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Values of certain L-series

in positive characteristic∗

Federico Pellarin†‡

July 21, 2011

Abstract. We introduce a family of L-series specialising to both L-series associated to certain Dirichlet

characters over Fq[θ] and to integral values of Carlitz-Goss zeta function associated to Fq[θ]. We prove,

with the use of the theory of deformations of vectorial modular forms, a formula for their value at 1, as

well as some arithmetic properties of other “even” values.

1 Introduction, results

let q = pe be a power of a prime number p with e > 0 an integer, let Fq be the finite field with
q elements. We consider the polynomial ring A = Fq[θ] and its fraction field K = Fq(θ), with θ
an indeterminate over Fq. On K, we will consider the absolute value | · | defined by |a| = qdegθ a,
a being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be the completion of K for this absolute
value, let Kalg.

∞ be an algebraic closure of K∞, let C∞ be the completion of Kalg.
∞ for the unique

extension of | · | to Kalg.
∞ , and let Kalg. be the algebraic closure of K in Kalg.

∞ .

We consider an element t of C∞. We have the “evaluating at t” ring homomorphism

χt : A→ Fq[t]

defined by χt(a) = a(t). In other words, χt(a) is the image of the polynomial map a(t) obtained
by substituting, in a(θ), θ by t. For example, χt(1) = 1 and χt(θ) = t. If we choose t ∈ Falg.

q then
χt factors through a Dirichlet character modulo the ideal generated by the minimal polynomial
of t in A.

We can also consider t as an indeterminate; for α > 0 an integer, we then have a well defined
formal series

L(χt, α) =
∑

a∈A+

χt(a)a
−α =

∏

p

(1 − χt(p)p
−α)−1 ∈ K∞[[t]],

where A+ denotes the set of monic polynomials of A, and where the eulerian product runs over
the monic irreducible polynomials of A. This formal series converges for logq |t| < α, logq being
the logarithm in base q. In this paper, we are interested in the function L(χt, α) of the variable
t ∈ C∞, for fixed α.

∗Keywords: L-functions in positive characteristic, Drinfeld modular forms, function fields of positive charac-

teristic, AMS Classification 11F52, 14G25, 14L05.
†Current address: LaMUSE, 23, rue du Dr. Paul Michelon, 42023 Saint-Etienne Cedex.
‡Supported by the contract ANR “HAMOT”, BLAN-0115-01.
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We give some relevant examples of values of these series. If t = θ and α > 1, then L(χθ, α)
converges to the value of Carlitz-Goss zeta value at α:

L(χθ, α) = ζ(α) =
∑

a∈A+

a−α.

If on the other side we consider t ∈ Falg.
q , then, for α > 0, L(χt, α) converges to the value at α of

the L-series associated to a Dirichlet character, see Goss’ book [10].
We will need some classical functions related to Carlitz’s module. First of all, its exponential

function eCar defined, for all ζ ∈ C∞, by the sum of the convergent series:

eCar(ζ) =
∑

n>0

ζq
n

dn
, (1)

where d0 := 1 and di := [i][i− 1]q · · · [1]q
i−1

, with [i] = θq
i

− θ if i > 0.
We choose once and for all a fundamental period π̃ of eCar. It is possible to show that π̃ is

equal, up to the choice of a (q − 1)-th root of −θ, to the (value of the) convergent product:

π̃ := θ(−θ)
1

q−1

∞∏

i=1

(1− θ1−qi)−1 ∈ K∞((−θ)
1

q−1 ) \K∞.

Next, we need the following series of Ksep.[[t]]:

sCar(t) :=

∞∑

i=0

eCar

(
π̃

θi+1

)
ti =

∞∑

n=0

π̃qn

dn(θq
n − t)

, (2)

converging for |t| < q. This is the canonical rigid analytic trivialisation of the so-called Carlitz’s

motive. This leads to the property that sCar generates the one-dimensional Fq((t))-vector space
of solutions of the τ -difference equation

τsCar = (t− θ)sCar, (3)

in a suitable difference field, where τ : C∞((t)) → C∞((t)) is the operator defined by τ
∑
cit

i =∑
cqi t

i. We refer to [15] for a description of the main properties of this function sCar, or to the
papers [1, 4, 14], where it was originally introduced and appears under different notations.

