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Abstract

In this paper we study the kernel multiple ridge regression framework, which we refer
to as multi-task regression, using penalization techniques. The theoretical analysis of this
problem shows that the key element appearing for an optimal calibration is the covariance
matrix of the noise between the different tasks. We present a new algorithm to estimate
this covariance matrix, based on the concept of minimal penalty, which was previously used
in the single-task regression framework to estimate the variance of the noise. We show,
in a non-asymptotic setting and under mild assumptions on the target function, that this
estimator converges towards the covariance matrix. Then plugging this estimator into the
corresponding ideal penalty leads to an oracle inequality. We illustrate the behavior of our
algorithm on synthetic examples.
Keywords: multi-task, oracle inequality, learning theory.

1. Introduction

A classical paradigm in statistics is that increasing the sample size (that is, the number of
observations) improves the performance of the estimators. However, in some cases it may
be impossible to increase this sample size, for instance because of experimental limitations.

∗. http://www.di.ens.fr/∼solnon/
†. http://www.di.ens.fr/∼arlot/
‡. http://www.di.ens.fr/∼fbach/
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Hopefully, in many situations practictioners can find many related and similar problems,
and might want to use those other problems as if it gave more observations for his initial
problem. The techniques using this heuristic are called “multi-task” techniques. In this
paper we study the kernel ridge regression procedure in a multi-task framework.

One-dimensional kernel ridge regression, which we refer to as “single-task” regression
has been widely studied. As we briefly review in Section 3 one has, given n data points
(Xi, Yi)

n
i=1, to estimate a function f , often the conditional expectation f(Xi) = E[Xi|Yi], by

minimizing the quadratic risk of the estimator regularized by a certain norm. A practically
important task is to calibrate a regularization parameter, i.e., to estimate the regularization
parameter directly from data. For kernel ridge regression (a.k.a. smoothing splines), many
methods have been proposed based on different principles, e.g., Bayesian criteria through
a Gaussian process interpretation (see, e.g., Rasmussen and Williams, 2006) or generalized
cross-validation (see, e.g., Wahba, 1990). In this paper, we focus on the concept of minimal
penalty, which was first introduced by Birgé and Massart (2007) and Arlot and Massart
(2009) for model selection, then extended to linear estimators such as kernel ridge regression
by Arlot and Bach (2011).

In this article we consider p ≥ 2 different (but related) regression tasks, a framework
we refer to as “multi-task” regression. This setting has already been studied in different
papers. Some of those (Thrun and O’Sullivan, 1996; Caruana, 1997; Bakker and Heskes,
2003) empirically show that it can lead to performance improvement. Liang et al. (2010)
also obtained a theoretical criterion (unfortunately non observable) which tells when this
phenomenon asymptotically occurs. Several different paths have been followed to deal with
this setting. Some (see for instance Obozinski et al., 2011; Lounici et al., 2010), consider a
setting where p ≫ n, and formulate a sparsity assumption which enables them to use the
group Lasso, assuming that all the different functions have a small set of common active
covariates. We exclude this setting from our analysis, because of the kernel nature of our
problem, and thus will not consider the similarity between the tasks in terms of sparsity,
but rather in terms of an Euclidiean similarity. An other theoretical approach has been also
taken (see for example, Brown and Zidek (1980), Evgeniou et al. (2005) or Ando and Zhang
(2005) on semi-supervised learning), the authors often defining a theoretical framework
where the multi-task problem can easily be expressed, and where sometimes solutions can
be computed. The main remaining theoretical problem is the calibration of a matricial
parameter (typically of size p), which characterizes the relationship bewteen the tasks and
extends the regularization parameter from the single-task regression. Because of the high
dimensional nature of the problem (i.e., the small number of training observations) usual
techniques, like cross-validation, are not likely to succeed. Argyriou et al. (2008) have a
similar approach to ours, but solve this problem by adding a convex constraint to the
matrix, which will be discussed at the end of Section 5. Through a penalization technique
we show in Section 2 that the only element we have to estimate is the correlation matrix Σ
of the noise between the tasks. We give here a new algorithm to estimate Σ, and show that
the estimation is sharp enough to derive an oracle inequality, both with high probability
and in expectation. Finally we give some simulation experiment results and show that our
technique correctly deals with the multi-tasks settings with a low sample-size.

Notations. We now introduce some notations, which will be used throughout the article.
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• The integer n is the sample size, the integer p is the number of tasks.

• For any n× p matrix Y , we define

y = vec(Y ) := (Y1,1, . . . , Yn,1, Y1,2, . . . , Yn,2, . . . , Y1,p, . . . , Yn,p) ∈ R
np,

that is, the columns Y j := (Yi,j)1≤i≤n are stacked.

• Mn(R) is the set of all matrices of size n.

• Sp(R) is the set of symmetric matrices of size p.

• S+
p (R) is the set of symmetric positive-semidefinite matrices of size p.

• S++
p (R) is the set of symmetric positive-definite matrices of size p.

• � denotes the partial ordering on Sp(R) defined by: A � B if and only if B − A ∈
S+
p (R).

• 1 is the vector of size p whose components are all equal to 1.

• ‖·‖2 is the usual Euclidean norm on R
k for any k ∈ N: ∀u ∈ R

k, ‖u‖22 :=
∑k

i=1 u
2
i .

2. Multi-task regression: problem set-up

We consider p kernel ridge regression tasks. Treating them simultaneously and sharing their
common structure (e.g., being close in some metric space) will help in reducing the overall
prediction error.

Let X be some set and F a set of real-valued functions over X . We suppose F has a
reproducing kernel Hilbert space (RKHS) structure (Aronszajn, 1950), with kernel k and
feature map Φ : X → F . We observe Dn = (Xi, Y

1
i , . . . , Y

p
i )

n
i=1 ∈ (X × R

p)n, which
give us the positive semidefinite kernel matrix K = (k(Xi,Xj))1≤i,j≤n ∈ S+

n (R). For each

task j ∈ {1, . . . , p}, Dj
n = (Xi, y

j
i )

n
i=1 is a sample with distribution Pj , for which a simple

regression problem has to be solved. In this paper we consider for simplicity that the
different tasks have the same design (Xi)

n
i=1. When the designs of the different tasks are

different the analysis is similar, but the notations would be more complicated.

We now define the model. We assume (f1, . . . , fp) ∈ Fp, Σ is a symmetric positive-
definite matrix of size p such that the vectors (εji )

p
j=1 are i.i.d. with normal distribution

N (0,Σ), with mean zero and covariance matrix Σ, and

∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}, yji = f j(Xi) + εji .

This means that, while the observations are independent, the different tasks are correlated,
with correlation matrix Σ between the tasks. We now place ourselves in the fixed-design
setting, that is, (Xi)

n
i=1 is deterministic and the goal is to estimate

(
f1(Xi), . . . , f

p(Xi)
)p
i=1

.
Let us introduce some notation:

• µmin = µmin(Σ) (resp. µmax) denotes the smallest (resp. largest) eigenvalue of Σ.

• c(Σ) := µmax/µmin is the condition number of Σ.
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To obtain compact equations, we will use the following definition:

Definition 1. We denote by F the n × p matrix (f j(Xi))1≤i≤n , 1≤j≤p and introduce the
vector f := vec(F ) = (f1(X1), . . . , f

1(Xn), . . . , f
p(Xn)) ∈ R

np, obtained by stacking the
columns of F . Similarly we define Y := (yji ) ∈ Mn×p(R), y := vec(Y ), E := (εji ) ∈
Mn×p(R) and ε := vec(E).

In order to estimate f , we use a regularization procedure, which extends the classical
ridge regression of the single-task setting. Let M be a p×p matrix, symmetric and positive-
definite. Generalising the work of Evgeniou et al. (2005), we estimate f = (f1, . . . , fp) ∈ Fp

by

f̂M ∈ argmin
g∈Fp





1

np

n∑

i=1

p∑

j=1

(yji − gj(Xi))
2 +

p∑

j=1

p∑

ℓ=1

Mj,l〈gj , gℓ〉F



 . (2.1)

Remark 1. Requiring that M � 0 implies that Eq. (2.1) is a convex optimization problem,
which here, because we consider the square loss, can be solved through the resolution of a
linear system, as explained later. Moreover it allows an RKHS interpretation, which will
also be explained later.

Example 1. The case where the p tasks are treated independently can be considered in
this setting: taking M = Mind(λ) := Diag(λ1, . . . , λp) for any λ ∈ R

p, which leads to the
criterion

1

p

p∑

j=1

[
1

n

n∑

i=1

(yji − gj(Xi))
2 + λj‖gj‖2F

]
, (2.2)

that is, the sum of the single-task criteria described in Section 3. Hence, minimizing
Eq. (2.2) over λ ∈ R

p amounts to solve independently p single task problems.

Example 2. As done by Evgeniou et al. (2005), for every λ, µ ∈ (0,+∞)2, define

Msimilar(λ, µ) := (λ+ pµ)Ip − µ11⊤ =



λ+ (p− 1)µ −µ

. . .

