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Abstract 

The CD44 protein family spans a large group of transmembrane glycoproteins acquired by 

alternative splicing and post-translational modifications. The great heterogeneity in molecular 

structure is reflected in its various important functions: CD44 mediates (i) interaction between 

cell and extracellular matrix (ECM), (ii) signal submission e.g. by acting as co-receptor for 

membrane-spanning receptor tyrosine kinases or by association with intracellular molecules 

initiating several signaling pathways, and (iii) anchor function connecting to the cytoskeleton 

via the ezrin-radixin-moesin (ERM) protein family. The expression pattern of the different 

CD44 isoforms display strong variations dependent on cell type, state of activation, and 

differentiation stage. In hematopoietic cells CD44 mediates interaction of progenitor cells and 

bone marrow stroma during hematopoiesis, regulates maturation and activation induced cell 

death (AICD) in T cells, influences neutrophil and macrophage migration as well as cytokine 

production, and participates in lymphocyte extravasation and migration. CD44 is involved in 

development and progress of hematological neoplasias by enhancement of apoptotic 

resistance, invasiveness, as well as regulation of bone marrow (BM) homing, and 

mobilization of leukemia initiating cells (LIC) into the peripheral blood. Thereby altered CD44 

expression functions as marker for worse prognosis in most hematological malignancies. 

Additionally CD44 expression levels can be used to distinguish between different 

hematological neoplasias and subtypes. Concerning new treatment strategies CD44 displays 

promising potential either by direct targeting of CD44 expressed on the malignant cells or 

reversing an acquired resistance to primary treatment mediated through altered CD44 

expression. Former can be achieved by antibody or hyaluronan (HA) based immunotherapy. 
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Introduction 

The class I transmembrane glycoprotein CD44 has first been described in 1980 as a surface 

molecule on T-lymphocytes, cortical thymocytes, and granulocytes [1]. It plays an important 

role in cell proliferation, migration, survival, and apoptosis. Due to its various functions in 

physiological as well as pathological processes, CD44 has been given several names as for 

example phagocytic glycoprotein 1 (Pgp-1), Hermes antigen, and extracellular matrix 

receptor type III (ECM-III) [2]. In this review we convey structural understanding of the CD44 

protein and outline the physiological function on molecular and cellular level in order to 

provide a broad background for comprehension of CD44 engagement in hematological 

neoplasias and potential strategies for diagnosis and therapy of these malignancies. 

 

Genomic organization and splice pattern 

The highly conserved gene of the CD44 transmembrane protein family is located on the short 

arm of chromosome 11p13 in humans and on chromosome 2 in mice. It spans approximately 

50 to 60 kb of genomic DNA and codes for about 360 amino acids in 19 exons in humans, 

and 20 exons in mice. It comprises two kinds of exons, constant and variable ones. Former 

encode the extracellular globular part (exon 1-5), a short stem as connection to the cell 

membrane (exon 16 and 17) and the transmembrane domain (exon 18). Exon 19 and 20 are 

subject to alternative splicing creating either a short or more often a long cytoplasmic tail [3]. 

The exons 6 to 15 are variable (v1-10), enlarging the stem on its distal site and forming 

several distinct CD44 isoforms, referred to as CD44 variants (CD44v1-10) (Fig. 1). Different 

combinations of the variable exons create a CD44 repertoire of several dozen isoforms. 

CD44 is a mainly acidic charged molecule with a t1/2 turnover of approximately 8 hours [rev. 

by [2, 4, 5]. 

The splicing process can be influenced by several factors including cytokine and growth 

factor (GF) stimulation: Without detectable changes in total CD44 m-RNA levels an 

upregulation of CD44v3, v5, v6, v7, v8 and v9 is obtained by treatment with 12-O-

tetradecanoyl phorbol-13-acetate (TPA), insulin-like growth factor-1 (IGF-1), and platelet-

derived growth factor (PDGF) [6]. IL-1 upregulates CD44 standard and induces appearance 

of v3- and v6-containing splice variants, most likely mediated by Egr-1 [7]. Further Ras [8], 

OPN [9], and poly(rC)-binding protein 1 (PCBP1) involvement [10], as well as DNA damage 

result in a changed splicing pattern of CD44 [11].  
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Protein structure 

The CD44 protein core has a molecular weight of only 37 kDa but post-translational 

modifications and insertion of variable exons enlarge it up to 200 kDa. Lacking all variable 

exons, CD44 standard (CD44s) is the smallest isoforms with a protein product size of 

approximately 80 kDa. Six cysteine residues creating disulfide chains form the globular 

shape of the distal extracellular region that serves as a docking site for several elements of 

the extracellular matrix (ECM). The stem contains possible proteolytic cleavage sites on its 

carboxyl terminal end. The whole extracellular domain is subject to post-translational 

modifications: N-linked glycosylations, mostly seen in the globular and variable region, and 

O-linked glycosylations as well as the attachment of glycosaminoglycans usually found in the 

stem. The hydrophobic transmembrane domain embodies a cysteine residue that appears to 

play a role in CD44 oligomerization. The cytoplasmic tail embodies 6 putative serine 

phosphorylation sites and provides a connection to the cytoskeleton and to the tyrosine 

kinase family [rev. by [2, 4, 5, 12, 13]. Recent experiments assume that the juxtamembrane 

region of the cytoplasmic tail runs parallel to the negatively charged inner membrane 

because of its mostly basic residues. Contrarily the distal part, containing basically acidic 

residues, would project into the cytoplasm (Fig. 2) [14].  

CD44 exists membrane bound and soluble. The latter can be generated by proteolytic 

cleavage of e.g. membrane-type 1 matrix metalloproteinase (MT1-MMP) [15]. This shedding 

of CD44 from the membrane can be triggered e.g. by oncostatin M (OSM), transforming 

growth factor beta 1 (TGF-beta 1) [16], and EGF [17]. 

