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About the trajectory synthesis to go back to nominal mode for a class of hybrid systems

Introduction

Reactive processes with equally continuous, discrete or hybrid features, may operate in different modes. They are in a nominal mode if all the process parts behave in a normal way. They are in a default mode if at least one of the different parts of the system does not behave in a normal way any more. For instance this is the case if a machine in a manufacturing process breaks down or if the level in a batch process tank oversteps the maximum or minimum allowed level. In this case, the security or the productivity decreases but the global process is not necessarily stopped. It is then a priority to find how to drive the system from its current default mode to one of its nominal mode as soon as possible.

This paper presents parts, dealing with region analytical description, of a new method which synthesizes such a trajectory for hybrid dynamical systems. The studied systems class is modeled by a hybrid automata with linear vector fields. The analysis is led in the state-space and is based on regions computations. The automata is composed of different phases. The initial phase models the system default mode and the final phase models the nominal mode the system must be driven to. The problem can be divided into two steps: a reachability analysis and a controller design.

The method presented in this paper extends Tittus's work [TIT 93], [TIT 98] on integrators hybrid systems to first order switching hybrid systems with linear vector fields. This evolution is important because we now can deal with a larger class of systems as, for example, the concentration dynamics in a batch system reactor. Firstly, a brief example with a system in a default mode which must be driven back to its nominal mode is presented in order to clearly fix the position of the problem.

Then, the useful theory basis which is necessary to solve the problem will be developed. In section 5.2., we will explain how the sets we use can be formally described by a inequations system. The corresponding algorithm will be then briefly described. Other points of the method are presented in [MAN 99a] as the extension criteria which are necessary to solve the reachability problem.

In the last section, we will illustrate the algorithm on the example presented in section 2 and show the results.

Illustration of the problem

The method explained in this paper will be illustrated on the two tanks batch process presented figure 1. The global constraints define the minimal and maximal levels (0m and 4m) during every operating phase for the two tanks. The nominal mode limits are such that the liquid height in each tank stays between a low level (2m) and a high level (2.1m). If this constraint is violated, the system will enter a default mode. In the example, we may assume that a breakdown on the valve V1 has lead the system in a default mode. The level in each tank is then less than 0.1m, i.e. they are almost empty. The question we must solve is to decide whether or not the nominal mode is reachable from this current default mode and what is a possible control sequence which achieves it, in case it is feasible. 

The hybrid modeling

The hybrid process is modeled by a hybrid automata [TIT 98], [ASA 95]. As well as Branicky unified model [BRA 94], autonomous and controlled jumps (continuous variable discontinuity) and autonomous and controlled switching (vector field discontinuity) may be represented.

Definition 1:

A hybrid automata HA is defined by a tuple HA=(V D , Q, Σc, µ 1 , µ 2 , µ 3 , Q m ): -V D is the real valued state variables set: V D = {x i , i ∈ {1, ..., n}}. x is the continuous state vector of the system: x=

[x 1 … x n ] T n D V ∈
. The continuous state x is continuously observable.

-Q is the possible phases set (or locations or discrete states) of the hybrid process: Q = {l j , j ∈ {1, ..., m}}. The system global state is given by the couple (x,l)∈ n D V ×Q.

-Σ is the events set. Σ = {δ i,j , i∈{1, …, m}, j∈{1, …, m}/i ≠ j}.

-µ 1 is the set of m vector fields associated with each phase l j . It models the dynamics of the state vector x: µ 1 = {µ 1 (l j ), j ∈ {1, ..., m}}, that is:

∀ ∈ = = l Q l x dx dt f x j j , ( )( ) ( ) 1 µ with f Lipschitz continuous.
µ 2 is the set of constraints for each phase:

{ } { } m ,..., 1 i / ) l ( i 2 2 ∈ µ = µ
. µ 2 (l j ) is the constraint for phase l j . It is a set of l boundaries described by the linear inequalities: C x ≤ d with dim(C)=lxn and dim(d)=lx1. It is not necessarily a state-space partition.