We shall prove:

Theorem 1 The following identity holds:

L(χt, 1) = −
π̃

(t− θ)sCar

.

The inverse of (t−θ)sCar, denoted by Ω in [4], is entire. This implies that L(χt, 1) allows, beyond
its domain of convergence, entire analytic continuation in terms of the variable t.

It is interesting to notice that Theorem 1 directly implies the classical formulas for the values

ζ(qk − 1) =
∑

a∈A+

a1−qk = (−1)k
π̃qk−1

[k][k − 1] · · · [1]

of Carlitz-Goss’ zeta value at qk − 1 for k > 0. This follows easily from the computation of the

limit t → θ in the formula τkL(χt, 1) = −π̃qk/(τk(t − θ)sCar), observing that τk((t − θ)sCar) =

(t− θq
k

) · · · (t− θq)(t− θ)sCar by (3).
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Also, if t = ξ ∈ Falg.
q , Theorem 1 directly implies that L(χξ, 1), the value of an L-function

associated to a Dirichlet character, is a multiple of π̃ by an algebraic element of C∞, solution of
an algebraic equation

Xqr−1 = (ξ − θq
r−1

) · · · (ξ − θ).

Some of these consequences are also covered by the so-called Anderson log-algebraic power series

identities for twisted harmonic sums, see [2, 3, 12], see also [5].

It is well known that limt7→θ(t− θ)sCar = −π̃. It follows that

lim
t→θ

L(χt, 1) = 1. (4)

Surprisingly, this value coincides with ζ(0). Again, the well known fact that (t−θ)sCar has poles

at θq, θq
2

, . . . implies that limt→θ L(χt, q
k − 1) = 0 for k > 0, and we know that ζ(s(q − 1)) = 0

for negative “even” integral values of s. It would be interesting to interpret these coincidences
throughout the study of a generalisation of both the L-series considered in this paper, and
Carlitz-Goss’ zeta function, which is an analytic function defined on the space S∞ = C×

∞ × Zp

interpolating the above-mentioned zeta values.

For other positive values of α ≡ 1 (mod q − 1), we have a result on L(χt, α) at once more
general and less precise.

Theorem 2 Let α be a positive integer such that α ≡ 1 (mod q − 1). There exists a non-zero

element λα ∈ Fq(t, θ) such that

L(χt, α) = λα
π̃α

(t− θ)sCar

.

We have seen that λ1 = −1. On the other hand, again by (3), we have the formula

τkλα = (t− θq
k

) · · · (t− θq)λqkα.

Apart from this, the explicit computation of the λα’s is difficult and very little is known on these
coefficients which could encode, we hope, an interesting generalisation in Fq(t, θ) of the theory
of Bernoulli-Carlitz numbers.

The proofs of Theorems 1 and 2 that we propose rely on certain properties of deformations of

vectorial modular forms (see Section 2). In fact, Theorem 1 is a corollary of an identity involving
such functions that we describe now (Theorem 3 below) and Theorem 2 will be obtained from a
simple modification of the techniques introduced to prove Theorem 3.

A fundamental identity for deformations of vectorial modular forms. To present Theorem 3, we
need to introduce more tools. Let Ω be the rigid analytic space C∞ \K∞. For z ∈ Ω, we denote
by Λz the A-module A+zA, free of rank 2. The evaluation at ζ ∈ C∞ of the exponential function
eΛz

associated to the lattice Λz is given by the series

eΛz
(ζ) =

∞∑

i=0

αi(z)ζ
qi , (5)

for functions αi : Ω → C∞ with α0 = 1. We recall that for i > 0, αi is a Drinfeld modular form

of weight qi − 1 and type 0 in the sense of Gekeler, [6].