 

Expression pattern 

CD44s is almost ubiquitously expressed whereas physiological CD44v expression is 

restricted to a subset of tissues. Despite CD44s expression on e.g. connective tissues, blood 

vessels, and muscle [18], highest expression is observed on hematopoietic cells. Therefore 

CD44s is also referred to as hematopoietic CD44 (CD44H) [12]. Basically epithelial cells 

express CD44 variants, CD44v9 being the dominant isoform. It is expressed in most stratified 

squamous epithelia showing particular high expression levels in oesophagus, skin, and 

tonsil. Additionally CD44v6 and CD44v4 are expressed in epithelial cells, although in smaller 

amounts. The longest isoform containing all variable exons is expressed in keratinocytes. 

Within the individual tissues generative cells display the highest amount of CD44v [13, 18]. 

CD44v expression is transiently upregulated on activated T cells and cells of the innate 

immune system [12]. The expression pattern of the different variants of CD44 varies during 

lineage commitment, e.g. CD44v6 is upregulated in monopoiesis and downregulated in 

granulopoiesis [19]. 
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CD44v6 is found to confer metastatic behavior to non-metastatic tumor cells [20] and plays 

an important role in various tumor entities concerning pathophysiology and prognosis. As 

reviewed by Heider et al. a high frequency of positive cells up to hundred percent is found in 

squamous cell carcinomas of head and neck, oesophagus, lung, skin, and cervix as well as 

in metastases of these tumors. In adenocarcinoma, high levels of CD44v6 are observed in 

breast cancer cells and even higher levels in cells of metastatic lesions. In cells of Barrett’s, 

lung, gastric, pancreatic, colon, endometrium, and prostatic cancer, more varying levels are 

reported, displaying a more moderate expression rate. Also in thyroid carcinoma and basal 

cell carcinoma CD44v6 is frequently expressed [21].  

Additionally CD44 has been proposed to identify tumor initiating cells, also referred to as 

cancer stem cells, in a multitude of different tumor entities as e.g. breast cancer [e.g. [22], 

colon cancer [e.g. [23], pancreatic cancer [e.g. [24], and liver cancer [e.g. [25] and thereby 

plays an important role in tumor pathogenesis, prognosis and therapy strategies. 

 

Ligands and protein interactions 

Protein interactions of CD44 are divided into three groups according to the compartment the 

interaction takes place. Extracellular, CD44 mediates outside-in signaling and the connection 

to ECM and surrounding cells. The cytoplasmic tail initiates intracellular signaling cascades 

and creates the connection to the cytoskeleton, thereby influencing cell shape and migration. 

The membrane region is characterized by recruitment of proteins to the membrane and 

interaction with membrane spanning receptors.  

Extracellular region: CD44 binds to several components of the ECM: fibronectin, collagen 

type I, and type IV, laminin, osteopontin (OPN), and hyaluronan (HA), its principal ligand. 

Thereby HA fulfills a passive ‘linking’ function between CD44 expressing cells as well as 

signal transduction [2, 13]. The binding activity of HA to CD44 in general displays a great 

variability dependent on CD44 surface expression and clustering [26], insertion of variant 

exons in the CD44 molecule [6], and post-translational modifications of CD44 [among others 

[27, 28] and can be regulated by cytokines. 

CD44/HA signaling itself can be affected by the molecular weight of HA e.g. during 

inflammation: While low molecular weight HA (LMW-HA) stimulates cell growth, high 

molecular weight HA (HMW-HA) inhibits proliferation [29]. Furthermore, the localization of the 

CD44/HA interaction at the cell surface has influence on the mitotic spindle axis formation. 

Here, binding of HA to CD44 at the apical membrane results in parallel orientation of the 

spindle, while ligation at the basal membrane leads to increased spindle axis rotation [30]. 
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In hematopoietic stem cells (HSC), even though there is a high CD44 expression on CD34+ 

hematopoietic cells, spontaneous binding activity to HA is low. Binding affinity can be 

induced by stem cell factor (SCF), GM-CSF, and IL-3 without affecting the amount of total 

CD44 expressed on the cell surface. This effect might be due to conformational changes of 

CD44. Thereby pre-existing ‘inactive’ CD44 with low HA binding affinity would be activated 

by interaction of cytoplasmic tail and cytoskeleton [31]. Also monocytic CD44 can be 

transferred into a high (e.g. by TNF-alpha) or low (e.g. by IL-4) HA-affinity state by cytokines 

via post-translational modifications as N-linked glycosylation or chondroitin sulfate 

modification [32, 33]. Similarly T cell binding to HA is regulated by cytokines (e.g. IL-2, IL-8, 

TNF) activating CD44 [rev. [27]. Additionally antigen-activation of T cells enhances the 

affinity of their surface CD44 to HA [34].  

CD44 plays a pivotal role in cell-cell interaction by interaction with integrins. Cooperation of 

CD44 with alpha4beta1 integrin, also referred to as very late antigen-4 (VLA-4) mediates 

adhesion of hematological progenitor cells to the bone marrow [35] and plays an important 

role in the process of leukocyte extravasation [36]. CD44v ligation by OPN induces integrin 

activation via Src-signaling leading to increased survival of cells [37]. Furthermore, cross-

linking of CD44 results in higher expression levels of lymphocyte function-associated 

antigen-1 (LFA-1) and VLA-4 which are responsible for enhanced transendothelial migration 

of tumor cells [38]. 

Transmembrane region: Additionally to transmembrane proteins and components of the 

ECM, several soluble molecules are reported to bind to CD44 as e.g. members of the 

galectin family and several GFs (see table 1 and 2) and trigger intracellular signaling 

cascades. Hereby CD44 recruits GFs to the cell membrane and mediates GF interactions 

with their respective receptor tyrosine kinase. By this means CD44 functions as co-receptor 

for a wide range of receptor tyrosine kinases as members of the ErbB family, c-Met, VEGFR-

2, and BMP receptor type II (see table 3) [rev. [13]. Further CD44 signaling activates 

transcription and translocation of MMPs to the cell surface. Thereby CD44 enhances 

invasiveness of tumor cells either by anchoring or increased secretion of proteolytic active 

MMPs (see table 4) [39-41].  