A constraint µ 2 (l j ) can not be violated, which means that the phase l j is left as soon as a constraint µ 2 (l j ) is going to be violated. A discrete transition can be either autonomous or controlled. If the constraint µ 2 (l j ) is going to be violated, a uncontrolled event occurs and the transition is autonomous, else a controlled event occurs and the transition is controlled.

-µ 3 is a set of functions associated to each phase transition:

{ } { } { } k j , m ,..., 1 k , m ,..., 1 j / ) l , , l ( k jk j 3 3 ≠ ∈ ∈ δ µ = µ
. It defines real valued variables jumps when a transition occurs.

Q Q ) l , l ( k j × ∈ ∀ :
if the phase transition exists, then δ jk is defined and

)) t ( x )( l , , l ( ) t ( x / : ) l , , l ( k jk j 3 k jk j 3 - + δ µ = → δ µ
if the phase transition does not exist, then δ jk is not defined and

) l , , l ( k jk j 3 δ µ
is not defined.

If µ 3 (l j , δ jk , l k )(x(t -)) ≠ x(t -), a state jump (or state discontinuity) occurs. -Q m is a set of marked phases, that is initial or final. Υ

In order to simplify the hybrid automata graphical representation:

-µ 1 (l j ) is not represented inside a phase if the vector field µ 1 (l j )(x)=dx/dt=0, that is if the state-variables are constant; -µ 2 (l j ) is not represented inside a phase if it is equal to the global constraint GC, marked phases are represented by double circles. x(t +)=x(t -)

x(t +)=x(t -) x(t +)=x(t -)
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Figure 2. Batch process model

All the possible behaviors of the batch process presented figure 1 are modeled figure 2. The state variables x 1 and x 2 are the liquid heights in the two tanks.

There are two types of valves. V1, V2 and V4 have a constant flow which is equal to d 1 , d 2 and d 4 . Valves V3 and V5 have a flow which is considered proportional with the level in the upstream tank (a 3 .x 1 and a 5 .x 2 ).

The operating constraints force either the valves V1, V3, V4 and V5 to be simultaneously open, which defines the phase 1, or the valves V2, V3, V4 and V5 to be simultaneously open, which defines the phase 2.

The maximum height in the tanks is 4m. The global constraint GC is then defined as: 4 x 0 ≤ ≤ . Every event of Σ is controllable.

Controllability for hybrid dynamic systems (HDS): theoretical basis

If it is possible to drive the process from the initial state to the final state the system is controllable [TIT 93], [TIT 98]. Let remember the fundamental definitions for the hybrid systems controllability. They will be useful to fix the reachability algorithm.

Definition 2:

A hybrid system (of any dimension) is controllable if and only if there exists at least one sequence of discrete control inputs (i.e. of controlled events) that gives an acceptable trajectory along some path in the hybrid automata from any initial state to any final state in a finite time and which respects all the state constraints. Υ

One or more state of the hybrid automata may not belong to the path, as well as one or more states may appear several times in the path. In this method, the reachability analysis is realized backwards, from the final state to the initial state.

The problem is to prove that a transition to any phase l i+1 of the path does not lead to constraint violation, that means that µ 2 (l i+1 ) is respected. The set of acceptable values for the continuous variables which respect µ 2 (l i ) and are included in µ 2 (l i+1 ) after the jump defined by the function ) l , , l (

1 i 1 i , i i 3 + + δ µ
must be calculated. This set will be named jump-set from phase l i to phase l i+1 and will be noted λ li→li+1 . Moreover, this jump-set from phase l i to phase l i+1 may be reached by the process continuous state with the continuous dynamic evolution µ 1 (l i ). Then, the jump-set can be extended to define the extended-jump-set from phase l i to phase l i+1 .

