
∇V (x).f(x, u(x)) ≤ −µ3(|x|).

The control law u has been designed in continuous-
time. This means that the (continuous)-time derivative of a
Lyapunov function is negative definite.

In practice, it is not realistic to implement a control law
in continuous-time. As the control input is computed in a
digital hardware, only a sampled version of the input is
implemented in the actuators. Generally, the sampling is
chosen periodic and with a small period so that the sampled
signal is very close to the continuous one. However the
computation of the control values is not done instantaneously.
It requires a minimum sampling period which guarantees that
the controller is able to compute the correct data on time.
Consequently, the use of a small sampling period requires an
efficient processor allowing to compute the control value in
short time. An alternative solution is to develop an algorithm
which triggers the sampling period with respect to the state
of the system, as shown in Figure 1. The contribution of this
paper is to let the system decide by itself if an update of the
control is needed or not.

 

Fig. 1. Control scheme with an event-triggered algorithm.

In order to clarify the notation and the problem under
consideration, a hybrid formulation of the sampled-data
system is proposed. It was indeed shown in [9], [16], [17]
that the sampled-data system can be rewritten as





ẋ = f(x, s),
ṡ = 0,
ṗ = g(x, s, p),

if (x, s, p) ∈ F ,





x+ = x,
s+ = u(x),
p+ = g0(x, s, p),

if (x, s, p) ∈ J ,

(2)

where s ∈ Rm represents the held value of the control input,
p ∈ Rq contains additional parameters, g : Rn×Rm×Rq →
Rq and g0 : Rn × Rm × Rq → Rq are two continuous

functions of appropriate dimensions, and F and J are two
subsets of Rn×Rm×Rq . These sets are respectively called
flow set and jump set and are degrees of freedom of the
event-triggered algorithm. The variable s represents the held
value of u(x), which is the control value that is implemented
over the sampling interval.

We recall some basic ingredients on hybrid system theory,
and on the notion of solutions of (2) (see [9], [16]). Due to
mixed discrete/continuous dynamics, a solution of (2) will be
defined on a mixed discrete/continuous time domain. More
precisely, a set E is a hybrid time domain if for all (T, J) ∈
E, E ∩ ([0, T ]× {0, 1, . . . J}) is a compact hybrid time
domain, i.e. it can be written as

J−1⋃

j=0

([tj , tj+1], j) ,

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ . A
solution x to (2) consists of a hybrid time domain dom and
functions x : dom → Rn, s : dom → Rm, and p : dom → R
such that (x, s, p)(t, j) is absolutely continuous in t for a
fixed j and (t, j) ∈ dom satisfying

(S1) for all j ∈ N and almost all t such that (t, j) ∈ dom,

x(t, j) ∈ F, ẋ(t, j) = f(x(t, j), s(t, j)),
ṡ(t, j) = 0,
ṗ(t, j) = g(x(t, j), s(t, j), p(t, j)),

(S2) for all (t, j) ∈ dom such that (t, j + 1) ∈ dom,

x(t, j) ∈ J, x(t, j + 1) = x(t, j),
s(t, j + 1) = u(x(t, j)),
p(t, j + 1) = g(x(t, j), s(t, j), p(t, j)).

Then, the state solution x is parameterized by (t, j) where
t is the ordinary time and j is an independent variable that
corresponds to the number of jumps of the solution. When
the state x(t, j) belongs to the intersection of the flow set
and of the jump set, then the solution can either flow or
jump. This parameterization may be omitted when there is
no ambiguity.

A solution x to (2) is said to be complete if dom is
unbounded, Zeno if it is complete but the projection of dom
onto R≥0 is bounded, and maximal if there does not exist
an other solution x̃ of (2) such that x is a truncation of
x̃ to some proper subset of dom. Hereafter, only maximal
solutions will be considered. For more details about this
hybrid systems framework, we refer the reader to [9], [16].
The following definition describes the requirements to prove
the global asymptotic stability of the solutions of (2).