The cytoplasmic tail cooperates with intracellular molecules as members of the Src tyrosine 

kinase family including c-Src, Lyn, Fyn, and Lck [42-45], Moesin-Ezrin-Radixin-Like Protein 

Merlin [46], T-cell lymphoma invasion and metastasis-inducing protein 1 and 2 (Tiam1/2) 

[47], intracellular OPN [48], as well as members of the Smad protein family [14, 49, 50]. 

Hereby c-Src signaling stimulates microRNA-mediated down-regulation of tumor suppressor 

gene transcription [51].  
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Intracellular region: The connection to the cytoskeleton is provided by ankyrin and the ezrin-

radixin-moesin (ERM) protein family functioning as cross-linkers to the actin filaments. The 

ERM proteins have a well conserved FERM domain in common that binds to CD44, and 

possess a carboxyl terminal tail linking to F-actin [52, 46]. Affinity is regulated by 

phosphorylation of either the ERM protein family or the cytoplasmic tail of CD44, latter 

mediated by protein kinase C (PKC). Likewise ankyrin activity which mediates contact to the 

cytoskeleton component spectrin depends on its phosphorylation status. Thereby it 

modulates HA-dependent cell adhesion and motility. [13, 14]. Ankyrin binding is further 

modulated by RhoA and Rac1, members of the Rho-GTPase family [53]. Activation of both, 

RhoA and Rac1, is mediated by CD44 itself: CD44/MMP-9 activates TGF-beta [54] which is 

shown to regulate RhoA activity, rearrangement of the cytoskeleton, and adhesion [55]. 

Further Rac1 activation proceeds via HA-ligation to CD44, leading to actin cytoskeleton and 

cell reorientation [56]. Besides direct interactions, CD44 influences filament organization by 

co-activation of several tyrosine kinases resulting in downstream phosphorylation of 

cytoskeleton proteins [43] and F-actin rearrangement [44]. 

 

Intracellular signaling cascades 

Complex intracellular signaling cascades, including the PI3K/Akt and the Ras/ERK pathway, 

mediate CD44-regulated adhesion, migration, proliferation, survival, apoptosis, and 

differentiation via three distinct mechanisms:  

(i) Activation and association of intracellular molecules to the cytoplasmic tail of CD44 and 

downstream phosphorylation.  

Hereby e.g. complex formation with Lyn leads to subsequent regulation of Akt 

phosphorylation, modulation of the actin-binding protein cofilin, and enhanced migration as 

observed in colon carcinoma [61]. Further CD44/HA-activated Rho-kinase increases cell 

motility by phosphorylation of myosin phosphatase and consecutive cytoskeletal activation, 

and confers ECM degrading properties by triggering MMP-9 and MMP-2 secretion. 

Additionally PI3K signaling is induced and increases cell proliferation and survival [39]. The 

ERK1/2 pathway can be stimulated e.g. by CD44/CD74 complex activation, which leads in 

turn to Scr association with the cytoplasmic tail of CD44 and subsequent ERK1/2 

phosphorylation [66]. Furthermore association to the ERM protein family mediates not only 

cell motility as described above but also cell death and survival as seen in Jurkat cells where 

Fas-mediated apoptosis can be modulated by CD44s induced downstream ezrin/actin 

interactions [63]. 

 (ii)Cleavage and subsequently translocation of the cytoplasmic tail of CD44 into the nucleus 

followed by transcription of several target genes inclusive the CD44 gene itself [57].  
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(iii) Downstream signaling of the CD44-activated receptor tyrosine kinases. 

The epidermal growth factor receptor (EGF-R) for instance can be activated by CD44 co-

localization and trigger the Akt as well as the ERK pathway. HMW-HA induced CD44/EGF-R 

colocalization results in protein kinase C (PKC) phosphorylation by activated EGF-R, Akt and 

Rac-1 activation, focal adhesion kinase (FAK)-mediated upregulation of MMP-2 secretion, 

and enhanced cell motility [59]. Further TGF-beta1 stimulated CD44/EGF-R complex 

formation is followed by ERK1/2 signaling and fibroblast differentiation [69].  

 

Physiological function in cells of hematopoietic origin 

CD44 is involved in a wide range of important and very different functions: Cell proliferation, 

wound healing, angiogenesis, migration, homing, hematopoiesis, differentiation, immune 

response, and cell survival. Many of these functions are regulated by CD44-mediated 

cytokine production and secretion (table 5) and have been reviewed extensively [among 

others [2, 13, 70]]. Here we focus on the role of CD44 during hematopoiesis and in mature 

blood cells. 

CD44 plays two pivotal roles in early hematopoiesis: (i) mediation of the interaction of the 

progenitor cells with their respective niche in the bone marrow (BM), (ii) stimulation of cell 

proliferation and differentiation by regulation of local cytokine secretion [31, 35, 71, 72].  

During fetal erythropoiesis CD44 expression on erythroid progenitor cells as well as on fetal 

hepatoblasts declines during maturation in order to prepare cells to leave the liver, 

suggesting a hematopoiesis dependent expression of CD44 [73]. Likewise in adult 

erythropoiesis, decreasing CD44 expression is found. Therefore the authors claim CD44 to 

be a better marker for discrimination between erythroblasts at different stages of 

development than CD71 [74]. 

Similarly during B cell maturation in the bone marrow, CD44 displays a very organized 

expression pattern characterized by two waves of downregulation: After expression of CD44 

on uncommitted CD34 positive progenitor cells, there is a loss of CD44 at the very early 

stage of B cell development. Thereafter CD44 expression increases, followed by a second 

wave of down-regulation before B cells regain CD44 when entering the periphery [75]. A 

possible reason for this expression pattern might be the proliferation regulating effect of 

CD44. CD44 expression occurs at the same time as RAG-1 expression and thereby 

immunoglobulin chain rearrangement is down-regulated, and proliferation is increased. 

During subsequent immunoglobulin light chain recombination CD44 expression decreases 

again.  
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During T cell maturation CD44 mediates homing of progenitor cells from the BM to the 

thymus where T cell differentiation and selection takes place. Furthermore intrathymic 

expansion of immature T cells through the different zones is regulated by CD44v6. Hereby 

CD44v6 cross-linking promotes proliferation and reduces apoptosis in early thymocytes [76]. 