It is noted λext li→li+1 . These concepts are defined in definition 3 and 4 and illustrated figure 3. if l i and l i+1 are two consecutive phases of the hybrid automata, the jump-set from phase l i to phase l i+1 (λ li→li+1 ) is the intersection of the phase constraints µ 2 (l i ) with the inverse image region of the desired reachable set X by the inverse function (µ 3 (l i ,δ (i,i+1) , l i+1 )) -1 (X):

li+ 1 li µ 1 (li) ) l l ( 1 i i + → λ ) l l ( 1 i i ext + → λ X ) l ( 1 i 2 + µ ) l ( i 2 µ ) X )( l , , l ( 1 i 1 i , i i 1 3 + + - δ µ
∀x∈λ li→li+1 , µ 3 (l i ,δ (i,i+1) , l i+1 )(x) ∈ X ∀x∉λ li→li+1 , µ 3 (l i ,δ (i,i+1) , l i+1 )(x) ∉ X i.e. ) X )( l , , l ( ) l ( ) l l ( 1 i 1 i , i i 1 3 i 2 1 i i + + - + δ µ ∩ µ = → λ Υ
More detail will be given about X after the definition of the extended jump-set.

Definition 4: if l i and l i+1 are two consecutive phases of the hybrid automata, the extendedjump-set from phase l i to phase l i+1 (λext li→li+1 ), is the region inside the phase constraint µ 2 (l i ) such that λ li→li+1 is reachable by respecting the dynamic µ 1 (l i ), that is:

{ } ) l l ( )) t ( x )( l ( , t / ) l ( x ) l l ( 1 i i i 1 i 2 1 i i ext + + + → λ ∈ µ ∈ ∃ µ ∈ = → λ Υ We notice that λ li→li+1 ∈ λext li→li+1 .
Explanations about what is X can now be given. Let consider the path π=(l 1 , ... ,l i , l i+1 , l i+2 , ... , l f -1 , l f ). The process initial phase is l 1 and a possible process final phase is l f . The phase index i gives the occurrence order of the different phases in the path (and not the phases number of the model). The same phase can occur several times in the path. Now, let define what is the set X:

if l i = l f-1 then l i+1 is the final state l f of π and X is its constraint set: X = ) l ( f 2 µ if l i ≠ l f-1 then l i+1 is not the final state l f of π and X is the extended jump-set of the two next phases of the path: X= ) l l (

2 i 1 i ext + + → λ .
Then comes corollary 1:

Corollary 1: Given the discrete path π of the hybrid automata leading from the initial phase to a final phase, given i∈{1,…,m}, j∈{1,…,m}/

π ∈ i l , π ∈ j l are two consecutive discrete phases of π: - { } m ,..., 1 i ∈ ∃
, if λ li→li+1 = ∅, then the constraint 2 µ is not respected along the path and it is not possible to reach the final phase from the initial phase.

- { } m ,..., 1 i ∈ ∀
, if λ li→li+1 ≠ ∅, then the final phase is reachable from the initial phase along the path π in a finite time. Υ 5. Controllability of HDS: application to systems with linear vector fields

Assumptions and state-space trajectories

The problem is solved using an analytical approach in the state-space. In the following, except if something else is stated, the system is limited as follow:

Assumptions: -There are only two continuous state variables: x 1 and x 2 -The system has linear vector fields. Moreover the differential equations described by µ 1 are decoupled, accept converging solutions (which are traditional industrial cases) and are globally Lipschitz vector fields:

µ 1 1 1 1 2 2 2 ( ): & . & . l a x b a x b i x x 1 2 = - + = - + ⎧ ⎨ ⎩
with a j ≥ 0 -All the real state-variables in all phases must respect a minimum and a maximum value:

{ } max min j j j x x x , n ,..., 1 j ≤ ≤ ∈ ∀
. Thus the constraint for any phase ) l ( i 2 µ is a rectangle defined by horizontal and vertical lines.

First assumption leads to a 2 dimensional state-space problem but the two next theorems are easily extendable to any higher dimension. However it will not be possible to formally characterize these higher dimension systems [ASA 95] that is there are no formal equations which can exactly describe the shape of the regions we will have to deal with.