Definition 2.1: Given a compact subset A of Rn×Rm×
Rq the hybrid system (2) is said to be
• stable to A: if for each ε > 0 there ex-

ists δ > 0 such that each solution (x, s, p) to
(2) with |(x(0, 0), s(0, 0), p(0, 0))|A ≤ δ satisfies
|(x(t, j), s(t, j), p(t, j))|A ≤ ε for all (t, j) ∈ dom;

• attractive to A: if every solution x to (2) is complete
and satisfies limt+j→∞ |(x(t, j), s(t, j), p(t, j))|A = 0;



• globally asymptotically stable to A: if it is both stable
and attractive to A.

Given an initial condition (φ0, s0, p0) in Rn×Rm×R, and
a solution (x, s, p) of (2) defined on a hybrid time domain
dom, the set of the sampling time instants, when the control
input is updated, (plus 0) is denoted T and is {tj}, where
tj is such dom = ∪j∈J ([tj , tj+1], j). Among other results,
we will prove in this paper some properties on the set T
depending on the choice of the event-triggered algorithm. In
particular, in our hybrid systems framework, T is at most
countable.

In this paper, different sets F and J are defined, and thus
different event-triggered algorithms are considered. Let, as a
first example, the particular case where p = τ ∈ R and such
that the dynamics of the system is rewritten, for any T > 0
as 




ẋ = f(x, s),
ṡ = 0,
τ̇ = 1,

if (x, s, τ) ∈ FT ,





x+ = x,
s+ = u(x),
τ+ = 0,

if (x, s, τ) ∈ JT ,

(3)

where FT and JT are the following subsets of Rn ×Rm ×
[0, T ]:

FT = {x, s, τ, such that τ ≤ T},
JT = {x, s, τ, such that τ ≥ T}. (4)

As shown in [9], the hybrid model expresses the case
of periodic sampling. In this simple algorithm, after each
jump, the solution is either at the equilibrium or has to
flow. It avoids the existence of Zeno solutions, and also
it reduces the complexity when implementing the event-
triggered algorithm. Of course, in general, the system (3)
is not globally asymptotically stable since the update of the
control law does not depend on the system position but is
done periodically. This motivates us to consider the following
problem:

Problem 1: Define appropriate sets F and J and dy-
namics of the variable p such that, after each jump of the
solutions of (2), the solutions have to flow, and such that (2)
is globally asymptotically stable.

III. EVENT-TRIGGERED ALGORITHM FOR NONLINEAR
SYSTEMS

A. A continuous-time decreasing function

In this section, the objective is to define flow and jump sets
which are based on the decay of the function in continuous-
time.

Theorem 1: Under Assumption 1, consider a given func-
tion µ of class K∞ such that µ(r) < µ3(r), for all r > 0.
Consider the flow and jump sets given by

F1 = {(x, s), ∇V (x).f(x, s) ≤ −µ(|x|)},
J1 = {(x, s), ∇V (x).f(x, s) ≥ −µ(|x|)}, (5)

and the associated event-triggered algorithm. Then the sys-
tem (2) with F = F1 and J = J1 (and without state p) is

globally asymptotically stable to the origin. Moreover, after
each jump of the solutions of this hybrid system, either the
state is the origin or the solution has to flow.

Proof. The proof of Theorem 1 is based on the decreasing
property of the function V given by Assumption 1, along the
solutions of (2), with F and J given by (5). See [17] for
analogous ideas for a different problem.

Given a switching time instant t0 ∈ T , denoting (with
a slight abuse of notation) x(t+0 ) the state after the jump
(and similarly for the other variables), using Assumption 1,
it yields

∇V (x(t+0 )).f(x(t+0 ), s(t+0 )) = ∇V (x).f(x(t+0 ), u(x(t+0 )))
≤ −µ3(|x(t+0 )|)
≤ −µ(|x(t+0 )|)− ε(|x(t+0 )|),

where ε(|x(t+0 )|) = µ3(|x(t+0 )|)−µ(|x(t+0 )|) is non-negative
and equals 0 only if x(t+0 ) is vanishing. Thus, after a jump,
two cases may occur:
1) either the state x is at the origin (and the same for the other
components), and then the solution remains at the origin;
2) or (x(t+0 ), s(t+0 )) belongs to F1 and is different to the
origin.