Clustering of CD44 and Lck leads to F-actin rearrangement via PI3K activation and regulates 

spreading of mature T cells [44].  

Regulation of apoptosis plays an important role in mature T cells, especially in context of 

activation induced cell death (AICD). CD44 reduces Fas-mediated apoptosis in T helper 1 

cells (Th1 cells) and increases effector cell survival. Thereby CD44 contributes to memory 

Th1 cell generation [77]. At the same time CD44 is able to promote AICD in T cells by at 

least two distinct mechanisms: (i) up-regulation of Fas ligand surface expression on 

peripheral T cells [78], (ii) Fas independent induction of apoptosis in activated T cells via HA 

[79].  

Extravasation of mature lymphocytes depends on at least three different CD44/protein 

interactions: (i) CD44 mediates lymphocyte rolling and adhesion to endothelial HA. Affinity is 

regulated by conformational shifts of latter. This results in low and high binding activity of 

cells to HA. Hereby the change between these two states is essential for unimpaired rolling 

[80]. (ii) Binding of CD44v to different members of the selectin family mediates rolling via 

selectin-dependent tethering [81]. (iii) Thus firm adhesion, essential for subsequent 

squeezing through the endothelial cells, leads to CD44/VLA-4-mediated transendothelial 

migration [36]. 

In macrophages CD44 regulates migration behavior and cytokine production. CD44-/- 

macrophages show decreased response to chemoattractants, implied by impaired migration 

[82]. Ligation of CD44v6 and v7 on monocytes trigger the release of GM-CSF and IL-6, 

which thus leads to increased proliferation of myeloid and lymphoid progenitor cells [72]. In 

cooperation with OPN, CD44 inhibits the expression of IL-10 an anti-inflammatory cytokine, 

promoting a cytotoxic immune response [83]. In cooperation with HA, CD44 displays 

protective effect against septic response [84]. On the other hand, CD44v7 ligation in 

mononuclear cells in an inflammational setting is accompanied with apoptosis induction [85]. 

Taken together these findings indicate a crucial role of CD44 not only in stimulating the 

immune response but also in limiting an excessive reaction. Expression of macrophage 

inflammatory protein (MIP)-1alpha, MIP-1beta, cytokine responsive gene-2 (CXCL-10), 

monocyte chemoattractant protein-1 (MCP-1), as well as IL-8 can be downregulated by 

blocking of CD44 by antibodies in macrophages [86].  

Further cell polarization, migration, and migration speed in neutrophils are dependent on 

CD44. CD44-/- neutrophils display impaired migration concerning direction and speed and 
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reduced activation of RhoA [87]. Additionally CD44 ligation triggers neutrophil apoptosis in 

vitro [88]. Similarly Langerhans and dendritic cell migration is mediated at least in parts by 

CD44, since antibodies against CD44 block OPN-induced cell migration to lymphatic organs 

in mice [89]. Also the proliferation of mast cells is regulated by CD44 [90]. 

Hematological Neoplasias 

Acute lymphoblastic leukemia 

Being the most common malignancy in childhood, acute lymphoblastic leukemia (ALL) 

displays very young patient pattern and requires well-considered treatment strategies to 

minimize treatment related morbidity, mortality, and disease relapse. Total CD44 as well as 

CD44v6 have been identified as prognostic marker, and particular high or low CD44 

expression patterns have been reported for several cytogenetic or prognostic subgroups in 

ALL. 

In a small cohort of 16 pediatric patients CD44v6 expression was observed mainly in the 

medium and high risk group indicating a possible association between CD44v6 expression 

and unfavorable outcome [91]. This is consistent with the finding that high CD44v6 mRNA 

levels correlate with increased risk of relapse (n=21). Further expression of CD44v6 in ALL 

cell lines was associated with accelerated engraftment in NOD/SCID mouse transplantation 

experiments [92]. Contrarily, in a group of 97 pediatric B precursor ALL patients with neither 

known adverse nor favorable cytogenetic features no association between CD44v6 

expression and prognosis was seen. On the other hand, total CD44 surface expression was 

identified as an independent predictor of disease relapse in the latter cohort [93]. 

In pediatric ALL, CD44 and CD27 surface expression patterns have been described for 

different ALL subtypes and prognostic groups. CD44 surface expression in diagnostic bone 

marrow samples measured by flow cytometry displayed (i) concordance between high CD44 

expression and high risk T-ALL, (ii) significant lower CD44 expression in the TEL/AML1 ALL 

subtype together with high CD27 expression, and (iii) double CD44/CD27 expression pattern 

typically seen in bcr/abl positive subtypes [94].  

 

Acute myeloid leukemia 

CD44 signaling plays a pivotal role in acute myeloid leukemia (AML), depicting three different 

putative points of attack: differentiation arrest, bone marrow niche dependency of leukemia 

initiating cells (LIC), and acquired therapy resistance.  

HA as well as CD44 antibodies can induce reverse of the leukemic differentiation blockage in 

a dose and time dependent manner, showing the strongest effect in monoblastic AML FAB 

M5 cells. The CD44 antibodies H90 and A3D8 as well as HA-12, an oligosaccharidic 
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fragment, and HMW-HA enable AML blasts to produce oxidative burst, increase expression 

of the differentiation specific markers CD11b, CD14, and CD15, and induce cytological 

changes confirming proceeding differentiation. This in vitro setting indicates that abrogation 

of the leukemic block might be a therapeutic strategy not only in AML FAB M3 and identified 

H90 and A3D8 as potential agents [95]. In combination with retinoic acid (RA) both 

antibodies overcome the maturation deficiency in the KG1a (FAB M0) cell line that is 

characterized by resistance to most differentiation-inducing agents. This depicts the 

possibility of synergistic effects of several agents to overcome the leukemic block in AML 

[96]. Molecular mechanisms behind the differentiation process have been identified in parts 

as e.g. in primary AML FAB M2-5 cells. Here anti-CD44 mAb treatment with HI44a resulted 

in reduced c-myc transcript expression. Additionally seen increased differentiation and 

apoptosis was assumed to be responsible for this effect. [97]. Further THP-1 cell 

differentiation proceeds via autokrine cytokine secretion upon CD44 ligation. Hereby anti-

CD44 mAb H3 treatment induced ERK1/2-mediated TNF-alpha and IL-6 secretion. 