Third assumption is not a hard limitation because in practical, the constraints for a real variable are often given with a minimum and a maximum value.

In a 2 dimensional state-space, the value of a j ,

{ } 2 , 1 j∈ ∀
, leads to different cases.

Theorem 1: Given the differential equations described in µ 1 : if a 1 = a 2 = 0, the solutions of the equations are linear and x 2 =f(x 1 ) are straight lines (see figure 4a).

if a 1 or a 2 is null but not both (a 1 =0 or a 2 =0 exclusively), the set of curves x 2 =f(x 1 ) is composed of exponential curves which converge to a vertical or a horizontal asymptotic line ∆ (see figure 4b). The line equation is:

∆:x b a i i i =
if a 1 >0 and a 2 >0, the set of curves x 2 =f(x 1 ) is composed of exponential curves which converge to an equilibrium point x e (see figure 4c and4d), where:

{ } x f o r i 1 , 2 ei = ∈ a b i i
In all cases, the curves x 2 =f(x 1 ) are monotonous.

Υ . .

= +

-is a monotonous curve and if x 1 (t) and x 2 (t) are monotonous, then

x 2 =f(x 1 ) is also monotonous. Therefore, 0 a ≥ ∀ , the solution to & . x a x b = -
+ is a monotonous curve.

-In case 1, a 1 = a 2 = 0 so x t b t C 

⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + = 1 1 10 1 1 1 1 2 a b x a b x ln a a 2 2 20 2 2 2 e . a b x a b x x i0 is the initial value of x i .
This is the equation of exponential curves which converge to the point

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = 2 2 1 1 2 1 a b , a b ) x , x (
when t tends to infinity.

It is reminded that We notice that figure 4 gives a representation of the state-space when there are only two real valued variables ( n x ∈ , n=2) but theorem 2 is true for any value of n∈ ∠.

Theorem 2:

Given a vector field µ 1 (l i ) of dimension 3 2 where the equilibrium point x e is defined, if the equilibrium point xe is strictly included in the jump-set λ li→li+1 then the extended jump-set λext li→li+1 is bounded by the phase constraint µ 2 (l i ):

λext li→li+1 = µ 2 (l i )
In that case, the equilibrium point can be reached (see figure 4c). Υ

Demonstration 2:

In theorem 2, we are in the case where curves converge to an equilibrium point x e . So, it is possible to reach the jump-set from anywhere in the state-space with the dynamic µ 1 :

if ) l l ( x 1 i i e + → λ ∈ , + ∈ ∃ ∈ ∀ t , x 2 / ) l l ( )) t ( x )( l ( 1 i i i 1 + → λ ∈ µ
[1] By theorem 1, the curves defined by µ 1 (l i ) are monotonous. Thus, 1

x & and 2

x & are either always positive or always negative.

By assumption, the contour of µ 2 is formed of a set of line segments which are horizontal or vertical. So,

{ } 2 , 1 i ∈ ∀ , x i =cst and 0 x i = &
. So, the set of curves defined by µ 1 (l i ) will cross at most one time the lines segment defining the contour of µ 2 (l i ).

If the equilibrium point x e is inside µ 2 (l i ), once a curve defined by µ 1 (l i ) get inside µ 2 (l i ), it will never go out again:

if ) l ( x i 2 e µ ∈ , + ∈ ∀ µ ∈ ∀ t ), l ( x i 2 , ) l ( )) t ( x )( l ( i 2 i 1 µ ∈ µ
[2] As a consequence of [1] and [2], we get:

if ) l ( ) l l ( x i 2 1 i i e µ ⊆ → λ ∈ + , + ∈ ∃ µ ∈ ∀ t ), l ( x i 2 / ) l l ( )) t ( x )( l ( 1 i i i 1 + → λ ∈ µ ′
The constraints µ 2 (l i ), the jump-set λ li→li+1 and the extended jump-set λext li→li+1 are are the different state-space regions (or sets) we can get. Before we go further, it is necessary to define how these regions can formally be described.