Consider now (x, s) in F1 \ {0}. Then we get

∇V (x).f(x, s) = ∇V (x).(f(x, s)− f(x, u(x)))
+∇V (x).f(x, u(x)),

and using Assumption 1, we obtain

∇V (x).f(x, s) ≤ −µ3(|x|)
+∇V (x).(f(x, s)− f(x, u(x))).

Then, the solution (x, s) of system (2) with F = F1 and
J = J1 stays in F1 until a state x = x∗ (if such a state
does exist) defined by

∇V (x∗).(f(x∗, s)− f(x∗, u(x∗))) = µ3(|x∗|)− µ(|x∗|).
Two subcases may occur.
2.a) If there exists such x∗, then the couple (x∗, s) belongs
to J1, and by definition of s+, (x∗+, s+) belongs to F1.
2.b) If there does not exist such x∗, then the solution of the
system (2) stays in F1.

For both cases, the derivative of V is negative while (x, s)
is in F1 and V is constant while (x, s) is in J1. This implies
that the system (2) with F = F1 and J = J1 is stable.

To prove the attractivity of the system (2) with F = F1

and J = J1, let us apply the LaSalle invariance property
for hybrid systems. Let us consider a solution of this hybrid
system which is included in a level set of the function V .
Let us show that this solution should be equal to 0.

The solution cannot jump (since after a jump, the solution
has to flow, and thus the value of V has to decrease). Given
a solution flowing for all time, due to Assumption 1, the
state x cannot stay at the level set of V . Thus the solution
has to be constant and equal to the origin. Therefore, by [9,
Theorem 23, page 64], the system (2) with F = F1 and
J = J1 is globally asymptotically stable. This concludes
the proof of Theorem 1. •



Remark 1: A main improvement of the proposed method
compared for example to [1], is that no Input-to-State Stabil-
ity (ISS) assumption for system (1) is needed. More precisely
the method that is suggested in [1] requires the existence of
functions α and γ of class K∞, such that, for all x in Rn,

∇V (x).f(x, s) ≤ −α(|x|) + γ(|u(x)− s|) .

Then the event-triggered algorithm is defined by a condition
on the error between the control value s and the controller
u that is:

|u(x)− s| ≤ γ−1(σα(|x|)),

where σ in (0, 1) is a tuning parameter. In the present article,
instead of an ISS assumption, only the global asymptotic
stability is needed. As remarked in [21] e.g., Assumption 1
is weaker than the ISS property, and it is sufficient to define
the event-triggered algorithm by the value of the derivative of
the Lyapunov function along the trajectories of the system.

◦
Remark 2: Another important issue concerns the pos-

sibility that the solution of the system for a given initial
condition, never reaches the set J1. In such situation, it
simply means that the system is already asymptotically stable
without any control (or with a constant control value) and
the control law does not need to be updated. This situation
is not taken into account in the method proposed in [1]. ◦

Remark 3: On the other side, the main drawback of the
method proposed in this article is the real time computation
of the derivative of the Lyapunov function V . ◦

Note that picking µ = 0 in Theorem 1 gives a partial result
and allows to design an event-triggered algorithm such that
the closed-loop system is globally stable. More precisely we
have

Proposition 1: Under Assumption 1, consider the flow
and jump sets given by

F ′1 = {(x, s), ∇V (x).f(x, s) ≤ 0},
J ′1 = {(x, s), ∇V (x).f(x, s) ≥ 0},

and the associated event-triggered algorithm. Then the sys-
tems (2) with F = F ′1 and J = J ′1 is globally stable.
Moreover, after each jump of the solutions of this hybrid
system, either the state is the origin or the solution has to
flow.