−µ λ+ (p − 1)µ


 . (2.3)

Taking M = Msimilar(λ, µ) in Eq. (2.1) leads to the criterion

1

np

n∑

i=1

p∑

j=1

(yji − gj(Xi))
2 + λ

p∑

j=1

∥∥gj
∥∥2
F
+ µ

p∑

j=1

p∑

k=1

∥∥∥gj − gk
∥∥∥
2

F
. (2.4)

Minimizing Eq. (2.4) enforces a regularization on both the norms of the functions gj and
the norms of the differences gj − gk. Thus, matrices of the form Msimilar(λ, µ) are useful
when the functions gj are assumed to be similar in F . One of the main contribution of the
paper is to go beyond this case and learn from data a a similarity matrix M between tasks.

Example 3. We extend Example 2 to the case where the p tasks consist of two groups of
close tasks. Let I be a subset of {1, . . . , p}, of cardinality 1 ≤ k ≤ p − 1. Let us denote
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by Ic the complementary of I in {1, . . . , p}, 1I the vector v with component vi = 1i∈I , and
Diag(I) the diagonal matrix d with component di,i = 1i∈I . We then define

MI(λ, µ, ν) := λIp + µDiag(I) + ν Diag(Ic)− µ

k
1I1

⊤
I − ν

p− k
1Ic1

⊤
Ic . (2.5)

This matrix leads to the following criterion, which enforces a regularization on both the
norms of the functions gj and the norms of the differences gj − gk inside the groups I and
Ic :

1

np

n∑

i=1

p∑

j=1

(yji −gj(Xi))
2+λ

p∑

j=1

∥∥gj
∥∥2
F
+
µ

k

∑

j∈I

∑

k∈I

∥∥∥gj − gk
∥∥∥
2

F
+

ν

p− k

∑

j∈Ic

∑

k∈Ic

∥∥∥gj − gk
∥∥∥
2

F
.

(2.6)
As shown in Section 6, we can estimate the set I from data (see Jacob et al. (2008) for a
more general formulation).

Remark 2. Since Ip and 11⊤ can be diagonalized simultaneously, minimizing Eq. (2.4)
and Eq. (2.6) is quite easy: it only demands optimization over two independent parameters,
which can be done with the procedure of Arlot and Bach (2011).

Remark 3. As stated below (Proposition 2), M acts as a scalar product between the tasks.
Selecting a general matrix M is thus a way to express a similarity between tasks.

Following Evgeniou et al. (2005), we define the vector-space G of real-valued functions
over X × {1, . . . , p} by

G := {g : X × {1, . . . , p} → R /∀j ∈ {1, . . . , p} , g(·, j) ∈ F} .

We now define a bilinear symmetric form over G,

∀g, h ∈ G , 〈g, h〉G :=

p∑

j=1

p∑

l=1

Mj,l〈g(·, j), h(·, l)〉F ,

which is a scalar product (see proof in Appendix A) and leads to a RKHS (see proof in
Appendix B):

Proposition 2. With the preceding notations 〈·, ·〉G is a scalar product on G.
Corollary 1. (G, 〈·, ·〉G ) is a RKHS.

In order to write down the kernel matrix in compact form, we introduce the following
notations.

Definition 3 (Kronecker Product). Let A ∈ Mm,n(R), B ∈ Mp,q(R). We define the
Kronecker product A ⊗ B as being the (mp) × (nq) matrix built with p × q blocs, the block
of index (i, j) being Ai,j · B:

A⊗B =




A1,1B . . . A1,nB
...

. . .
...

Am,1B . . . Am,nB


 .
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The Kronecker product is a widely used tool to deal with matrices and tensor products.
Some of its classical properties are given in Section D; see also Horn and Johnson (1991).

Proposition 4. The kernel matrix associated with the design X̃ := (Xi, j)i,j ∈ X ×
{1, . . . , p} and the RKHS (G, 〈·, ·〉G) is K̃M := M−1 ⊗K.

We can then apply the representer’s theorem (Schölkopf and Smola, 2002) to the mini-
mization problem (2.1) and deduce that f̂M = AMy with

AM = AM,K := K̃M (K̃M + npInp)
−1 = (M−1 ⊗K)

(
(M−1 ⊗K) + nInp

)−1
.

Now when working in multi-task regression, a set M ⊂ S++
p (R) of matrices M is

given, and the goal is to select the “best” one, that is, minimizing over M the quadratic
risk n−1‖f̂M − f‖22. For instance, the single-task framework corresponds to p = 1 and
M = (0,+∞). The multi-task case is far richer. The ideal choice, called the oracle, is

M⋆ ∈ argmin
M∈M

{∥∥∥f̂M − f
∥∥∥
2

2

}
.

However M⋆ is not an estimator, since it depends on f . As explained by Arlot and Bach
(2011), we choose M̂ as a minimizer over M of

crit(M) =
1

np

∥∥∥y − f̂M

∥∥∥
2

2
+ pen(M) ,

where the penalty term pen(M) has to be chosen appropriately. The unbiased risk estima-
tion principle (introduced by Akaike, 1970) requires

E [crit(M)] ≈ E

[
1

np

∥∥∥f̂M − f
∥∥∥
2

2

]
,

which leads to the (deterministic) ideal penalty

penid(M) := E

[
1

np
‖f̂M − f‖22

]
− E

[
1

np

∥∥∥y − f̂M

∥∥∥
2

2

]
.

Since f̂M = AMy and y = f + ε, we can write
∥∥∥f̂M − y

∥∥∥
2

2
=
∥∥∥f̂M − f

∥∥∥
2

2
+ ‖ε‖22 − 2〈ε,AMε〉+ 2〈ε, (Inp −AM )f〉 .

Since ε is centered and M is deterministic, we get, up to an additive factor independent
of M ,

penid(M) =
2E [〈ε,AM ε〉]

np
,

that is, as the covariance matrix of ε is Σ⊗ In,

penid(M) =
2 tr

(
AM · (Σ⊗ In)

)

np
. (2.7)

In order to approach this penalty as precisely as possible, we have to sharply estimate Σ.
In the single-task case, such a problem reduces to estimating the variance σ2 of the noise
and was tackled by Arlot and Bach (2011). Since our approach for estimating Σ heavily
relies on these results, they are summarized in the next section.
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3. Single task framework: estimating a single variance

This section recalls some of the main results from Arlot and Bach (2011) and can be con-
sidered as a special case of Section 2, with p = 1, Σ = σ2 > 0 and M = [0,+∞]. Writing
M = λ with λ ∈ [0,+∞], the regularization matrix is

∀λ ∈ (0,+∞) , Aλ = Aλ,K = K(K + nλIn)
−1 , (3.1)

A0 = In and A+∞ = 0; the ideal penalty becomes

penid(λ) =
2σ2 tr(Aλ)

n
.

By analogy with the case where Aλ is an orthogonal projection matrix, df(λ) := tr(Aλ) is
called the effective degree of freedom, first introduced by Hastie and Tibshirani (1990) and
generalized by Zhang (2005). The ideal penalty however depends on σ2; in order to have
a fully data-driven penalty we have to replace σ2 by an estimator σ̂2 inside penid(λ). For
every λ ∈ [0,+∞], define

penmin(λ) = penmin(λ,K) :=
(2 tr(Aλ,K)− tr(A⊤

λ,KAλ,K))

n
.

Theoretical arguments show that when a penalty proportionnal to penmin(λ) is chosen, then
if the proportionnality coefficient is smaller than σ2/n the procedure overfits, while when
this coefficient is greater than σ2/n the procedure leads to good estimation properties and a
low effective degree of freedom. The following algorithm was introduced in Arlot and Bach
(2011) and uses this fact to estimate σ2.

Algorithm 1. Input: Y ∈ R
n, K ∈ S++

n (R)

1. For every C > 0, compute

λ̂0(C) ∈ argmin
λ∈[0,+∞]

{
1

n
‖Aλ,KY − Y ‖22 + C penmin(λ,K)

}
.

2. Output: Ĉ such that df(λ̂0(Ĉ)) ∈ [n/10, n/3].

An efficient algorithm for the first step of Algorithm 1 is detailed in Arlot and Massart
(2009), and we discuss the way we implemented Algorithm 1 in Section 6. The output Ĉ
of Algorithm 1 is a provably consistent estimator of σ2, as stated in the following theorem.

Theorem 5 (Corollary of Theorem 1 of Arlot and Bach (2011)). Let β = 150 and α = 2.
Suppose ε ∈ N (0, σ2In) with σ2 > 0, and that λ0 ∈ (0,+∞) and dn ≥ 1 exist such that

df(λ0) ≤
√
n and

1

n
‖(Aλ0 − In)F‖22 ≤ dnσ

2

√
lnn

n
. (3.2)

Then for every δ ≥ 2, some constants n0(δ), κ > 0 and an event Ω exist such that P(Ω) ≥
1− κnδ and for n ≥ n0(δ), on Ω,

(
1− β(α + δ)

√
lnn

n

)
σ2 ≤ Ĉ ≤

(
1 + β(α + δ)dn

√
ln(n)

n

)
σ2 . (3.3)

Remark 4. The values n/10 and n/3 have no particular meaning and can be replaced by
n/k, n/k′, with k > k′ > 2. Only β depends on k and k′.
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4. Estimation of the noise covariance matrix Σ

Thanks to the results developped by Arlot and Bach (2011) (recapitulated in Section 3), we
know how to estimate a variance for any one-dimensional problem. In order to estimate Σ,
which has p(p+1)/2 parameters, we can use several one-dimensional problems. Projecting
Y onto some direction z ∈ R

p yields

Yz := Y · z = F · z + E · z = Fz + εz , (Pz)

with εz ∼ N (0, σ2
zIn) and σ2

z := Var[ε · z] = z⊤Σz. Therefore, we will estimate σ2
z for z ∈ Z

a well chosen set, and use these estimators to build back an estimation of Σ.