Analytical expression for a two dimensions region and for its contour

The aim of this section is to define the existence conditions of an analytical expression which describes the regions we will get.

Definition 5:

The contour of the region R is S(R). It is defined by a set of p boundaries s k (R):

S(R)={s k (R), k ∈{1, …, p}} s k (R
) is a curve segment (or boundary) defined by a curve and two extreme points. Each extreme point ep j (R) belongs to two different boundaries of the contour.of the region. The set of extreme points Pext(R) of a given region R, is defined as follow: Pext(R)={ep j (R), j∈{1, …, p}} A curve segment s k (R) is analytically defined by:

a timed parametered equations system:

s R x f t x f t k ( ): ( ) ( ) 1 1 2 2 = = ⎧ ⎨ ⎩
two extreme points (ep a and ep b ) coordinates:

x ep x ep x ep x ep a a b b 1 2 1 2 ( ) ( ) ( ) ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ Υ Definition 6:
The half-space Rs k (R) associated to the boundary s k (R) is the half-space which is over or below the boundary s k . It is analytically defined by: Rs R

x f t x ep x x ep x f t k a b ( ): ( ) ( ) ( ) ( ) 1 1 1 1 1 2 2 = ≤ ≤ ≥ ≤ ⎧ ⎨ ⎪ ⎩ ⎪ x f t 2 2
≥ ≤ ( ) means that the equation x 2 =f 2 (t), which is one of the equations defining

s k (R), is transformed into an inequation x f t 2 2 ≤ ( ) or x f t 2 2 ≥ ( ) . Υ
Now, we can easily imagine that taking the intersection of the half-spaces Rs k (R) associated to the set of boundaries s k (R) will define the region R. So an analytical description for these regions seems to be possible. Nevertheless, these regions must verify the property of monotonous regions to be modeled by definition 6 equations / inequations systems.

Definition 7:

Let σ be a point situated on the contour of a region S(R). Let δ be a line which equation is: x i =kΥ3 where i={1, 2}, k may be equal to 0 but it is not compulsory.

Let define the orthogonal projection from S(R) to δ which gives an image η ∈δ to any point σ of S(R):

S R proj ( ) → δ η σ a Let proj -1 be the inverse projection of proj. δ ∈ σ ∀
, if proj -1 (η) has either an infinite number of images or at most only two images belonging to S(R) then the region R is monotonous. Υ

Figure 5 illustrates this property with δ line chosen as a horizontal line. Thus i=2 and its equation is x 2 =k. For specific points δ ∈ η

, the number of image that proj -1 (η) accepts is counted. We notice that a monotonous region has not necessarily a contour composed with a set of monotonous boundaries and a set of monotonous boundaries does not always define a monotonous region.

We also notice that a monotonous region can be non convex.

It is time now to realize the link between the boundaries analytical description and the monotonous regions.

Theorem 3:

If R is a monotonous region and if its contour is composed of a set of boundaries S(R), then an analytical description for R always exists, being the intersection of the half-spaces Rs k (R):

R Rs R k p k = = I 1 ( )
and analytically, R is described by: R

x f t x ep x x ep x f t i p i i ai i bi i i = = ≤ ≤ ≥ ≤ ⎧ ⎨ ⎪ ⎩ ⎪ = U 1 1 1 1 1 1 2 2 ( ) ( ) ( ) ( ) Υ Demonstration 3:
Let R be a monotonous region and s k (R) ∈S(R) be a boundary for R, it always exists an equation system which describes s k (R). Moreover, it always exists an analytical description of the associated half-space Rs k (R).

Let x ∈R be any point of the monotonous region, x will always belong to two half-spaces associated to S(R) and only two.