Subsequent cell differentiation was shown to be dependent on both, TNF-alpha as well as IL-

6. [67]. In primary AML FAB M5 cells, CD44-mediated GM-CSF and IL-8 secretion was 

identified to promote differentiation upon anti-CD44 mAb P245 treatment [68]. These findings 

indicate CD44-mediated stimulation of autokrine cytokine secretion to be a general 

mechanism for induction of differentiation in AML cells.  

IL-8 and GM-CSF also mobilize hematopoietic stem cells (HSC) from BM into peripheral 

blood [98]. Differentiation and proliferation of HSC is closely connected to the 

microenvironment. Therefore they are dependent on finding their specific niche in the BM 

[99, 100]. Together with observed eradication of LIC and reduced repopulation in immune 

deficient mice [101], this might provide a way of antibody-triggered, CD44- and IL-8/GM-

CSF-mediated targeting of AML cells via combined effect of reversed differentiation block 

and dependency of LIC on their bone marrow niche. Co-culturing of M6-AML TF-1 cells with 

mouse bone marrow-derived MS-5 cells resulted in increased CD34+ cell number and 

upregulation of CD44s and CD44v10. Anti-CD44 mAb 5F12 treatment displayed reduced 

adherence of TF-1 cells to the stroma [102].  

In acute promyelocytic leukemia (APL) one molecular mechanism behind all-trans RA 

(ATRA)-resistance is the absence of functional CD44 expression on the cell surface and 

consequent apoptosis resistance: In the APL cell line NB4 treatment with anti-CD44 

antibodie inhibited cell growth and induced apoptosis. The ATRA-resistant subclone NB4-

LR1 displayed no CD44 expression due to epigenetic silencing mechanisms, which can be 

reversed treating the respective line with the DNA methylating inhibitor 5-aza-CdR. A similar 

effect is seen upon treatment with cyclic AMP and subsequent CD44 ligation by the anti-

CD44 specific antibody A3D8, which results in apoptotic cell death [103]. 
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CD44v6 surface expression correlates with shorter overall survival [19]. The t(8;21) 

translocation in AML is associated with upregulated CD44 both on mRNA and protein 

level[104]. 

 

 

Aggressive non Hodgkin lymphoma 

Aggressive non Hodgkin lymphoma (NHL) show a new role of CD44 in diagnostic use, 

providing a model for minimal residual disease (MRD) detection and for discrimination 

between c-myc-associated (Burkitt lymphoma) and non-c-myc-associated lymphoma (Diffuse 

large B cell lymphoma: DLBCL). Further CD44v6 displays strong prognostic potential. 

Examining 39 cases of childhood Burkitt lymphoma for CD44 surface expression by flow 

cytometry, deficient expression compared to normal B cells of similar maturity is observed. 

This characteristic possibly allows detection of tumor cells at a sub-microscopical level [105]. 

So far two distinct antibody panels for distinguishing between c-myc-rearranged and non-

rearranged tumors have been introduced: CD44, CD38, and T cell leukemia 1 (Tcl-1), 

showing superiority to conventional staining with CD10 and Bcl-2 [106], and combination of 

CD44 and CD54 [107]. 

Among others Stauder et al examined a pool of 138 patients, including 76 low and 62 high 

grade NHL, showing an association between the expression of v6-containing isoforms of 

CD44 and aggressive NHL. Additionally strong expression levels of CD44v6 were highly 

significant correlated to a decreased overall survival but not to other prognostic markers as 

age and Ann Arbor classification determined in both groups. Neither ECOG performance 

status, extranodal involvement and serum LDH levels in the group of high grade NHL 

showed any association to CD44v6, indicating CD44v6 to be an independent factor for risk 

stratification [108, 109]. 

In DLBCL prognostic value of CD44 is well-documented: In primary nodal DLBCL, CD44s 

and CD44v6 expression levels are associated to tumor dissemination and survival. In a 

cohort of 276 patients with DLBCL CD44s as well as CD44v6 expression was correlated to 

tumor spread. Further CD44s displayed a strong predictive value for tumor related death 

independent to other parameters of the International Prognostic Index (IPI) [110]. Contrarily 

in another study of 46 patients with primary nodal DLBCL only CD44v6 expression was 

significantly correlated to poorer overall survival. While CD44v6 expression was 

predominantly observed in lymphoma cells, CD44s expression was also seen in non-

neoplastic small lymphocytes [111]. Tissue microarray analysis of 90 DLBCL patients 

revealed correlation of disease stage to CD44v6 expression, and inverse correlation to 
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CD44s expression. In CD44s negative cases CD44v6 expression was associated with poorer 

overall survival.[112]. 

Examining 114 cases of mature B cell NHL, including gastric, nongastric extranodal, nodal 

follicular lymphomas, and nodal DLBCL, a novel translocation t(11;14)(p13;q32) 

juxtapositioning the regulatory 5’ region of CD44 to the IGHS  enhancer was indentified. This 

translocation resulted in the overexpression of a CD44 variant lacking Exon 1 [113]. 

Chronic lymphocytic leukemia 

CD44v surface levels in chronic lymphocytic leukemia (CLL) are associated with advanced 

disease, therapy requirement, and lower median survival [114]. Unlike other surface 

molecules associated with other adhesion molecules like CD11a, CD49d, beta 1-3 integrins, 

CD54, CD58, and L-selectin, only the expression of CD44 and CD11c is associated with 

spleenic manifestation of the disease. [115]. Soluble CD44 is related to shorter time of 

progression free survival [116], and soluble CD44s as well as soluble CD44v6 correlate with 

extended lymph node involvement, advanced Binet and Rai stage, and chemotherapy 

requirement [117].  

As observed in other entities, CD44 displays an anti-apoptotic effect in CLL cells: In vitro 

data showed a protective effect of co-culturing CLL- with HK cells, a follicular dendritic cell 

line, against spontaneous apoptosis by increased levels of the anti-apoptotic Bcl-2 family 

member Mcl-1. In this setting, blockage of CD44 by antibodies resulted in Mcl-1 down-

regulation and inhibition of the protective effect through the HK cells, indicating the anti-

apoptotic mechanism being CD44-dependent [118]. 