We now explain how to estimate Σ using those one-dimensional projections.

Definition 6. Let a(z) be the output Ĉ of Algorithm 1 applied to problem (Pz), that is,
with input Yz ∈ R

n and K ∈ S++
n (R).

The idea is to apply Algorithm 1 to the elements z of a carefully chosen set Z. Noting
ei the i-th vector of the canonical basis of Rp, we introduce Z = {ei, i ∈ {1, . . . , p}} ∪
{ei + ej, 1 ≤ i < j ≤ p}. We can see that a(ei) estimates Σi,i, while a(ei + ej) estimates
Σi,i+Σj,j +2Σi,j. Henceforth, Σi,j can be estimated by (a(ei + ej)− a(ei)− a(ej))/2. This
leads to the definition of the following map J , which builds a symmetric matrix using the
latter construction.

Definition 7. Let J : R
p(p+1)

2 → Sp(R) be defined by

J(a1, . . . , ap, a1,2, . . . , a1,p, . . . , ap−1,p)i,i = ai if 1 ≤ i ≤ p ,

J(a1, . . . , ap, a1,2, . . . , a1,p, . . . , ap−1,p)i,j =
ai,j − ai − aj

2
if ≤ i < j ≤ p .

This map is bijective, and for all B ∈ Sp(R)

J−1(B) = (B1,1, . . . , Bp,p, B1,1 +B2,2 + 2B1,2, . . . , Bp−1,p−1 +Bp,p + 2Bp−1,p) .

This leads us to defining the following estimator of Σ :

Σ̂ := J (a(e1), . . . , a(ep), a(e1 + e2), . . . , a(e1 + ep), . . . , a(ep−1 + ep)) . (4.1)

Let us recall that ∀λ ∈ (0,+∞), Aλ = Aλ,K = K(K+nλIn)
−1. Following Arlot and Bach

(2011) we make the following assumption from now on:

∀j ∈ {1, . . . , p} , ∃λ0,j ∈ (0,+∞) ,

df(λ0,j) ≤
√
n and

1

n

∥∥(Aλ0,j
− In)Fej

∥∥2
2
≤ Σj,j

√
lnn

n





(Hdf)

We can now state the main result of the paper.

Theorem 8. Let Σ̂ be defined by Eq. (4.1), α = 2, κ > 0 be the numerical constant defined
in Theorem 5 and assume (Hdf) holds. For every δ ≥ 2, a constant n0(δ), an absolute

8
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constant L1 > 0 and an event Ω exist such that P(Ω) ≥ 1−κp2n−δ and for every n ≥ n0(δ),
on Ω,

(1− η)Σ � Σ̂ � (1 + η)Σ , (4.2)

where η := L1(α+ δ)p

√
ln(n)

n
c(Σ)2 .

Theorem 8 is proved in Section D. It shows Σ̂ estimates Σ with a “multiplicative” error
controlled with large probability, in a non-asymptotic setting. The multiplicative nature of
the error is crucial for deriving the oracle inequality stated in Section 5, since it allows to
show the ideal penalty defined in Eq. (2.7) is precisely estimated when Σ is replaced by Σ̂.

An important feature of Theorem 8 is that it holds under very mild assumptions on
the mean f of the data (see Remark 5). Therefore, it shows Σ̂ is able to estimate a
covariance matrix without prior knowledge on the regression function, which, to the best of
our knowledge, has never been obtained in multi-task regression/

Remark 5 (On assumption (Hdf)). Assumption (Hdf) is a single-task assumption (made
independently for each task). The upper bound

√
ln(n)/n can be multiplied by any factor

1 ≤ dn ≪
√

n/ ln(n) (as in Theorem 5), at the price of multiplying η1 by dn in the upper
bound of Eq. (4.2).

Assumption (Hdf) is rather classical in model selection, see Arlot and Bach (2011) for
instance. In particular, (a weakened version of) (Hdf) holds if the bias n−1‖(Aλ− In)Fei‖22
is bounded by C1 tr(Aλ)

−C2 , for some C1, C2 > 0.

Remark 6 (Scaling of (n, p) for consistency). A sufficient condition for ensuring Σ̂ is a
consistent estimator of Σ is

pc(Σ)2
√

ln(n)

n
−→ 0 ,

which enforces a scaling between n, p and c(Σ). Nevertheless, this condition is probably not
necessary since the simulation experiments of Section 6 show that Σ can be well estimated
(at least for estimator selection purposes) in a setting where η ≫ 1.

Remark 7 (Choice of the set Z). Other choices could have been made for Z, however ours
seems easier in terms of computation, since |Z| = p(p+1)/2. Choosing a larger set Z leads
to theoretical difficulties in the reconstruction of Σ̂, while taking other basis vectors leads to
more complex computations. We can also note that increasing |Z| decreases the probability
in Theorem 8, since it comes from an union bound over the one-dimensional estimations.

5. Oracle inequality

We now show that the estimator introduced in Eq. (4.1) is precise enough to derive an
oracle inequality when plugged in the penalty defined in Eq. (2.7).

Definition 9. Let Σ̂ be the estimator of Σ defined by Eq. (4.1) . We define

M̂ ∈ argmin
M∈M

{∥∥∥f̂M − y
∥∥∥
2

2
+ 2 tr

(
AM · (Σ̂ ⊗ In)

)}
. (5.1)

9
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We assume the following assumption, which means that the matrices of M are jointly
diagonalisable, holds true:

∃P ∈ Op(R) , M ⊆
{
P⊤Diag(d1, . . . , dp)P , (di)

p
i=1 ∈ (0,+∞)p

}
. (HM)

Theorem 10. Let α = 2, δ ≥ 2 and assume (Hdf) and (HM) hold true.Absolute constants
L2 > 0 and κ′, a constant n1(δ) and an event Ω̃ exist such that P(Ω̃) ≥ 1−κ′p2n−δ and the
following holds as soon as n ≥ n1(δ).First, on Ω̃,

1

np

∥∥∥f̂M̂ − f
∥∥∥
2

2
≤
(
1 +

1

ln(n)

)2

inf
M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2

}
+ L2c(Σ)

4 tr(Σ)(α+ δ)2
p3 ln(n)3

np
.

(5.2)

Second,

E

[
1

np

∥∥∥f̂M̂ − f
∥∥∥
2

2

]
≤
(
1 +

1

ln(n)

)2

E

[
inf

M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2

}]

+L2c(Σ)
4 tr(Σ)(α+ δ)2

p3 ln(n)3

np
+

p

nδ/2

‖f‖22
np

.

(5.3)

Theorem 10 is proved in Section E. Taking p = 1 (hence c(Σ) = 1 and tr(Σ) = σ2), we
recover Theorem 3 of Arlot and Bach (2011) as a corollary.

Remark 8. Our result is a non asymptotic oracle inequality, with a mutliplicative term of
the form 1 + o(1). This allows us to claim that our selection procedure is nearly optimal,
since our estimator is close (with regard to the empirical quadratic norm) to the oracle one.
Furthermore the term 1 + (ln(n))−1 in front of the infima in Eq. (5.2) and (5.3) can be
further diminished, but this yields a greater rest as a consequence.

Remark 9 (On assumption (HM)). Assumption (HM) actually means all matrices in
M can be diagonalized in a unique orthogonal basis, and thus can be parametrized by their
eigenvalues. In that case the optimization problem is quite easy to solve. If not, solving
(5.1) may turn out to be a hard problem, and our theoretical results do not cover this set-
ting. However, it is always possible to discretize the set M as in Arlot and Bach (2011) or,
in paractise, to use gradient descent; we conjecture Theorem 10 still holds without (HM)
as long as M is not “too large”, which could be proved similarly up to some uniform con-
centration inequalities.

Note also that if M1, . . . ,MK all satisfy (HM) (with different matrices P ), then The-
orem 10 still holds for M =

⋃K
k=1Mk with P(Ω̃) ≥ 1 − 9Kp2n−δ, by applying the union

bound in the proof.

Remark 10 (Scaling of (n, p)). Eq. (5.2) implies the asymptotic optimality of the estimator
f̂
M̂

when

c(Σ)4
tr Σ

p
× p3 (ln(n))3

n
≪ inf

M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2

}
.

In particular, only (n, p) such that p3 ≪ n/(ln(n))3 are admissible.
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Remark 11 (Relationship with the trace norm). Our framework relies on the minimization
of Eq. (2.1) with respect to f . Argyriou et al. (2008) has shown that if we also minimize with
respect to the matrix M subject to the constraint trM−1 = 1, then we obtain an equivalent
regularization by the nuclear norm (a.k.a. trace norm), which implies the prior knowledge
that our p prediction functions may be obtained as the linear combination of r ≪ p basis
functions. This situation corresponds to cases where the matrix M−1 is singular, and we
allow this explictly in our experiments.