Proof. The proof follows the lines of Theorem 1. More
precisely, we may check that by selecting F = F ′1 and
J = J ′1, and by using Assumption 1, the derivative of
the Lyapunov function V is negative while the state of the
solution (x, s) of (2) is in F1 and is constant (x, s) is in J1.
This implies, with [9, Theorem 23, page 64], that the system
(2) with F = F1 and J = J1 is stable.

Finally, using Assumption 1 again, we note that, given a
solution of (2) with F = F ′1 and J = J ′1, after each jump
(if such a jump does exist), either the state is the origin or
the solution has to flow. •

B. A discrete-time decreasing function

In this section, the objective is to define flow and jump
sets which are based both on the decay of the function
in continuous-time and in discrete-time. A second event-
triggered algorithm is given by the following system





ẋ = f(x, s),
ṡ = 0,
v̇ = 0,
τ̇ = 1,

if (x, s, v, τ) ∈ F ,





x+ = x,
s+ = u(x),
v+ = λV (x),
τ+ = 0,

if (x, s, v, τ) ∈ J ,

(6)

where v is an additional state in R, λ ∈ (0, 1) . This is
system (2) with a particular choice of the function g and
g0. A design of an event-triggered algorithm for the control
system (1) is given by the following:

Theorem 2: Under Assumption 1, consider a sufficiently
large T > 0 and a function µ of class K∞ such that µ(r) <
µ3(r), for all r > 0. Consider the flow and jump sets given
by

F2 =
(F̄1

⋃ F̄2

) ⋂FT , J2 =
(J̄1

⋂ J̄2

)⋃JT ,

where
F̄1 = {(x, s, v, τ), (x, s) ∈ F1} ,
J̄1 = {(x, s, v, τ), (x, s) ∈ J1} ,
F̄2 = {(x, s, v, τ), V (x) ≤ v} ,
J̄2 = {(x, s, v, τ), V (x) ≥ v} ,

and where FT and JT are defined by (4). Then the system
(6) with the event-triggered algorithm derived from F = F2

and J = J2 is globally asymptotically stable to the set
{0} × {0} × {0} × [0, T ]. Moreover, after each jump of the
solutions of this hybrid system, either the state is the origin
or the solution has to flow.

Proof. The introduction of the sets FT and JT ensures
that there are at most T units of continuous time between
two jumps. Moreover, for each solution of the system (6)
with the event-triggered algorithm derived from F = F2

and J = J2, due to the discrete dynamics equation, after
each jump, the solution has to flow.

Note that since the flow set F2 and the jump sets J2 are
closed, and since the dynamics of the system (6) are con-
tinuous, then, with [9, Thereom S3], each maximal solution
is either complete (i.e. with a unbounded time domain) or
blows up in finite time.

Let us show, by stating a contradiction, that the solution
cannot blow up in finite time. To do that let us assume
that it is given a solution of (6) with the event-triggered
algorithm derived from F = F2 and J = J2 such that
the solution blows up in (hybrid) finite time. Inspecting the
variables x, s, v and τ , if the solution is blowing up in
finite continuous time, then the x-variable has to blow up in
finite continuous time (the other components are bounded).
However, by definition of F1, the V function cannot blow
up. Therefore, if there exists a blow up in (hybrid) finite time,



then it should blow up in the discrete time direction. Now
let us remark that between two jumps, due the dynamics of
the v variable, the V function cannot increase. It gives a
contradiction with the blow up of the x-variable in discrete
time.

Let us state now that the system (6) with the event-
triggered algorithm derived from F = F2 and J = J2 is
globally attractive to {0}×{0}×{0}×[0, T ]. To do that, let us
consider a solution (x, s, v, τ) of system (6) with the event-
triggered algorithm derived from F = F2 and J = J2.
Moreover let us denote T the set of (continuous) sampling
time instants, when the control input is updated (plus 0).