Complex formation of CD44v, VLA-4, and proMMP-9 in CLL but not in normal B cells as well 

as increased proMMP-9 secretion upon CD44 antibody treatment provide a putative 

molecular mechanism of regulation of invasiveness. The functional relevance has not been 

further elucidated [119].  

 

Multiple myeloma 

In human myeloma derived-cells CD44 is shown to be involved in adherence to BM stroma 

cells (BMSC) and subsequent IL-6 secretion of latter [120]. Plasma cell lines reveal CD44v3, 

v6, and v9 expression regulating binding capacity of the plasma cells to stroma cells. 

CD44v9-mediated binding triggers IL-6 secretion of BMSC together with subsequent cell 

growth. Additionally loss of IL-6-dependent proliferation in XG-1 cells coincidences with loss 

of CD44v9 expression [121]. In multiple myeloma (MM) cell lines adhesion is dependent on 

CD44v6 expression and is upregulated by contact of the MM cells to BM endothelial cells 
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[122]. Further OPN induced proliferation as well as migratory capacity of MM cells is inhibited 

by anti-CD44v6 antibody [123]. 

High CD44v9 expression is associated with advanced disease stage, progressive disease, 

and shorter overall survival but with no other prognostic markers as serum lactic acid 

dehydrogenase (LDH) or beta2-microglobulin. This indicates CD44v9 to be an independent 

prognostic marker [124]. Further acquired CD44v9 expression occurs during disease 

progression [125]. CD44v6 expression is associated with chromosome 13q14 deletion and 

advanced disease stages in MM [126]. 

 

Hodgkin lymphoma 

Resistance to apoptosis in Hodgkin lymphoma (HL) might be conferred by CD44/MIF 

interaction. CD44 and MIF are secreted in HL cell lines, expressed in primary HL cells, and 

increased in plasma of HL patient. According to the previous findings of MIF blocking the 

cytotoxic T lymphocyte (CTL) response and CD44 being essential for MIF/CD74 complex 

signalling, this interaction has been proposed as a potential strategy of the malignant cells to 

evade cytotoxic killing [127]. Another hypothesis provided suggests tissue inhibitory of 

metalloproteinase 1 (TIMP1) in cooperation with CD44 to rescue pre-apoptotic defect B cells 

in B cell malignancies as HL [128]. 

The CD44v10 isoform displays prognostic relevance by being correlated to initial BM 

involvement and risk of relapse in nodular sclerosing HL [129]. 

 

Experimental antagonization and drug resistance 

For targeting the CD44 function in hematological malignancies, two mechanisms are worth 

considering: (i) direct targeting of CD44 and its variant isoforms expressed on the malignant 

cells as a primary therapeutical approach, and (ii) reversing an acquired resistance to 

primary treatment mediated through altered CD44 expression patterns by antagonizing of 

CD44 function.  

Direct targeting of tumor cells by CD44 can be achieved by antibody based immunotherapy, 

eventually in context with labeling with radioactive substances or cytotoxic agents.  

CD44v6 antibodies have been investigated extensively in squamous cell carcinoma (SCC). 

In radioimmunotherapy (RIT) of patients with metastatic and refractory disease, an anti-tumor 

effect was observed [130-133]. In the same setting, the CD44v6 antibody bivatuzumab has 

been used as vehicle for mertansine, a very strong inhibitor of microtubule assembly. 

Treatment related death of one patient resulted in no further clinical testing of the agent [134-
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136]. Bivatuzumab mertansine failure in the clinical setting might be due to the high toxicity of 

mertansine itself. Being of 100- to 1,000-fold higher cytotoxic potency than other clinically 

used anticancer drugs such as taxanes or anthracyclines it might have been too potent for 

this kind of use. 

Approaches of using 186Re-labeled bivatuzumab in early stage breast cancer patients display 

limited efficiancy because of its higher uptake levels in blood and bone marrow cells than in 

tumor cells. [137]. This in turn might indicate a promising role in treatment of hematological 

malignancies. Besides of the therapeutic effect also diagnostic use of CD44v6 antibodies is 

shown by successful detection of HNSCC lymph node metastases via immuno-PET by 89Zr-

cmAb U36 [139, 138]. 

Using HA, the natural binding partner of CD44, several drugs have been coupled to HA to be 

transported selectively to transformed cells: HA-But, a hyaluronic acid esterified with butyric 

acid, showing promising effects on malignant lesions of the liver [140], HA-cross-linked 

cisplatin displaying superior pharmacokinetics and pharmacodynamics to free cisplatin [141], 

HA-containing liposomes carrying mitomycin C [142], and paclitaxel targeting the malignant 

cells via CD44/HA interactions in cell lines [143] and in a human ovarian carcinoma nude 

mouse xenograft model. [144]. Retroviral gene delivery resulting in enforced CD44s 

expression and CD44v7-10 knock down experiments suggest CD44 alterations to be a 

possible target for gene therapy [145]. 

Multi drug resistance is a major problem in hematological malignancies. One mechanism 

behind this process is efflux pumps as for example the phosphoglycoprotein (Pgp) MDR1. In 

murine lymphoma and human leukemic cell lines decreased drug resistance achieved by 

treatment with HA oligosaccharides (oHA) is shown to be dependent on CD44 as the effect 

could be blocked by an anti-CD44 antibody. These findings indicate an important role of 

CD44 in mediating the efflux blocking effect of oHA on the Pgp transporter protein [146].  

In DLBCL co-expression of CD44v and HA-mediated motility receptor (RHAMM) leads to 

unfavorable outcome when treated with cyclophosphamide, doxorubicin, vincristine, and 

prednisone [147]. Similarly in MM, treatment success of Dexamethasone was dependent on 

CD44 with decreased apoptosis rates in cells with high CD44 [148]. Here neutralizing CD44 

might reveal new therapeutic strategies in treatment of multidrug resistant haematological 

malignancies.  