Note that the link between our framework and trace norm (i.e., nuclear norm) regular-
ization is the same than between multiple kernel learning and the single task framework of
Arlot and Bach (2011). In the multi-task case, the trace-norm regularization, though effi-
cient computationally, does not lead to oracle inequality, while our criterion is an unbiased
estimate of the generalization error, which turns out to be non-convex in the matrix M .
While DC programming techniques (see, e.g. Gasso et al., 2009, and references therein)
could be brought to bear to find local optima, the goal of the present work is to study the
theoretical properties of our estimators, assuming we can minimize the cost function (e.g.,
in special cases, where we consider spectral variants, or by brute force enumeration).

6. Simulation experiments

In all the experiments presented in this section, we consider the framework of Section 2
with X = R

d, d = 4, and the kernel defined by ∀x, y ∈ X , k(x, y) =
∏d

j=1 e
−|xj−yj |.

The design points X1, . . . ,Xn ∈ R
d are drawn (repeatedly and independently for each

sample) independently from the multivariate standard Gaussian distribution. For every
j ∈ {1, . . . , p}, f j(·) =∑m

i=1 α
j
ik(·, zi) where m = 4 and z1, . . . , zm ∈ R

d are drawn (once for
all) independently from the multivariate standard Gaussian distribution, independent from
the design (Xi)1≤i≤n. Thus, the expectations that will be considered are taken conditionally

to the zi. The coefficients (αj
i )1≤i≤m , 1≤j≤p differ according to the setting.

Settings. Four experimental settings are considered:

A⌋ Various numbers of tasks: n = 100 and ∀i, j, αj
i = 1, that is, ∀j, f j = fA :=∑m

i=1 k(·, zi). The number of tasks is varying: p ∈ {2k / k = 1, . . . , 25}. The covari-
ance matrix is Σ = ΣA,p defined as the first p×p block of ΣA,50, where ΣA,50 has been
drawn (once for all) from the Wishart W (I50, 50, 100) distribution. The condition
number of ΣA,p increases from c(ΣA,2) ≈ 1.17 to c(ΣA,50) ≈ 22.50 as p increases.

B⌋ Various sample sizes: p = 5, ∀j, f j = fA and Σ = ΣB has been drawn (once
for all) from the Whishart W (I5, 10, 5) distribution; the condition number of ΣB is
c(ΣB) ≈ 22.05. The only varying parameter is n ∈ {50k / k = 1, . . . , 20}.

C⌋ Various noise levels: n = 100, p = 5 and ∀j, f j = fA. The varying parameter is
Σ = ΣC,t := tΣB with t ∈ {0.5k / k = 1, . . . , 20}.

D⌋ Clustering of two groups of functions p = 10, n = 100, Σ = ΣE has been
drawn (once for all) from the Whishart W (I10, 20, 10) distribution; the condition
number of ΣE is c(ΣE) ≈ 24.95. We pick the function f :=

∑m
i=1 αik(·, zi) by drawing

11
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(α1, . . . , αm) from standard multivariate normal distributions and finally f1 = · · · =
f5 = f , f6 = · · · = f10 = −f .

Collections of matrices. Two different sets of matrices M are considered in the Exper-
iments A-C, following Examples 1 and 2:

Msimilar :=

{
Msimilar (λ, µ) = (λ+ pµ)Ip −

µ

p
11⊤ / (λ, µ) ∈ (0,+∞)2

}

and Mind := {Mind(λ) = Diag(λ1, . . . , λp) /λ ∈ (0,+∞)p} .

In Experiment D, we also use two different sets of matrices, following Examples 3 :

Mclus :=
⋃

I⊂{1,...,p},I /∈{{1,...,p},∅}

{
MI (λ, µ, µ) / (λ, µ) ∈ (0,+∞)2

}⋃
Msimilar

and Minterval :=
⋃

1≤k≤p−1

{
MI (λ, µ, µ) / (λ, µ) ∈ (0,+∞)2, I = {1, . . . , k}

}⋃
Msimilar .

Remark 12. The set Mclus contains 2p − 1 models, a case we will denote by “clustering”.
The other set, Minterval, only has p models, and should take advantage of the knowledge of
the structure of the Setting D. We call this setting “segmentation into intervals”.

Estimators. Concerning Experiments A-C combining the two possible sets of matrices
with two penalization procedures (that is, with the penalty defined in Eq. (2.7) and either
Σ known or estimated by Σ̂) leads to four estimators defined by

∀α ∈ {similar, ind} , ∀S ∈
{
Σ, Σ̂

}
, f̂α,S := f̂

M̂α,S
= A

M̂α,S
y

where M̂α,S ∈ argmin
M∈Mα

{
1

np

∥∥∥y − f̂M

∥∥∥
2

2
+

2

np
tr (AM · (S ⊗ In))

}

and Σ is defined by Eq. (4.1). As detailed in Examples 1–2, f̂ind,Σ̂ and f̂ind,Σ are con-

catenations of single-task estimators, whereas f̂similar,Σ̂ and f̂similar,Σ should take advan-

tage of a setting where the functions f j are close in F thanks to the regularization term∑
j,k ‖f j − fk‖2F .
Concerning Experiment D, given the two possible sets of matrices, plus the single-task

matrices, we consider the following three estimators :

∀β ∈ {clus, interval, ind} , f̂β := f̂
M̂β

= A
M̂β

y

where M̂β ∈ argmin
M∈Mβ

{
1

np

∥∥∥y − f̂M

∥∥∥
2

2
+

2

np
tr (AM · (S ⊗ In))

}

Remark 13 (Finding the jump in Algorithm 1). The Pseudo-Algorithm 1 raises the ques-
tion of how to detect the jump of astimated dimensionality of df(λ), which happens around
the variance we want to estimate. We chose to select an estimator of Ĉ of σ2 such that
it was the smallest index such that df(λ̂0(Ĉ)) < n/2. An other approach was attempted,
namely by choosing the index corresponding to the largest instantaneous jump of df(λ̂0(C))

12



Multi-task Regression using Minimal Penalties

(which is piece-wise constant and non-increasing). This approach had a major drawback,
because it sometimes selected a jump far away from the “real” jump, which consisted of
several small jumps. Both these approaches gave similar results in terms of prediction er-
ror, and we chose the first one because of its direct link to our theoretical criterion given in
Algorithm 1.

Results. The results of the Experiments A-C are reported in Figures 1–8. In each exper-
iment, N = 1000 independent samples y ∈ R

np have been generated. Due to computation
time, only N = 100 samples have been generated in simulations B. Expectations are es-
timated thanks to empirical means over the N samples, and error bars correspond to the
classical Gaussian 5% level difference test (that is, empirical variance over the N samples
multiplied by 1.96/

√
N). The results of Experiment D are reported in Table 1 . Here

also the expectations are estimated thanks to empirical means over the 1000 samples. The
p-value corresponds to the classical Gaussian difference test, where the hypotheses tested
are of the shape H0 = {q < 1} against the hypotheses H1 = {q ≥ 1}, where the different
quantities q are detailed later. We compute the p-value of the test that is, the minimal risk
that leads the tests to reject the tested hypothesis.
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With the estimated Σ
With the true Σ

Figure 1: Increasing the number of tasks p (Setting A), quadratic errors of multi-task esti-
mators (np)−1

E[‖f̂similar,S − f‖2]. Blue: S = Σ̂. Red: S = Σ.

Comments. As expected, multi-task learning significantly helps when all f j are equal, as
soon as p is large enough (Figure 3), especially for small n (Figure 6) and large noise-levels
(Figure 8). Increasing the number of tasks rapidly reduces the quadratic error with multi-
task estimators (Figure 1) contrary to what happens with single-task estimators (Figure 2).
A noticeable phenomenon also occurs in Figure 1 and even more in Figure 2: the estimator
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Figure 2: Increasing the number of tasks p (Setting A), quadratic errors of single-task esti-
mators (np)−1

E[‖f̂ind,S − f‖2]. Blue: S = Σ̂. Red: S = Σ.

Quantity estimated : q Mean Empirical variance H0 p-value

E[‖f̂clus − f‖2/‖f̂ind − f‖2] 0.6683 0.2935 q > 1 < 10−15

E[‖f̂interval − f‖2/‖f̂ind − f‖2] 0.6596 0.2704 q > 1 < 10−15

E[‖f̂interval − f‖2/‖f̂clus − f‖2] 0.99998 0.1645 q > 1 0.5006

Table 1: Clustering and segmentation (Setting D).

f̂ind,Σ (that is, obtained knowing the true covariance matrix Σ) is less efficient than f̂
ind,Σ̂

where the covariance matrix is estimated. It corresponds to the combination of two facts:
(i) multiplying the ideal penalty by a small factor 1 < Cn < 1 + o(1) is known to often
improve performances in practice when the sample size is small (see Section 6.3.2 of Arlot
(2009)), and (ii) minimal penalty algorithms like Algorithm 1 are conjectured to overpenalize
slightly when n is small or the noise-level is large (Lerasle, 2011) (as confirmed by Figure 7).
Interestingly, this phenomenon is stronger for single-task estimators (differences are smaller
in Figure 1) and disappears when n is large enough (Figure 5), which is consistent with
the heuristic motivating multi-task learning: “increasing the number of tasks p amounts to
increase the sample size”. However the advantage of the multi-task procedure (compared
to the single task one) seems to decrease when p becomes very large, as seen in Figure 3.
This seems reasonable since the multi-task procedure requires the estimation of the matrix
Σ that is, p(p+ 1)/2 parameters, and thus induces a large variance when n is small (here,
p = 50 and n = 100).
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Improvement of the multi−task procedure

Figure 3: Increasing the number of tasks p (Setting A), improvement of multi-task compared
to single-task: E[‖f̂

similar,Σ̂
− f‖2/‖f̂

ind,Σ̂
− f‖2].