So, if we generalize to the set of points x defining the region R, R can have an analytical description which is the union of all the systems describing the halfspaces set: R

x f t x ep x x ep x f t i p i i ai i bi i i = = ≤ ≤ ≥ ≤ ⎧ ⎨ ⎪ ⎩ ⎪ = U 1 1 1 1 1 1 2 2 ( ) ( ) ( ) ( )

′

Here is an example which gives the analytical description of a monotonous region (figure 6).

s x t b a C e x t b a C e a x b a a 1 1 1 1 1 2 2 2 2 1 1 2 : ( ) . ( ) . .t .t = - + ≤ - + ≤ ≤ ⎧ ⎨ ⎪ ⎩ ⎪ - - s x t b a C e x t C a x c a t 3 1 1 1 1 2 2 1 1 : ( ) . ( ) . = - + ≥ ≤ ≤ ⎧ ⎨ ⎪ ⎩ ⎪ - x 1 x2 a b c s1 s2 s3 extrem points s x t b t C x t b t C a x c 2 1 1 1 2 2 2 1 : ( ) . ( ) . = + ≤ + ≤ ≤ ⎧ ⎨ ⎪ ⎩ ⎪

Figure 6. Monotonous set analytical description

This analytical method used to describe the regions fits with only 2 dimensional state-spaces. Consequently, the studied systems can have only two state variables.

A n-dimensional monotonous region will have a contour defined by a ndimensional "hypersurface segments" set. For instance, if we have a 2-dimensional monotonous region, its contour is a 2-dimensional curve segment set, if we have a 3dimensional monotonous region, its contour is a 3-dimensional hypercurve segment set which would be a kind of curved plane.

But a n-parameter equations system: x i =f i (t) where i={1, …, n} describes a single curve in a n-dimensional space. So, it is possible to use this kind of equation systems to describe the "hypersurface segments" only when they are curve segments, i.e. when the space dimension is n=2.

About trajectory synthesis with two dimensional monotonous regions

Now we have proven it always exists an analytical description for monotonous regions with contour made of a segment curves set, we want to be sure we will always have to deal with such kinds of regions.

The model we have presented uses three different state-space regions:

the set of m state constraints µ 2 (l i ) the jump-set λ li→li+1 the extended-jump-set λext li→li+1

Firstly, the state constraint of any phase µ 2 (l i ) is rectangular with vertical and horizontal lines by assumption. So it is always monotonous. For the two other sets (λ and λ ext ), we must define conditions which are required to be sure they remain monotonous when time flows and when discrete transitions occur.

The monotonous property conservation for function µ 3 is not well defined but we can note that any action on a state-variable must have an equivalent effect on all the others.

For instance, let consider a two dimensional state-space, i.e. [ ]

2 T 2 1 x x , x ∈ =
. The function µ 3 such that x 1 (t + )=x 1 (t -)+k 1 and x 2 (t + )=x 2 (t -)+k 2 is an example of what is an equivalent effect for both variables.

Moreover, we are sure that if there are no continuous discontinuity when a transition occurs, that is if µ 3 (l i→ l l+1 )=Id, then µ 3 conserves the monotonous property. This is the case in the example presented in section 2 and solved in section 6.

Definition 8:

If λext li→li+1 ≠ µ 2 (l i ), the extended jump-set contour (λext li→li+1 contour) is composed of three kinds of boundaries (or curve segments):

some λ li→li+1 boundaries some µ 2 (l i ) boundaries curve segments which are solutions of the differential equations described by µ 1 (l i ). These curves are called extension curves. they can cross a λ-boundary or be a tangente to λ Υ ,l (

1 i 1 i , i i 3 + + δ µ
conserves the monotonous property and if the evolution function µ 1 (l i ) is such that the state-variables are not coupled, then all the regions we will get when computing the reachability set will be monotonous. So, a formal description of all encountered sets will always be possible. Υ

Corollary 2 defines the conditions we need to be able to formally compute the reachable set using an algorithm.