At least two potential mechanisms have been provided in solid tumors as well as in 

inflammatory disease and might be useful models for treatment of haematological 

neoplasias: (i) Decrease of treatment resistance and increase of apoptosis in mesothelioma 

cell lines was achieved by siRNA silencing of CD44 or using CD44-neutralizing antibodies 

[149]. (ii) Developed for treatment of inflammatory disease PF-03475952, a fully human IgG2 
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anti-CD44 monoclonal antibody, might demonstrate a novel agent also useful in cancer 

therapy. By binding to CD44 it leads to inhibition of HA binding and thereby causes a loss of 

CD44 on the cell surface. The putative effect on drug resistance would have to be elucidated 

further in tumor settings [150]. 

Furthermore, new Imatinib-resistant CML cell lines display independency to common 

reported modes of resistance such as mutations of the bcr-abl domain, Lyn, Hck or MDR-1 

overexpression. Instead CD44 and Fyn are upregulated in these cells and knock down or 

inhibition of Fyn results in re-sensitization to Imatinib [151]. Because of known CD44/Fyn 

association [53], the role of CD44 in this process has to be elucidated further. 

 

Conclusions and perspective 

By interaction with various different, and in some extent functional antagonistic proteins, 

CD44 seems to take part in a wide range of distinct cell functions. Because of its regulatory 

activity concerning e.g. cell migration, invasion, survival, and growth, altered CD44 

expression might be an important step towards malignant transformation. This underlines the 

importance of understanding the molecular mechanisms behind the obvious effect of the 

different CD44 expression pattern in distinct tumor entities.  

There have been a lot of previous research approaches concerning CD44 in solid tumors. 

Here we focused on hematological neoplasias where CD44 has three main functions: First its 

role as prognostic marker, second its potential role for diagnosis, and third its role as a 

promising therapeutic target.  

Distinguishing between different prognostic subtypes of one neoplastic disease entity is of 

great advantage. E.g. this aspect is of eminent importance in ALL because of the very young 

median age of the patients on the one hand and the very bad prognosis of a disease relapse 

on the other hand. For preventing secondary malignancies induced by too aggressive 

treatment regimes a deliberate risk stratification based on the expected tumor prognosis is 

imperative. Another example gives the observed treatment resistance to several standard 

therapeutics associated with CD44 expression in a limited group of patients with DLBCL. 

This provides the possibility of improved individual treatment decisions, which have been a 

big aim in cancer therapy in the last years. 

More and more, CD44 is considered being of diagnostic use. First approaches were made in 

Burkitt lymphoma, where it was suggested to detect malignant cells on a sub-microscopical 

level by flow cytometry. In addition CD44 was claimed to be able to distinguish, together with 

other antibodies, between c-myc-associated lymphoma and DLBCL, which is of great 

importance concerning treatment decision.  
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The last function might be the most promising. Several approaches have been made 

investigating the possible role of CD44 in new therapy strategies of solid tumors. CD44 

antibodies as well as HA achieved promising results in therapy and diagnostic. Also first 

research achievements were made concerning CD44 and gene therapy, opening a wide 

interesting field for future investigation. The development of CD44 targeted therapeutic 

concepts in hematopoietic malignancies is far behind compared to treatment of solid tumor 

entities but latter can be used as model for future approaches in hematological neoplasias. 

Furthermore overcoming acquired treatment resistance in hematological malignancies 

certainly needs to be investigated in the near future. 
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Table 1. Extracellular CD44 binding partners 

Ligand  Interaction       Reference 

HA CD44/HA interactions enhance cell motility, 

proliferation, and survival 

HA ligation of CD44 is able to increase cell adhesion 

and differentiation 

Among others Torre 

et al. [39] 

Among others 

Bourguignon et al. 

[58] 

sOPN Binding to CD44 stimulates cell survival Lin and Yang-Yen 

[64] 

RHAMM Cooperates with CD44 and enhances cell motility Hamilton et al. [152] 

VLA-4  Interacts with CD44 and mediates adhesion of 

hematological progenitor cells 

Cooperates with the cytoplasmic tail of CD44 and 

assures firm cell adhesion and cell extravasation 

CD44 increases VLA-4 expression and enhances 

transendothelial migration of tumor cells 

Verfaillie et al. 1994 

[35] 

Nandi et al. [36] 

 

Wang et al. [38] 

LFA-1 CD44 increases LFA-1 expression and enhances 

transendothelial migration of tumor cells 

Wang et al. [38] 

Galectin-8 Binding to CD44 induces apoptosis Eshkar-Sebban et 

al. [153] 

Galectin-9 Binding to CD44 stimulates CD44/BMP receptor II 

complex formation and induces osteoblast 

differentiation   

Tanikawa et al. [49] 
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Table 2. Extracellular CD44/Growth factor interactions 

Ligand  Interaction       Reference 

IGF-1 Induces CD44v6 surface expression in human 

neuroblastoma cell lines and increases HA-binding 

activity 

Fichter et al. 1997 

[6] 

TGF-beta Is activated by CD44/MMP-9 complex and leads to 

enhanced tumor cell survival 

Stimulates CD44/ErbB1 co-localization and fibroblast 

differentiation 

Yu et al. 2004 [54] 

 

Simpson et al. [69] 

 

FGF-4/FGF-

8 

Bind to heparan sulphate modified CD44v3 and 

stimulates limb mesenchymal cell proliferation 

Sherman et al. [154] 

PDGF Enhances CD44v transcription and increases HA-

binding affinity 

Fichter et al. [6] 

 

HGF Activates c-Met via the extracellular part of CD44v6 

and is required for cell motility in human melanocytes 

Orian-Rousseau et 

al. [155],  Recio et 

al. [156], Damm et 

al. [157] 

HB-EGF Binds to heparan sulphate modified CD44v3 and leads 

to enhanced cell survival. 

Bennett et al. [158], 

Yu et al. [159] 

EGF Up-regulates CD44s expression and thereby increases 

invasiveness of astrocytoma cells 

Promotes CD44 cleavage and cell migration 

Monaghan et al. 