Figures 4 and 5 show us that our procedure works well with small n, and that increasing
n does not seem to significantly improve the performance of our estimators, except in
the single-task setting with Σ known, where the under-penalization phenomenon discussed
above disappears.

Table 1 shows us that using the multitask procedure benefits the estimation accuracy,
both in the clustering setting and in the segmentation setting. The last line of Table 1 does
not show that the clustering setting improves over the “segmentation into intervals” one,
which was awaited if both select a model close to the oracles, which are the same on both
cases.

7. Conclusion and future work

This paper shows that taking into account the unknown similarity between p regression tasks
can be done optimally (Theorem 10). The crucial point is to estimate the p× p covariance
matrix Σ of the noise (covariance between tasks). An estimator of Σ is defined in Section 4,
where non-asymptotic bounds on its error are provided under very mild assumptions on the
mean of the sample (Theorem 8), which is probably the most important theoretical result
of the paper.

Simulation experiments show that our algorithm works with reasonable sample sizes, and
that our multi-task estimator often perform much better than its single-task counterpart.
Up to the best of our knowledge, a theoretical proof of this point remains an open problem
that we intend to investigate in a future work.
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Figure 4: Increasing the sample size n (Setting B), quadratic errors of multi-task estimators
(np)−1

E[‖f̂similar,S − f‖2]. Blue: S = Σ̂. Red: S = Σ.

Theorem 10 only holds when matrices M can be diagonalized simultaneously (assump-
tion (HM)), which often corresponds to cases where we have a prior knowledge of what
the relations between the tasks would be, and which is the only known case where the
optimization is quite easy. We do plan to expand our results to larger sets M, which may
require new concentration inequalities and new optimization algorithms.
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la Recherche (Detect project, reference ANR-09-JCJC-0027-01) and from the European
Research Council (SIERRA Project ERC-239993).

We give in Appendix the proofs of the different results stated in Sections 2, 4 and 5.
The proofs of our main results are contained in Sections D and E.

Appendix A. Proof of Proposition 2

Proof It is sufficient to show that 〈·, ·〉G is positive-definite on G. Take g ∈ G and S =
(Si,j)1≤i≤j≤p the symmetric postive-definite matrix of size p verifying S2 = M , and denote
T = S−1 = (Ti,j)1≤i,j≤p. Let f be the element of G defined by ∀i ∈ {1 . . . p}, g(·, i) =
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Figure 5: Increasing the sample size n (Setting B), quadratic errors of single-task estimators
(np)−1

E[‖f̂ind,S − f‖2]. Blue: S = Σ̂. Red: S = Σ.

∑n
k=1 Ti,kf(·, k). We then have:

〈g, g〉G =

p∑

i=1

p∑

j=1

Mi,j〈g(·, i), g(·, j)〉F

=

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

Mi,jTi,kTj,l〈f(·, k), f(·, l)〉F

=

p∑

j=1

p∑

k=1

p∑

l=1

Tl,j〈f(·, k), f(·, l)〉F
p∑

i=1

Mj,iTi,k

=

p∑

j=1

p∑

k=1

p∑

l=1

Tl,j〈f(·, k), f(·, l)〉F (M · T )j,k

=

p∑

k=1

p∑

l=1

Tl,j〈f(·, k), f(·, l)〉F
p∑

j=1

Tl,j(M · T )j,k

=

p∑

k=1

p∑

l=1

〈f(·, k), f(·, l)〉F (T ·M · T )k,l

=

p∑

k=1

‖f(·, k)‖2F .
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Figure 6: Increasing the sample size n (Setting B), improvement of multi-task compared to
single-task: E[‖f̂

similar,Σ̂
− f‖2/‖f̂

ind,Σ̂
− f‖2].

This shows that 〈g, g〉G ≥ 0 and that 〈g, g〉G = 0 ⇒ f = 0 ⇒ g = 0.

Appendix B. Proof of Corollary 1

Proof If (x, j) ∈ X ×{1, . . . , p}, the application (f1, . . . , fp) 7→ f j(x) is clearly continuous.
We now show that (G, 〈·, ·〉G) is complete. If (gn)n∈N is a Cauchy sequence of G and if we de-
fine, as in Section A , the functions fn by ∀n ∈ N, ∀i ∈ {1 . . . p}, gn(·, i) =

∑p
k=1 Ti,kfn(·, k).

The same computations show that (fn(·, i))n∈N are Cauchy sequences of F , and thus con-
verge. So the sequence (fn)n∈N converges in G, and (gn)n∈N does likewise.

Appendix C. Proof of Proposition 4

Proof We define

Φ̃(x, j) = M−1 ·



δ1,jΦ(x)

...
δp,jΦ(x)


 ,
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Figure 7: Increasing the signal-to-noise ratio (Setting C), quadratic errors of multi-task
estimators (np)−1

E[‖f̂similar,S − f‖2]. Blue: S = Σ̂. Red: S = Σ.

with δi,j = 1i=j being the Kronecker symbol, that is, δi,j = 1 if i = j and 0 otherwise. We

now show that Φ̃ is the feature function of the RKHS. For g ∈ G and (x, l) ∈ X ×{1, . . . , p},
we have:

〈g, Φ̃(x, l)〉G =

p∑

j=1

p∑

i=1

Mj,i〈g(·, j), Φ̃(x, l)i〉F

=

p∑

j=1

p∑

i=1

p∑

m=1

Mj,iM
−1
i,mδm,l〈g(·, j),Φ(x)〉F

=

p∑

j=1

p∑

m=1

(M ·M−1)j,mδm,lg(x, j)

=

p∑

j=1

δj,lg(x, j) = g(x, l) .

Thus we can write:
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Figure 8: Increasing the signal-to-noise ratio (Setting C), improvement of multi-task com-
pared to single-task: E[‖f̂

similar,Σ̂
− f‖2/‖f̂

ind,Σ̂
− f‖2].

k̃((x, i), (y, j)) = 〈Φ̃(x, i), Φ̃(y, j)〉G

=

p∑

h=1

p∑

h′=1

Mh,h′〈M−1
h,i Φ(x),M

−1
h′,jΦ(y)〉F

=

p∑

h=1

p∑

h′=1

Mh,h′M−1
h,i M

−1
h′,jK(x, y)

=

p∑

h=1

M−1
h,i (M ·M−1)h,jK(x, y)

=

p∑

h=1

M−1
h,i δh,jK(x, y) = M−1

i,j K(x, y) .
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Appendix D. Proof of Theorem 8

D.1 Some useful tools

We now give two properties of the Kronecker product, and then introduce a useful norm
on Sp(R), upon which we give several properties. Those are the tools needed to prove
Theorem 8.

Property 1. The Kronecker product is bilinear,associative and for every matrices A,B,C,D
such that the dimensions fit, (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Property 2. Let A ∈ Mn(R), (A⊗ In)
⊤ = (A⊤ ⊗ In).

Definition 11. We now introduce the norm ||| · ||| on Sp(R), which is the modulus of the
eigenvalue of largest magnitude, and can be defined by

|||S||| := sup
z∈Rp,‖z‖2=1

∣∣∣z⊤Sz
∣∣∣ .

This norm has several interesting properties, some of which we will use and which are stated
below.

Property 3. The norm ||| · ||| is a matricial norm: ∀(A,B) ∈ Sp(R)
2, |||AB||| ≤ |||A||||||B|||.

We will use the following result, which is a consequence of the preceding Property.

∀S ∈ Sp(R), ∀T ∈ S++
p (R), |||T− 1

2ST− 1
2 ||| ≤ |||S||||||T−1||| .

We also have:

Proposition 12.
∀Σ ∈ Sp(R), |||Σ⊗ In||| = |||Σ||| .

Proof We can diagonalize Σ in an orthonormal basis: ∃U ∈ On(R), ∃D = Diag(µ1, . . . , µp), Σ =
U⊤DU . We then have, using the properties of the Kronecker product:

Σ⊗ In = (U⊤ ⊗ In)(D ⊗ In)((U ⊗ In)

= (U ⊗ In)
⊤(D ⊗ In)((U ⊗ In) .

We just have to notice that U ⊗ In ∈ Onp(R) and that:

D ⊗ In = Diag(µ1, . . . , µ1︸ ︷︷ ︸
n times

, . . . , µp, . . . , µp︸ ︷︷ ︸
n times

) .

This norm can also be written in other forms:

Property 4. If M ∈ Mn(R), the operator norm ‖M‖2 := supt∈Rn\{0}

{
‖Mt‖2
‖t‖2

}
is equal

to the greatest singular value of M :
√

ρ(M⊤M). Henceforth, if S is symmetric, we have
|||S||| = ‖S‖2
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D.2 The proof

We now give a proof of Theorem 8, using Lemmas 13, 14 and 15, which are stated and
proved in Section D.3. The outline of the prove is the following:

1. Apply Theorem 5 to problem (Pz) for every z ∈ Z in order to

2. control ‖s− ζ‖∞ with a large probability, where s, ζ ∈ R
p(p+1)/2 are defined by

s := (Σ1,1, . . . ,Σp,p,Σ1,1 +Σ2,2 + 2Σ1,2, . . . ,Σi,i +Σj,j + 2Σi,j, . . .)

and ζ := (a(e1), . . . , a(ep), a(e1 + e2), . . . , a(e1 + ep), a(e2 + e3), . . . , a(ep−1 + ep)) .