Algorithm and application to the batch system

λext computation algorithm for two dimensional state-space problems

The hardest step to decide whether a system is controllable or not is the computation of the extended jump-set λext for a given location l i . The algorithm is given below:

initialization of:

the evolution function µ 1 modeled by differential equations the jump-set λ and the constraint set µ 2 by their analytical description if the equilibrium point is defined and is strictly included in the jump-set λ then:

λext = µ 2 else:
calculation of all extreme-points calculation of all the curves having µ 1 (l i ) dynamic trajectory and crossing a λ extreme-point calculation of λ tangential trajectory curves if they exist . We remind that in the current paper, the goal is to present the analytical definition of regions which are necessary to the calculation of the extended jump-set for a given phase.

Application to the batch system

Let us apply this control synthesis methodology to the batch system example described in section 2 (see figure 1) and modeled in section 3 (see figure 2).

A discrete controllable path π must be calculated. It must start from the initial state l 0 and stop at the final state l 3 . The path computation is realized backward. The jump-sets, extended jump-sets and phase constraints are represented in the statespace x 2 =f(x 1 ). A new state-space representation is given for each phase the system goes through.

A controllable discrete path π is synthesized: π=(l 0 , l 1 , l 2 , l 1 , l 3 ) 

Concluding remarks

We have presented parts, dealing with region analytical description, of a new method which goal is to synthesize a return trajectory from a default mode to one of the nominal modes for hybrid dynamical systems with linear vector fields in a two dimensional state-space. It is an extension of Tittus's works on integrator hybrid systems. A great care has been taken in proving the computability of the state-space regions involved into the reachability analysis.

Firstly, we have presented a brief example with a batch system in a default mode to be driven back to its nominal mode.

Once the position of the problem was clearly fixed, some theoretical reminds from Tittus's researches, necessary to solve the problem, were presented.

Afterward, we have explained it is always possible to formally describe a monotonous region and we have defined the necessary conditions to always have such kind of regions when computing a safe hybrid trajectory.

In the last section, the algorithm which computes the extended jump-set for a given location was given and a solution for the batch system example was presented.

At that point of research, the assumptions made for the continuous state variables x i are rather strong and limit the possible applications field. One next step is to relax them. Particularly systems with coupled variables are now under investigation and first results are positive [CHA 99].

Once the jump-sets and extended jump-sets are computed for a given path, it is necessary to choose a control strategy (e.g. switch as soon as possible, switch as late as possible, …) in order to determine the switching instants.

An another field under investigation is to develop a methodology which can achieve an optimal control strategy. If the criteria to be optimized is time independent, then the control sequence design seems to be computable using pure discrete optimization tools. In the other case, continuous and discrete optimization tools must be combined.
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 3 Figure 3. Jump-set λ li→li+1 and extended jump-set λext li→li+1
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 9 Figure 9. Controllability analysis realized in the state-space

Theorem 4:

The intersection of two monotonous regions is a monotonous region. Υ Demonstration 4: Let define two monotonous regions R a and R b and their contour S(R a ) and S(R b ). It is reminded that a region is monotonous if the orthogonal projection from a horizontal or vertical line to its contour has either an infinite number of images or at most two.

In the current demonstration, the projection line δ is chosen to be horizontal and never cuts the two regions R a and R b :

Let define the two orthogonal projections proj a and proj b such that

can be two points, σ i1 is defined as the furthest point of η and σ i2 as the closest.

If

) ( proj 1 i η is an infinite number of points then we define:

We notice that d(x,y) means the distance between the two points x and y.

So we can always associate two points (σ i1 and σ i2 ) to every

, we must determine which two points of σ a1 , σ a2 , σ b1 and σ b2 must be kept in order to sketch the contour of the R a and R b intersection. These two points are called σ 1 and σ 2 .

, a set of points σ 1 , σ 2 and σ inf is defined. This set will define the contour S(R) of the region R /

Finally, let define

and the inverse projection proj -1 , δ ∈ η ∀ , ) ( proj 1 i η will be:

not defined or one point: σ 1 =σ 2 or two points: σ 1 ≠ σ 2 or an infinite number of points ∈ σ inf Thus S(R) has either an infinite number of images or at most two images. This is the definition of a monotonous region. ′ { }