3



We also recall from [16] the series:

s1(z, t) =

∞∑

i=0

αi(z)z
qi

θqi − t
,

s2(z, t) =

∞∑

i=0

αi(z)

θqi − t
,

which converge for |t| < q and define two functions Ω → C∞[[t]] with the series in the image
converging for |t| < q. We point out that for a fixed choice of z ∈ Ω, the matrix function
t(s1(z, t), s2(z, t)) is the canonical rigid analytic trivialisation of the t-motive associated to the
lattice Λz discussed in [15]. We set, for i = 1, 2:

di(z, t) := π̃sCar(t)
−1

si(z, t),

remembering that in the notations of [16], we have d2 = d. The advantage of using these
functions instead of the si’s, is that evaluation at t = θ makes sense, and we can check:

d1(z, θ) = z, d2(z, θ) = 1. (6)

On the other hand, both the series

e1(z, t) =
∑′

c,d∈A

χt(c)

cz + d
, e2(z, t) =

∑′

c,d∈A

χt(d)

cz + d

converge for (z, t) ∈ Ω×Bq, where the dash
′ denotes a sum avoiding the couple (c, d) = (0, 0), Br

denotes the open disk of center 0 and radius r > 0. The series e1, e2 define functions Ω → C∞[[t]]
such that all the series in the images converge over Bq.

Let Hol(Ω) be the ring of holomorphic functions Ω → C∞, over which the Frobenius Fq-
linear map τ is well defined: if f ∈ Hol(Ω), then τf = f q. We consider the unique Fq((t))-linear
extension of τ :

Hol(Ω)⊗Fq
Fq((t)) → Hol(Ω)⊗Fq

Fq((t)),

again denoted by τ .
We shall prove the fundamental theorem:

Theorem 3 The following identities hold in the domain Ω×Bq:

e1 = −τ(sCard2)h e2 = τ(sCard1)h. (7)

In the statement of the theorem, h is the opposite of the unique normalised Drinfeld cusp form
of weight q + 1 and type 1 for Γ = GL2(A) as in [6].

Let us write E = L(χt, 1)
−1(e1, e2) (

1) and F =
(
d1

d2

)
, and let us consider the representation

ρt : GL2(A) → GL2(Fq[t]) defined by

ρt(γ) =

(
χt(a) χt(b)
χt(c) χt(d)

)
,

for γ =

(
a b
c d

)
∈ GL2(A). Then, for any such a choice of γ we have the functional equations:

F(γ(z)) = (cz + d)−1ρt(γ) · F(z),
tE(γ(z)) = (cz + d) tρ−1

t (γ) · tE(z).

1We will also adopt the notation E1,0 = E.
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This puts right away the functions tE and F in the framework of deformations of vectorial

modular forms, topic that will be developed in Section 2.
We will make use of a remarkable sequence G = (Gk)k∈Z of functions Ω× Bq → C∞ defined

by the scalar product (with component-wise action of τ):

Gk = G1,0,k = (τkE) · F ,

such that, for k ≥ 0, Gk belongs to Mqk−1,0 ⊗ Fq[t, θ] where Mw,m denotes the C∞-vector space
of Drinfeld modular forms of weight w and type m. In fact, only the terms G0,G1 are needed to
prove our Theorem. Once their explicit computation is accomplished (see Proposition 13), the
proof of Theorem 3 is only a matter of solving a non-homogeneous system in two equations and
two indeterminates e1, e2. Furthermore, Theorem 1 will be deduced with the computation of a
limit in the identity e1 = −τ(sCard2)h and a similar path will be followed for Theorem 2, by
using this time the sequences Gα,0,k = (τkEα,0) · F defined later.

We end this introduction by pointing out that the sequence G has itself several interesting
features. For example, the functions Gk already appeared in [16] (they are denoted by g⋆k there)
as the coefficients of the “cocycle terms Lγ” of the functional equations of the deformations of

Drinfeld quasi-modular forms τkE introduced there.
It is also interesting to notice that the deformation of Legendre’s identity (10) that we quote

here (proved in [16]):
h−1(τsCar)

−1 = d1(τd2)− d2(τd1)

can be deduced from Theorem 3 by using the fact that G0 = −1 obtained in Proposition 13.
Moreover, it can be proved, again with the help of the theory of τ-linear recurrent sequences

and τ-linearised recurrent sequences (they will not be described here), that for k ≥ 0, the function

Gk(z, θ), well defined, is equal to the ortho-Eisenstein series gk(z), and that Gk(z, θ
qk), also well

defined, is equal to the para-Eisenstein series mk(z), in the notations and the terminology of
[8]. Hence, the sequence G provides an interesting tool also in the study of both these kinds of
functions. This program will be however pursued in another paper.

Acknowledgements. The author is thankful to Vincent Bosser, David Goss and Matt Papanikolas
for fruitful discussions about the topics of the present paper.