3. Deduce that Σ̂ = J(ζ) is close to Σ = J(s) by controlling the Lipschitz norm of J .

Proof 1. Apply Theorem 5: We start by noticing that Assumption (Hdf) actually
holds true with all λ0,j equal. Indeed, let (λ0,j)1≤j≤p be given by Assumption (Hdf) and
define λ0 := minj=1,...,p λ0,j. Then, λ0 ∈ (0,+∞) and df(λ0) since all λ0,j satisfy these
two conditions. For the last condition, remark that for every j ∈ {1, . . . , p}, λ0 ≤ λ0,j and
λ 7→ ‖(Aλ − I)Fej‖22 is a nonincreasing function (as noticed in Arlot and Bach (2011) for
instance), so that

1

n

∥∥(Aλ0 − In)Fej

∥∥2
2
≤ 1

n

∥∥(Aλ0,j
− In)Fej

∥∥2
2
≤ Σj,j

√
ln(n)

n
. (D.1)

In particular, Eq. (3.2) holds with dn = 1 for problem (Pz) whatever z ∈ {e1, . . . , ep}.
Let us now consider the case z = ei + ej with i 6= j ∈ {1, . . . , p}. Using Eq. (D.1) and

that Fei+ej = Fei + Fej , we have

∥∥(Bλ0 − In)Fei+ej

∥∥2
2
≤ ‖(Bλ0 − In)Fei‖22+

∥∥(Bλ0 − In)Fej

∥∥2
2
+2〈(Bλ0−In)Fei , (Bλ0−In)Fej 〉 .

The last term is bounded as follows:

2〈(Bλ0 − In)Fei , (Bλ0 − In)Fej 〉 ≤ 2‖(Bλ0 − In)Fei‖ · ‖(Bλ0 − In)Fej‖
≤ 2
√

n ln(n)
√

Σi,iΣj,j

≤
√

n ln(n)(Σi,i +Σj,j)

≤ (1 + c(Σ))
√

n ln(n)(Σi,i +Σj,j + 2Σi,j)

= (1 + c(Σ))
√

n ln(n)σ2
ei+ej ,

because Lemma 13 shows

2(Σi,i +Σj,j) ≤ (1 + c(Σ))(Σi,i +Σj,j + 2Σi,j) .

Therefore, Eq. (3.2) holds with dn = 1 + c(Σ) for problem (Pz) whatever z ∈ Z.

2. Control ‖s− ζ‖∞: Let us define

η1 := β(α+ δ)(1 + c(Σ))

√
ln(n)

n
.
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By Theorem 5, for every z ∈ Z, an event Ωz of probability greater than 1− κn−δ exists on
which, if n ≥ n0(δ),

(1− η1)σ
2
z ≤ a(z) ≤ (1 + η1)σ

2
z .

So, on Ω :=
⋂

z∈Z Ωz,

‖ζ − s‖∞ ≤ η1 ‖s‖∞ , (D.2)

and P(Ω) ≥ 1− κp(p + 1)/2n−δ by the union bound. Let

‖Σ‖∞ := sup
i,j

|Σi,j| and C1(p) := sup
Σ∈Sp(R)

{‖Σ‖∞
|||Σ|||

}
.

Since ‖s‖∞ ≤ 4 ‖Σ‖∞ and C1(p) = 1 by Lemma 14, Eq. (D.2) implies that on Ω,

‖ζ − s‖∞ ≤ 4η1 ‖Σ‖∞ ≤ 4η1|||Σ||| . (D.3)

3. Conclusion of the proof: Let

C2(p) := sup
ζ∈Rp(p+1)/2

{ |||J(ζ)|||
‖ζ‖∞

}
.

By Lemma 15, C2(p) ≤ 3
2p. By Eq. (D.3), on Ω,

|||Σ̂− Σ||| = |||J(ζ)− J(s)||| ≤ C2(p) ‖ζ − s‖∞ ≤ 4η1C2(p)|||Σ||| . (D.4)

Since

|||Σ− 1
2 Σ̂Σ− 1

2 − Ip||| = |||Σ− 1
2 (Σ− Σ̂)Σ− 1

2 ||| ≤ |||Σ−1||||||Σ − Σ̂||| ,

and |||Σ||||||Σ−1||| = c(Σ), Eq. (D.4) implies that on Ω,

|||Σ− 1
2 Σ̂Σ− 1

2 − Ip||| ≤ 4η1C2(p)|||Σ||||||Σ−1||| = 4η1C2(p)c(Σ) ≤ 6η1pc(Σ) .

To conclude, Eq. (4.2) holds on Ω with

η = 6pc(Σ)β(α + δ)(1 + c(Σ))

√
ln(n)

n
≤ L1(α+ δ)p

√
ln(n)

n
c(Σ)2 (D.5)

for some numerical constant L1.

Remark 14. As stated in Arlot and Bach (2011), we need
√

n0(δ)/ ln(n0(δ)) ≥ 504 and√
n0(δ)/ ln(n0(δ)) ≥ 24(290 + δ).

Remark 15. To ensure that the estimated matrix Σ̂ is positive-definite we need that η < 1,
that is, √

n

ln(n)
> 6β(α + δ)pc(Σ) (1 + c(Σ)) .
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D.3 Useful Lemmas

Lemma 13. Let p ≥ 1, Σ ∈ S++
p (R) and c(Σ) its condition number. Then,

∀1 ≤ i < j ≤ p , Σi,j ≥ −c(Σ)− 1

c(Σ) + 1

Σi,i +Σj,j

2
, (D.6)

Remark 16. The proof of Lemma 13 shows the constant c(Σ)−1
c(Σ)+1 cannot be improved without

additional assumptions on Σ.

Proof It suffices to show the result when p = 2. Indeed, (D.6) only involves 2 × 2
submatrices Σ̃(i, j) ∈ S++

2 (R) for which

1 ≤ c(Σ̃) ≤ c (Σ) hence 0 ≤ c(Σ̃)− 1

c(Σ̃) + 1
≤ c(Σ)− 1

c(Σ) + 1
.

So, some θ ∈ R exists such that Σ = |||Σ|||R⊤
θ DRθ where

Rθ :=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
D =

(
1 0
0 λ

)
and λ :=

1

c(Σ)
.

Therefore,

Σ = |||Σ|||
(
cos2(θ) + λ sin2(θ) 1−λ

2 sin(2θ)
1−λ
2 sin(2θ) λ cos2(θ) + sin2(θ)

)
.

So, Eq. (D.6) is equivalent to

(1− λ) sin(2θ)

2
≥ −1− λ

1 + λ

1 + λ

2
,

which holds true for every θ ∈ R, with equality for θ ≡ π/2 (mod. π).

Lemma 14. For every p ≥ 1, C1(p) := supΣ∈Sp(R)
‖Σ‖∞
|||Σ||| = 1 .

Proof With Σ = Ip we have ‖Σ‖∞ = |||Σ||| = 1, so C1(p) ≥ 1.
Let us introduce (i, j) such that |Σi,j| = ‖Σ‖∞. We then have, with ek being the kth vector
of the canonical basis of Rp,

|Σi,j| = |e⊤i Σej | ≤ |e⊤i Σei|1/2|e⊤j Σej|1/2 ≤ (‖Σ‖1/22 )2 .

Lemma 15. For every p ≥ 1, let C2(p) := supζ∈Rp(p+1)/2
|||J(ζ)|||
‖ζ‖∞

. Then,

p

4
≤ C2(p) ≤

3

2
p .
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Proof For the lower bound, we consider

ζ1 = (1, . . . , 1︸ ︷︷ ︸
p times

, 4, . . . , 4︸ ︷︷ ︸
p(p−1)

2
times

) , then J(ζ1) =



1 . . . 1
...

. . .
...

1 . . . 1




so that |||J(ζ)||| = p and ‖ζ‖∞ = 4.
For the upper bound, we have for every ζ ∈ R

p(p+1)/2 and z ∈ R
p such that ‖z‖2 = 1

z⊤J(ζ)z =

∣∣∣∣∣∣
∑

1≤i,j≤p

zizjJ(ζ)i,j

∣∣∣∣∣∣
≤

∑

1≤i,j≤p

|zi| |zj | |J(ζ)| ≤ ‖J(ζ)‖∞ ‖z‖21 .

By definition of J , ‖J(ζ)‖∞ ≤ 3/2 ‖ζ‖∞. Remarking that ‖z‖21 ≤ p ‖z‖22 yields the result.

Appendix E. Proof of Theorem 10

The proof of Theorem 10 is similar to the proof of Theorem 3 in Arlot and Bach (2011).
We give it here out of completeness.

E.1 Key quantities and their concentration around their means

Definition 16. We introduce, for S ∈ S++
p (R),

M̂o(S) ∈ argmin
M∈M

{∥∥∥F̂M − Y
∥∥∥
2
+ 2 tr (AM · (S ⊗ In))

}
(E.1)

Definition 17. Let S ∈ Sp(R), we note S+ the symmetric matrix where the eigenvalues
of S have been thresholded at 0. That is, if S = U⊤DU , with U ∈ Op(R) and D =
Diag(d1, . . . , dp), then

S+ := U⊤Diag (max {d1, 0} , . . . ,max {dn, 0})U .