The set T = {tk} is infinite since the solution is complete,
and, between two jumps, there is at most T units of time. Let
us denoting Vk, and xk the value of the V function and of
the x-variable, when there is a jump. Due to Assumption 1
and the inequality µ(r) < µ3(r) for all r > 0, we have Vk <
Vk−1, for all k in N, and thus xk converges to zero when k
tends to the infinity. Now, by the continuous differentiability
of the functions in the right-hand side of the system (6),
we have the convergence of the s- and v-components of the
solution at the switching time instants. Thus, by definition
of the set F̄2, and since the v-variable converges to zero at
the switching time instants, the x-variable tends also to zero
when the hybrid time tends to the infinity. By the continuous
differentiability of the functions in the right-hand side of the
system (6), it concludes the proof of the attractivity of the
system (6) with the event-triggered algorithm derived from
F = F2 and J = J2 to the set {0} × {0} × {0} × [0, T ].

The local stability of the system (6) with the event-
triggered algorithm derived from F = F2 and J = J2

follows from the fact that between two switches the V
function does not increase and that the V function is bounded
by the v-variable between two switches.

This concludes the proof of Theorem 2. •
Remark 4: Compared to the event-driven algorithm

which is described in Theorem 1, the above one could lead
to a larger sampling period since it allows the function V to
be locally increasing. This is the main improvement of the
second algorithm with respect to the first one (as remarked
on the numerical simulations of Section V below). On this
other hand the performance and the convergence rate of
the system might be worst than using Theorem 1 since the
second algorithm allows an increase of the function V . Here
appears a tradeoff between the minimization of the number
of updates and the performance of the closed-loop system.
We will come back to this issue in the conclusion section. ◦

Remark 5: An important issue has to do with the choice
of the parameter λ. If λ is chosen too small, it may happen
that the solutions of the system never reaches F̄2. This
means that the event-driven algorithm defined by the sets
F2 and J2 is exactly the same than the one defined in
Theorem 1. Another interest of the event-driven algorithm
which is proposed in Theorem 2 is that there is no need to
ensure the existence of a particular value of λ such that the
sets F2 is not empty. ◦

IV. APPLICATION TO LINEAR SYSTEMS

A. A continuous-time decreasing function
Consider now a linear system of the form

ẋ = Ax + Bu, (7)

where x ∈ Rn and u ∈ Rm stand for the state variable
and the input vector. The matrices A and B are constant and
known and of appropriate dimensions. Let us assume that the
pair (A,B) is controllable. Then the proposed control law
for this system is u = Kx where K in Rm×n is such that
the matrix A + BK is Hurwitz. There also exist a positive
scalar α and a symmetric positive definite matrix P so that

P (A + BK) + (A + BK)T P < −2αP. (8)

Thus Assumption 1 holds with V (x) = xT Px and u(x) =
Kx for all x ∈ Rn. Rewriting the closed loop system in a
hybrid framework, we get:{

ẋ = Ax + Bs,
ṡ = 0,

if (x, s) ∈ F ,
{

x+ = x,
s+ = Kx,

if (x, s) ∈ J .
(9)

By noting that

∇V (x)f(x, s) =
[

x
s

]
Π1

[
x
s

]

where

Π1 =
[

PA + AT P + 2ᾱP PBK
(BK)T P 0

]
, ᾱ ∈ (0, α),

the following result follows readily from Theorem 1:
Proposition 2: Assume there exist a symmetric positive

definite matrix P in Rn×n, a matrix K in Rn×m and a
positive scalar α satisfying (8). Consider ᾱ ∈ (0, α) and
the flow and jump sets defined by

F1L =

{
(x, s),

[
x
s

]T

Π1

[
x
s

]
≤ 0

}
,

J1L =

{
(x, s),

[
x
s

]T

Π1

[
x
s

]
≥ 0

}
.