2 Vectorial modular forms and their deformations

In this paper, t will be an indeterminate independent on θ or a parameter varying in C∞, and
we will freely switch from formal series to functions.

For a positive real number r, we denote by T<r the sub-C∞-algebra of C∞[[t]] whose elements
are formal series

∑
i≥0 cit

i that converge for any t ∈ C∞ with |t| < r. We also denote by T∞ the
sub-C∞-algebra of series that converge everywhere in C∞. If r1 > r2 > 0, we have

T<r2 ⊃ T<r1 ⊃ T∞.

The Tate algebra of formal series of C∞[[t]] converging for all t such that |t| ≤ 1 will be denoted
by T1 or T; it is contained in T<1 and contains T<1+ǫ for all ǫ > 0; clearly, C∞[[t]] ⊃ T1 ⊃ T∞.

The ring C∞[[t]] is endowed with the Fq[[t]]-linear automorphism τ acting on formal series as
follows:

τ
∑

i

cit
i =

∑

i

cqi t
i.

This automorphism induces automorphisms of T1,T∞.
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We will work with certain functions f : Ω× Br → C∞ with the property that for all z ∈ Ω,
f(z, t) can be identified with and element of T<r in the obvious way. For such functions we
will then also write f(z) to stress the dependence on z ∈ Ω when we want to consider them as
functions Ω → T<r for some r. Sometimes, we will not specify the variables z, t and just write f
instead of f(z, t) or f(z) to lighten our formulas just as we did in some places of the introduction.
Moreover, z will denote a variable in Ω all along the paper.

In all the following, Hol(Ω) denotes the ring of holomorphic functions on Ω. For r a positive
real number, let us denote by R<r (resp. R or R1) the (integral) ring whose elements are the
formal series f =

∑
i≥0 fit

i, such that

1. For all i, fi is a map Ω → C∞ belonging to Hol(Ω).

2. For all z ∈ Ω,
∑

i≥0 fi(z)t
i is an element of T<r (resp. T).

We shall write

R∞ =
⋂

r>0

R<r

and allow r to vary in R>0 ∪ {∞}. The rings R and R∞ are endowed with injective endomor-
phisms τ acting on formal series as follows:

τ
∑

i≥0

fi(z)t
i =

∑

i≥0

fi(z)
qti.

We end this preparatory section with some conventions on u-expansions. We will say that a
series

∑
i≥i0

ciu
i (with the coefficients ci in some ring) is normalised, if ci0 = 1. We will also say

that the series is of type m ∈ Z/(q − 1)Z if i 6≡ m (mod q − 1) implies ci = 0. This definition is
obviously compatible with the notion of type of a Drinfeld modular form already mentioned in
the introduction.

2.1 Deformations of vectorial modular forms.

In this subsection we develop some tools in the theory of deformations of vectorial modular

forms. This part is inspired by works about vectorial modular forms for SL2(Z) by Knopp,
Mason [11, 13].

Let us consider a representation

ρ : Γ → GLs(Fq((t))). (8)

We assume that the determinant representation det(ρ) is the µ-th power of the determinant
character, for some µ ∈ Z/(q − 1)Z. In all the following, given γ ∈ Γ, we denote by Jγ the

associated factor of automorphy (γ, z) 7→ cz + d, if γ =

(
a b
c d

)
.

Definition 4 A deformation of vectorial modular form of weight w, dimension s, type m and
radius r ∈ R>0 ∪ {∞} associated with a representation ρ as in (8) is a column matrix F ∈
Mats×1(R<r) such that, considering F as a map Ω → Mats×1(T<r) we have, for all γ ∈ Γ,

F(γ(z)) = Jw
γ det(γ)−mρ(γ) · F(z).

The definition means that if the radius is ∞, then the entries of F are in R∞.
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The set of deformations of vectorial modular forms of weight w, dimension s, type m and radius
r associated to a representation ρ is a T<r-module (or T∞-module if r = ∞) that we will denote
by Ms

w,m(ρ, r) or Ms
w,m(ρ) when the reference to a particular radius is clear.

Let us denote by M !
w,m the C∞-vector space (of infinite dimension) generated by quotients

f/g with f ∈Mw′,m′ , g ∈Mw′′,m′′ \ {0} such that w′ − w′′ = w,m′ −m′′ = m, and such that g
does not vanish on Ω (so that it is a power of h).