Definition 18. For every M ∈ M, we define

b(M) = ‖(AM − Inp)f‖22 ,

v1(M) = E [〈ε,AMε〉] = tr(AM · (Σ⊗ In)) ,

δ1(M) = 〈ε,AMε〉 − E [〈ε,AMε〉] = 〈ε,AM ε〉 − tr(AM · (Σ⊗ In)) ,

v2(M) = E
[
‖AMε‖22

]
= tr(A⊤

MAM · (Σ ⊗ In)) ,

δ2(M) = ‖AMε‖22 − E
[
‖AMε‖22

]
= ‖AMε‖22 − tr(A⊤

MAM · (Σ⊗ In)) ,

δ3(M) = 2〈AMε, (AM − Inp)f〉 ,

δ4(M) = 2〈ε, (Inp −AM )f〉 ,

∆̂(M) = −2δ1(M) + δ4(M) .

25



Solnon, Arlot and Bach

Definition 19. Let CA, CB , CC , CD, CE , CF be fixed nonnegative constants. For every x ≥
0 we define the event

Ωx = Ωx(M, CA, CB , CC , CD, CE , CF )

on which, for every M ∈ M and θ1, θ2, θ3, θ4 ∈ (0, 1]:

|δ1(M)| ≤ θ1 tr
(
A⊤

MAM · (Σ⊗ In)
)
+ (CA + CBθ

−1
1 )x|||Σ||| (E.2)

|δ2(M)| ≤ θ2 tr
(
A⊤

MAM · (Σ⊗ In)
)
+ (CC + CDθ

−1
2 )x|||Σ||| (E.3)

|δ3(M)| ≤ θ3 ‖(Inp −AM )f‖22 +CEθ
−1
3 x|||Σ||| (E.4)

|δ4(M)| ≤ θ4 ‖(Inp −AM )f‖22 +CF θ
−1
4 x|||Σ||| (E.5)

Of key interest is the concentration of the empirical processes δi, uniformly over M ∈
M. The following Lemma introduces such a result, when M contains symmetric matrices
parametrized with their eigenvalues (with fixed eigenvectors).

Lemma 20. Let P ∈ Op(R), and suppose that (HM) holds. Then P(Ωx(M, CA, CB , CC , CD, CE , CF )) ≥
1− pe1027+ln(n)e−x if

CA = 2, CB = 1, CC = 2, CD = 1, CE = 306.25, CF = 306.25 .

Proof We can write

AM = Ad1,...,dp = (P ⊗ In)
⊤
[
(D−1 ⊗K)

(
D−1 ⊗K + npInp

)−1
]
(P ⊗ In)

= Q⊤Ãd1,...,dpQ ,

with Q = P ⊗ In and Ãd1,...,dp = (D−1 ⊗K)(D−1 ⊗K + npInp)
−1. Remark that Ãd1,...,dp

is block-diagonal, with diagonal blocks being Bd1 , . . . , Bdp using the notations of Section 3.

With ε̃ = Qε = (ε̃1
⊤, . . . , ε̃p

⊤)⊤ and f̃ = Qf = (f̃1
⊤
, . . . , f̃p

⊤
)⊤ we can write

|δ1(M)| = 〈ε̃, Ãd1,...,dp ε̃〉 − E

[
〈ε̃, Ãd1,...,dp ε̃〉

]
,

|δ2(M)| =
∥∥∥Ãd1,...,dp ε̃

∥∥∥
2

2
− E

[∥∥∥Ãd1,...,dp ε̃
∥∥∥
2

2

]
,

|δ3(M)| = 2〈Ãd1,...,dp ε̃, (Ãd1,...,dp − Inp)f̃〉 ,

|δ4(M)| = 2〈ε̃, (Inp − Ãd1,...,dp)f̃〉 .
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We can see that the quantities δi decouple, therefore

|δ1(M)| =
p∑

i=1

〈ε̃i, Bdi ε̃i〉 − E [〈ε̃i, Bdi ε̃〉] ,

|δ2(M)| =
p∑

i=1

‖Bdi ε̃i‖22 − E

[
‖Bdi ε̃i‖22

]
,

|δ3(M)| =
p∑

i=1

2〈Bdi ε̃i, (Bdi − In)f̃i〉 ,

|δ4(M)| =
p∑

i=1

2〈ε̃i, (In −Bdi)f̃i〉 .

Using Lemma 9 of Arlot and Bach (2011), where we have p concentration results on the
sets Ω̃i, each of probability at least 1− e1027+ln(n)e−x we can state that, on the set

⋂p
i=1 Ω̃i,

we have

|δ1(M)| ≤
p∑

i=1

θ1Var[ε̃i] tr(B
⊤
diBdi) + (CA + CBθ

−1
1 )xVar[ε̃i] ,

|δ2(M)| ≤
p∑

i=1

θ2Var[ε̃i] tr(B
⊤
diBdi) + (CC + CDθ

−1
2 )xVar[ε̃i] ,

|δ3(M)| ≤
p∑

i=1

θ3

∥∥∥(In −Bdi)f̃i

∥∥∥
2

2
+ CEθ

−1
3 xVar[ε̃i] ,

|δ4(M)| ≤
p∑

i=1

θ4

∥∥∥(In −Bdi)f̃i

∥∥∥
2

2
+ CF θ

−1
4 xVar[ε̃i] .

To conclude, it suffices to see that for every i ∈ {1, . . . , p}, Var[ε̃i] ≤ |||Σ|||.

E.2 Intermediate result

We first prove a general oracle inequality, under the assumption that we use inside the
penalty an estimation of Σ which does not underestimate Σ too much.

Proposition 21. Let CA, CB , CC , CD, CE ≥ 0 be fixed constants, γ > 0, θS ∈ [0, 1/4) and
KS ≥ 0. On Ωγ ln(n)(M, CA, CB , CC , CD, CE), for every S ∈ S++

p (R) such that

S � Σ

(
1− θS inf

M∈M

{
b(M) + v2(M) +KS ln(n)|||Σ|||

v1(M)

})
(E.6)

and for every θ ∈ (0, (1 − 4θS)/2), we have:
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1

np

∥∥∥f̂Mo(S) − f
∥∥∥
2

2
≤ 1 + 2θ

1− 2θ − 4θS
inf

M∈M

{
1

np

∥∥∥F̂M − F
∥∥∥
2

2
+

2 tr (AM · ((S − Σ)+ ⊗ In))

np

}

+
1

1− 2θ − 4θS

[
(2CA + 3CC + 6CD + 6CE +

2

θ
(CB + CF ))γ +

θSKS

4

]
ln(n)|||Σ|||

np
(E.7)

Proof The proof of Proposition 21 is very similar to the one of Proposition 5 in Arlot and Bach
(2011). First, we have

∥∥∥f̂M − f
∥∥∥
2

2
= b(M) + v2(M) + δ2(M) + δ3(M) , (E.8)

∥∥∥f̂M − y
∥∥∥
2

2
= ‖f̂M − f‖22 − 2v1(M)− 2δ1(M) + δ4(M) + ‖ε‖22 . (E.9)

Combining Eq. (E.1) and (E.9), we get:
∥∥∥f̂M̂o(S)

− f
∥∥∥
2

2
+ 2 tr

(
A

M̂o(S)
· ((S − Σ)+ ⊗ In)

)
+ ∆̂(M̂o(S))

≤ inf
M∈M

{∥∥∥f̂M − f
∥∥∥
2

2
+ 2 tr (AM · ((S − Σ)⊗ In)) + ∆̂(M)

}
.

(E.10)

On the event Ωγ ln(n), for every θ ∈ (0, 1] and M ∈ M, using Eq. (E.2) and (E.5) with
θ = θ1 = θ4,

|∆̂(M)| ≤ θ(b(M) + v2(M)) + (CA +
1

θ
(CB + CF ))γ ln(n)|||Σ||| . (E.11)

Using Eq. (E.3) and (E.4) with θ2 = θ3 = 1/2 we get that for every M ∈ M Eq.
∥∥∥F̂M − F

∥∥∥
2

2
≥ 1

2
(b(M) + v2(M))− (CC + 2CD + 2CE)γ ln(n)|||Σ||| ,

which is equivalent to

b(M) + v2(M) ≤ 2
∥∥∥F̂M − F

∥∥∥
2

2
+ 2(CC + 2CD + 2CE)γ ln(n)|||Σ||| . (E.12)

Combining Eq. (E.11) and (E.12), we get

|∆̂(M)| ≤ 2θ
∥∥∥F̂M − F

∥∥∥
2

2
+

(
CA + (2CC + 4CD + 4CE)θ + (CB + CF )

1

θ

)
γ ln(n)|||Σ||| .

With Eq. (E.10), and with C1 = CA, C2 = 2CC + 4CD + 4CE and C3 = CB + CF we get

(1− 2θ)
∥∥∥f̂M̂o(S)

− f
∥∥∥
2

2
+ 2 tr

(
A

M̂o(S)
· ((S − Σ)+ ⊗ In)

)
≤

inf
M∈M

{∥∥∥f̂M − f
∥∥∥
2

2
+ 2 tr (AM · ((S − Σ)⊗ In))

}
+

(
C1 + C2θ +

C3

θ

)
γ ln(n)|||Σ||| .