Then the system (9) with the event-triggered algorithm
derived from F = F1L and J = J1L is globally asymp-
totically stable to the origin. Moreover, after each jump of
the solutions of this hybrid system, either the state is the
origin or the solution has to flow.

B. A discrete-time decreasing function
Following the idea proposed in Theorem 2, we will

consider the hybrid system defined by



ẋ = Ax + Bs,
ṡ = 0,
v̇ = 0,
τ̇ = 1,

if (x, s, v, τ) ∈ F ,





x+ = x,
s+ = Kx,
v+ = λV (x),
τ+ = 0,

if (x, s, v, τ) ∈ J .

(10)



By applying Theorem 2, we obtain the following:
Proposition 3: Assume there exist a symmetric positive

definite matrix P in Rn×n, a matrix K in Rn×m and a
positive scalar α satisfying (8). Consider ᾱ ∈ (0, α) and
the flow and jump sets given by

F2L =
(F̄1L

⋃ F̄2L

) ⋂FT , J2L =
(J̄1L

⋂ F̄2L

)⋃FT ,

where

F̄1L = {(x, s, v, τ), (x, s) ∈ F1L} ,
J̄1L = {(x, s, v, τ), (x, s) ∈ J1L} ,
F̄2L =

{
(x, s, v, τ), xT Px ≤ v

}
,

J̄2L =
{
(x, s, v, τ), xT Px ≥ v

}
.

Then the system (10) with the event-triggered algorithm de-
rived from F = F2L and J = J2L is globally asymptotically
stable to the set {0} × {0} × {0} × [0, T ]. Moreover, after
each jump of the solutions of this hybrid system, either the
state is the origin or the solution has to flow.

C. Comments on the linear case

The event-triggered algorithms which are exposed above
do not provide any information of the duration while a
control law is held. In the sequel, a complementary analysis
is provided for the case of linear systems to give an upper-
bound and a lower bound of the holding times.

Let χ ∈ Rn be the value of x-component in the system
(10) with the event-triggered algorithm derived from F =
FiL and J = JiL, i = 1, 2, at an instant when the system
is jumping, i.e. χ = x(tj) for some tj ∈ T . In the case of
linear sampled-data systems, the relations between χ, x, s,
v and τ are given by

x(tk + τ) = Γ(τ)χ, s(tk + τ) = Kχ,
v(tk + τ) = λχT Pχ,

where Γ(τ) = eAτ +
∫ τ

0
eA(θ−τ)dθBK. For the sake of

simplicity, we will denote

X1(χ, τ) = (Γ(τ)χ, Kχ), for algorithm 1 and
X2(χ, τ) = (Γ(τ)χ, Kχ, v, τ), for algorithm 2

for any given χ ∈ Rn and T ∈ R+. Based on these linking
relations, bounds on the sampling periods can be provided.
This is stated in the sequel.

Proposition 4: Consider the linear system (10) with the
event-triggered algorithm derived from F = FiL and J =
JiL, i = 1, 2. Then, the difference between two successive
sampling instants is included in the interval [T i

min, T i
max]

defined as follows

T i
max = max

ρ∈Rn,|ρ|=1

{
max

Xi(ρ,τ)∈FiL

τ

}

T i
min = min

ρ∈Rn,|ρ|=1

{
max

Xi(ρ,τ)∈FiL

τ

}

Proof. Consider any state χ in Rn for a solution of system
(10) with the event-triggered algorithm derived from F =
FiL and J = JiL when a jump is occurring. By simple
computations, it is clear that if, for any τ > 0, Xi(χ, τ)

belongs to FiL then Xi(χ/|χ|, τ) also belongs to FiL. Then,
from the definition of T i

min and T i
max, the next update will

happen between these two bounds. •
V. NUMERICAL EXAMPLES

A. Nonlinear example

Consider the following nonlinear system borrowed from
[1], [3]: 




ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x1x2,

(11)

where (x1, x2, x3) and (u1, u2) stand respectively for the
state and for the control. A stabilizing controller is computed
in [3]. It is given by, for all (x1, x2, x3) in R3,

{
u1(x1, x2) = −x1x2 − 2x2x3 − x1 − x3,
u2(x1, x2) = 2x1x2x3 + 3x2

3 − x2.
(12)

A Lyapunov function for this system is computed in the same
reference. It is defined by, for all (x1, x2, x3) in R3,

V (x) = (x1 + x3)2/2 + (x2 − x2
3)

2/2 + x2
3.