[160] 

 

Murai et al. [17] 

VEGF-A Leads to CD44v6-dependent angiogenesis  Tremmel et al. [161] 



Hertweck MK et al.: CD44 in hematological neoplasias   

 
Page 20 of 41 pages 

Table 3. CD44/receptor tyrosine kinase interactions 

Protein  Interaction       Reference 

ErbB1 Upon TGF-beta stimulation co-localizes with CD44 and 

results in ERK1/2 phosphorylation and activation 

Simpson et al. [69] 

ErbB2  Forms complex with CD44, resulting in HA-induced 

kinase activity 

Bourguignon et al. 

[162] 

 Activated by CD44/HA, ErbB2 phosphorylates beta-

catenin which thereupon translocates into the nucleus, 

stimulating LEF-1/TCF-4 transcriptional activity 

Bourguignon et al. 

[163] 

ErbB4 Phosphorylated by CD44v3/HB-EGF complex  Yu et al. [159] 

VEGFR-2 Activated by CD44v6 acting as co-receptor Tremmel et al. 

[161] 

TGF-beta 

RI 

Co-localized with CD44 in HK-2 cells Ito et al. [60] 

BMP-RII Forms a complex with CD44 and leads to downstream 

smad phosphorylation 

Tanikawa et al. 

[49] 

c-Met Is phosphorylated by CD44v6/HGF and triggers 

intracellular signaling via NF-kappaB and the 

transcription factors Egr-1 and C/ EBP-beta. This leads 

in turn to enhanced CD44v6 expression. 

Recio et al. [156], 

Damm et al. [157] 
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Table 4. Impact of CD44 signalling on MMPs  

Protein  Interaction       Reference 

MMP-1 Expression influenced by CD44/chondroitin sulfate 

proteoglycan (CSPG) ligation 

Baronas-Lowell et 

al. [40] 

MMP-2 Upregulated by CD44 antibody resulting in enhanced 

invasiveness of human melanoma cells 

Takahashi et al. 

[164] 

MMP-7 Is recruited to the membrane by CD44v3 and activates 

pro-HB-EGF. 

Yu et al. [159] 

MMP-8 Expression promoted by CD44/CSPG ligation Baronas-Lowell et 

al. [40] 

MMP-9 Forms complex with CD44, leading to retained MMP-9 

proteolytic activity, associated with collagen IV 

degradation and enhanced invasiveness 

Activates TGF-beta in cooperation with CD44, leading to 

increased survival 

Co-expressed with CD44v4 in advanced breast cancer 

stages 

Yu et al. [41] 

 

 

Yu et al. [54] 

 

Thanakit et al. 

[165] 

MMP-13 Expression promoted by CD44/CSPG ligation 

 

Secretion inhibited by CD44/HA interference 

Baronas-Lowell et 

al. [40] 

Julovi et al. 2010 

[166] 

MMP-14 Expression modulated by CD44/CSPG ligation Baronas-Lowell et 

al. [40] 

MT1-MMP Processes CD44, resulting in sCD44 release and tumor 

cell migration 

Kajita et al. [15] 
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Table 5. CD44-mediated cytokine expression 

Cytokine        Cell type Reference 

IL-1 Release upon CD44 ligation Monocytes Denning et al. [167] 

IL-1 alpha Increased gene expression after CD44 

ligation 

AML FAB M5 

blasts 

Delaunay et al. 

[167] 

IL-1 beta CD44 Ligation induces enhanced gene 

transcription and secretion 

AML FAB M5 

blasts 

Delaunay et al. [68] 

IL-6 Secretion regulated by CD44v 

 

Secretion induced by CD44v9 antibody 

 

Increased synthesis after CD44 ligation 

in THP-1 monoblastic leukemia cells 

CD44 Ligation induces enhanced gene 

transcription and secretion 

Macrophages 

 

Plasma cell 

lines 

AML cell line 

AML FAB M5 

blasts 

Khaldoyanidi et al. 

[72] 

Van Driel et al. 

[121] 

 

Bourcier et al. [67] 

 

Delaunay et al. [68] 

IL-8 IL-8 secretion mediated by CD44 

CD44 Ligation induces enhanced gene 

transcription and secretion 

Macrophages 

AML FAB M5 

blasts 

Mc Kee et al. [86] 

Delaunay et al. [68] 

IL-10 Expression inhibited by CD44/OPN 

interactions  

Macrophages Ashkar et al. [83] 

IL-12 Increased gene expression after CD44 

ligation 

AML FAB M5 

blasts 

Delaunay et al. [68] 

IL-13 Increased gene expression after CD44 

ligation 

AML FAB M5 

blasts 

Delaunay et al. [68] 

TNF alpha Synthesis triggered by CD44 ligation in 

THP-1 monoblastic leukemia cells 

AML cell line Bourcier et al. [67] 

GM-CSF CD44 Ligation induces gene transcription 

and secretion 

AML FAB M5 

blasts 

Delaunay et al. [68] 
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Figure 1. Exon organization 

Dark green circles represent the constant exons, light green the variable ones (v1-10). The 

extracellular part (EC) is encoded by exon 1 to 17 (E1-17), spanning at least 248 amino 

acids: E1-5 form the amino terminal globular region, E16 and 17 encode the stem (46 amino 

acids) with possible insertion of v1-v10, whereas v1 is not existent in the human genome. 

E18 represents the transmembrane region (TM) that consists of 23 hydrophobic amino acids 

and a cysteine residue. E19 or E 20 encode the intracellular (IC) cytoplasmic tail, creating 

either a short tailed (3 amino acids) or a more abundant long tailed (72 amino acids) CD44. 

 

Figure 2. Protein structure 

CD44v (left) compared to CD44s (right). Globular extracellular region includes HA binding 

motifs (yellow), one located inside the so called ‘link domain’ spanning amino acids 32 to 

123, and the other at amino acid positions 150 to 158, and a cleavage site (red). Exon v3 can 

be modified by heparan sulphate (purple). The cytoplasmic tail embodies a basic amino acid 

binding site for ERM and Merlin at amino acid 292 to 300 (dark blue), an ankyrin binding site 

at amino acid 304 to 318 (light blue), and a Lck binding site located at the membrane 

proximal region.  
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