(E.13)

Using Eq. (E.6) we can state that

tr
(
A

M̂o(S)
· ((S − Σ)⊗ In)

)
≥ −θS

(
(b(M̂o(S)) + v2(M̂o(S)) +KS ln(n)|||S|||

)
,

which then leads to Eq. (E.7) using Eq. (E.12) and (E.13).
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E.3 The proof itself

We now show Theorem 10 as a consequence of Proposition 21. It actually suffices to show
that Σ̂ does not underestimate Σ too much, and that the second term in the infimum of
Eq. (E.7) is negligible in front of the quadratic error (np)−1‖f̂M − f‖2.
Proof On the event Ω introduced in Theorem 8, Eq. (4.2) holds. Let

γ = c(Σ) (1 + c(Σ)) .

By Lemma 22 below, we have:

inf
M∈M

{
b(M) + v2(M) +KS ln(n)|||Σ|||

v1(M)

}
≥ 2

√
KS ln(n)|||Σ|||

n tr(Σ)
.

In order to have M̂o(Σ̂) satisfying Eq. (E.6), it suffices to have, for every θS > 0,

2θS

√
KS ln(n)|||Σ|||

n tr(Σ)
= 6β(α+ δ)pγ

√
ln(n)

n
,

which leads to the choice

KS =

(
3β(α+ δ)γ tr(Σ)

θS|||Σ|||

)2

.

We now take θS = θ = (9 ln(n))−1. Using Eq. (E.7) and requiring that ln(n) ≥ 6, we get
on Ω̃ = Ω ∩ Ω(α+δ) ln(n)(M, CA, CB , CC , CD, CE , CF ):

1

np

∥∥∥f̂M̂ − f
∥∥∥
2
≤
(
1 +

1

ln(n)

)
inf

M∈M





1

np

∥∥∥f̂M − f
∥∥∥
2

2
+

2 tr
(
AM · ((Σ̂ −Σ)+ ⊗ In)

)

np





+

(
1− 2

3 ln(n)

)−1 [
2CA + 3CC + 6CD + 6CE + ln(n)

(
18CB + 18CF +

729β2p2γ2 tr(Σ)2

4|||Σ|||2
)]

× (α+ δ)2
ln(n)2|||Σ|||

np

Using Eq. (D.5) and defining

η2 := 12β(α + δ)p

√
ln(n)

n
c(Σ) (1 + c(Σ)) , (E.14)

we get

1

np

∥∥∥f̂M̂ − f
∥∥∥
2
≤
(
1 +

1

ln(n)

)
inf

M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2
+ η2

tr(AM · (Σ⊗ In))

np

}

+

(
1− 2

3 ln(n)

)−1 [
2CA + 3CC + 6CD + 6CE + ln(n)

(
18CB + 18CF +

729β2p2γ2 tr(Σ)2

4|||Σ|||2
)]

×(α+ δ)2
ln(n)2|||Σ|||

np
.

(E.15)
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Now, to get a classical oracle inequality, we have to show that η2v1(M) = η2 tr(AM ·
(Σ⊗ In)) is negligible in front of ‖f̂M − f‖2. Lemma 22 ensures that:

∀M ∈ M , ∀x ≥ 0 , 2

√
x|||Σ|||
n tr(Σ)

v1(M) ≤ v2(M) + x|||Σ||| .

With 0 < Cn < 1, taking x to be equal to 72β2p2 ln(n)c(Σ)2(1+c(Σ))2 tr(Σ)/(Cn|||Σ|||) leads
to

η2v1(M) ≤ 2Cnv2(M) +
72β2p2 ln(n)c(Σ)2(1 + c(Σ))2 tr(Σ)

Cn
. (E.16)

Then, since v2(M) ≤ v2(M) + b(M) and using also Eq. (E.8), we get

v2(M) ≤
∥∥∥f̂M − f

∥∥∥
2

2
+ |δ2(m)|+ |δ3(M)| .

On Ω̃ we have that for every θ ∈ (0, 1), using Eq. (E.3) and (E.4),

|δ2(M)|+|δ3(M)| ≤ 2θ

(∥∥∥f̂M − f
∥∥∥
2

2
− |δ2(M)| − |δ3(M)|

)
+(CC+(CD+CE)θ

−1)(α+δ) ln(n)|||Σ||| ,

which leads to

|δ2(M)|+ |δ3(M)| ≤ 2θ

1 + 2θ

∥∥∥f̂M − f
∥∥∥
2

2
+

CC + (CD + CE)θ
−1

1 + 2θ
(α+ δ) ln(n)|||Σ||| .

Now, combining this equation with Eq. (E.16), we get

η2v1(M) ≤
(
1 +

4Cnθ

1 + 2θ

)∥∥∥f̂M − f
∥∥∥
2

2
+ 2Cn

CC + (CD + CE)θ
−1

1 + 2θ
(α+ δ) ln(n)|||Σ|||

+
72β2p2 ln(n)c(Σ)2(1 + c(Σ))2 tr(Σ)

Cn
.

Taking θ = 1/2 then leads to

η2v1(M) ≤ (1 + Cn)
∥∥∥f̂M − f

∥∥∥
2

2
+ Cn(CC + 2(CD + CE))(α + δ) ln(n)|||Σ|||

+
72β2p2 ln(n)c(Σ)2(1 + c(Σ))2 tr(Σ)

Cn
.

We now take Cn = 1/ ln(n). We now replace the constants CA, CB , CC , CD, CE , CF by
their values in Lemma 20, and if we require that 2 ln(n) ≥ 1027, we get, for some constant
L3,

(
1− 2

3 ln(n)

)−1 [
1851.5 + ln(n)

(
5530.5 +

729β2p2γ2 tr(Σ)2

4|||Σ|||2
)
+ 616.5

(
1 +

1

ln(n)

)
1

ln(n)

]

+
72β2p2 ln(n)c(Σ)2(1 + c(Σ))2 tr(Σ)

Cn
≤ L3 ln(n)p

2c(Σ)4
tr(Σ)2

|||Σ|||2
(E.17)
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From this we can deduce Eq. (5.2).

Finally we deduce an oracle inequality in expectation by noting that if n−1‖f
M̂

− f‖2 ≤
Rn,δ on Ω̃, using Cauchy-Schwarz inequality

E

[
1

np

∥∥∥f̂M̂ − f
∥∥∥
2

2

]
= E

[
1Ω̃
np

∥∥∥f̂M̂ − f
∥∥∥
2

2

]
+ E

[
1Ω̃c

np

∥∥∥f̂M̂ − f
∥∥∥
2

2

]

≤ E [Rn,δ] +
1

np

√
4p(p+ 1) + p

nδ

√
E

[∥∥∥f̂M̂ − f
∥∥∥
4

2

]
. (E.18)

We can remark that, since |||AM ||| ≤ 1,

∥∥∥f̂M − f
∥∥∥
2

2
≤ 2 ‖AMε‖22 + 2 ‖(Inp −AM )f‖22 ≤ 2 ‖ε‖22 + 8 ‖f‖22 .

So

E

[∥∥∥f̂M̂ − f
∥∥∥
4

2

]
≤ 12

(
np|||Σ|||+ 4 ‖f‖22

)2
,

together with Eq. (E.15) and Eq. (E.18), induces Eq. (5.3), using that for some constant
L4 > 0,

12

√
4p(p + 1) + p

nδ

(
|||Σ|||+ 4

np
‖f‖22

)
≤ L4

p

nδ/2

(
|||Σ|||+ 1

np
‖f‖22

)
.

We can finally define the constant L2 by:

L3c(Σ)
4 tr(Σ)(α+ δ)2

p3 ln(n)3

np
+ L4

p

nδ/2
|||Σ||| ≤ L2c(Σ)

4 tr(Σ)(α + δ)2
p3 ln(n)3

np

Lemma 22. Let n, p ≥ 1 be two integers, x ≥ 0 and Σ ∈ S++
p (R). Then,

inf
A∈Mnp(R),|||A|||≤1

{
tr(A⊤A · (Σ⊗ In)) + x|||Σ|||

tr(A · (Σ⊗ In))

}
≥ 2

√
x|||Σ|||
n tr(Σ)

Proof First note that the bilinear form on Mnp(R), (A,B) 7→ tr(A⊤B ·(Σ⊗In)) is a scalar
product. By Cauchy-Schwarz inequality, for every A ∈ Mnp(R),

tr(A · (Σ⊗ In))
2 ≤ tr(Σ⊗ In) tr(A

⊤A · (Σ⊗ In)) .

Thus, since tr(Σ⊗ In) = n tr(Σ), if c = tr(A · (Σ ⊗ In)) > 0,

tr(A⊤A · (Σ ⊗ In)) ≥
c2

n tr(Σ)
.
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Therefore

inf
A∈Mnp(R),|||A|||≤1

{
tr(A⊤A · (Σ⊗ In)) + x|||Σ|||

tr(A · (Σ⊗ In))

}
≥ inf

c>0

{
c

n tr(Σ)
+

x|||Σ|||
c

}

≥ 2

√
x|||Σ|||
n tr(Σ)

.
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