Thus Assumption 1 holds. The simulation results are shown
in Figure 2 where three different numerical simulations are
done: 1) the closed-loop system in continuous-time, 2) and
the event-triggered algorithms which are presented in The-
orem 1, 3) and with Theorem 2. The following parameters
have been selected µ(x) = 10−3|x|4, λ = 0.2. The initial
conditions are x1(0) = −10, x2(0) = −5 and x3(0) = 5.
The simulation results are shown in Figure 2. The figure
contains the state, the function V , the variable τ defined in
(3), representing the sampling periods and the input variable.
The first and the second algorithms require respectively 20
and 14 sampling instants over a simulation time of 20sec.

B. Linear example

Consider the linear system (7) and the control u = Kx
studied in [14], [24] with

A =
[

0 1
0 −0.1

]
, B =

[
0

−0.1

]
, K =

[
3.75
11.5

]T

. (13)

Several robust stability conditions dedicated to the pre-
vious example of sampled-data systems can be found [6],
[8], [15], [19]. In these articles, the main idea is to provided
the largest upper-bound T so that the closed-loop system is
stable for any asynchronous samplings whose period is lying
in [0, T ]. It was shown in [19] that the system remains stable
with the upper-bound T = 1.729.

To provide an efficient event-triggered algorithm, the pro-
posed Lyapunov matrix is taken from [19] with T = 0.2
and

P =
[

21.213 10.843
10.843 20.666

]
, α = 0.17.

Figure 3 shows the simulations results of the closed system
using the continuous-time controller, and the event-driven
Propositions 2 and 3 with ᾱ = 10−3 and λ = 0.15. The
first and the second algorithms require respectively 12 and
10 sampling instants over a simulation time of 20sec.
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Fig. 2. Simulation of the nonlinear system (11) with the controller (12) in continuous-time (on the left) and in the sampled case following the event-
triggered algorithms given by Theorems 1 and 2 (respectively on the middle and on the right). From the top to down: time-evolution of the states, of the
V -function, of the τ -variables and of the control values.

Using Proposition 4, the algorithm derived from Proposi-
tion 2 leads to the following bounds on difference between
two successive sampling instants T 1

min = 0.978 and T 1
max =

6.96. Similarly, the algorithm derived from Proposition 3
leads to T 2

min = 1.02 and T 2
max = 14.91. Using both

event-triggered algorithms, it is possible to use samplings
whose length between two successive sampling instants
could be greater than the upper-bound obtained using robust
approaches from [6], [8], [15], [19]. This shows the main
interest of the proposed method.

VI. CONCLUSIONS

In this paper using a Lyapunov-like function, two al-
gorithms for the design of event-triggered algorithm are
designed. It is assumed that a stabilizing controller for the
continuous control system is given. Both event-triggered
algorithms need to consider a closed-loop system with a
mixed discrete/continuous dynamics (namely this is a hybrid
system). Some numerical simulations illustrate the stability
properties of both algorithms.

In a forecoming work, the performance issue should be
analyzed. It is remarked that the event-triggered algorithms
have a different performance. The first one seems to ensure
a good speed of convergence on numerical simulations,
whereas the second event-triggered algorithm allows less
jumps and thus needs to compute less often the control vari-
ables. The advantages and disadvantages of each algorithm
will be studied more precisely in a forecoming work, for
a theoretical point of view (e.g. by estimating a priori the

number of switches), or on applications (to understand which
algorithm is better depending on the application).
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