If s = 1 and if ρ = 1 is the constant map, then M1
w,m(1, r) = M !

w,m ⊗ T<r. Similarly, for

general s, we have a graded M !
w,m ⊗ T<r-module

Ms(ρ, r) =
⊕

w,m

Ms
w,m(ρ, r).

Lemma 5 Let k be a non-negative integer and r ≥ 1. If F is in Ms
w,m(ρ, r), then τkF ∈

Ms
wqk,m(ρ, rq

k

). Therefore, if we choose nonnegative integers k1, . . . , ks, then

det(τk1F , . . . , τksF) ∈M !
w(qk1+···+qks ),sm+µ ⊗ T<r.

In particular,

Wτ (F) = det(τ0F , . . . , τs−1F) ∈M !
w(1+q+q2+···+qs−1)),sm+µ ⊗ T<r.

Proof. From the definition,

(τkF)(γ(z)) = Jwqk

γ det(γ)−mρ(γ)(τkF)

because τ(ρ(γ)) = ρ(γ) and the first part of the lemma holds. Now define the matrix function:

Mk1,...,ks
= (τk1F , . . . , τksF).

After the first part of the lemma we have, for γ ∈ GL2(A):

Mk1,...,ks
(γ(z)) = det(γ)−mρ(γ) ·Mk1,...,ks

(z) ·Diag(Jwqk1
γ , · · · , Jwqks

γ ),

from which we can conclude the proof taking determinants of both sides.

Lemma 6 Assume that r ≥ 1. Let us consider F in Ms
w,m(ρ, r) and let E be such that tE is in

Ms
w′,m′(tρ−1, r). For nonnegative k, if Gk denotes the scalar product (τkE) · F , then,

Gk ∈M !
w+w′qk,m+m′ ⊗ T<r.

Proof. By Lemma 5, τk(tE) is in Ms
wqk,m′(

tρ−1, r). Let γ be in GL2(A). We thus have, after
transposition, that

(τkE)(γ(z)) = Jwqk

γ det(γ)−mE(z) · ρ−1(γ),

and
F(γ(z)) = Jw′

γ det(γ)−m′

ρ(γ) · F(z).

Hence,

Gk(γ(z)) = Jwqk+w′

γ det(γ)−m−m′

Gk(z),

from which we deduce that Gk ∈M !
wqk+w′,m+m′ ⊗ T<r.
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2.2 Main examples of deformations of vectorial modular forms.

From now on, we will use the representation ρ = ρt and the transposed of its inverse.

The function F . This is the vector valued function
(
d1

d2

)
so we recall now some properties of

the functions d1,d2. At first sight, we only have d1,d2 ∈ R<q. However, one sees easily that
s−1
Car ∈ T∞ from which it follows that d1,d2 ∈ R∞. The next proposition follows immediately
from the results of [16] where some of them are stated in slightly different, although equivalent
forms. We write g for the unique normalised Drinfeld modular form of weight q − 1 and type 0
for Γ (proportional to an Eisenstein series), and ∆ for the cusp form −hq−1.

Proposition 7 We have five properties for the di’s.

1. d1,d2 ∈ R∞.

2. We have F ∈ M2
−1,0(ρt,∞).

3. The functions d1,d2 span the Fq(t)-vector space of dimension 2 of solutions of the following

τ-linear difference equation:

X = (t− θq)∆τ2X + gτX, (9)

in a suitable existentially closed inversive field containing R∞.

4. Let us consider the matrix function:

Ψ(z, t) :=

(
d1(z, t) d2(z, t)

d
(1)
1 (z, t) d

(1)
2 (z, t)

)
.

For all z ∈ Ω and t with |t| < q:

det(Ψ) = (t− θ)−1h(z)−1sCar(t)
−1. (10)

5. We have the series expansion

d2 =
∑

i≥0

ci(t)u
(q−1)i ∈ 1 + uq−1Fq[t, θ][[u

q−1]], (11)

convergent for t, u sufficiently close to (0, 0).

Deformations of vectorial Poincaré series. Following [6], we consider the subgroup

H =

{(
∗ ∗
0 1

)}

of Γ = GL2(A) and its left action on Γ. For δ =

(
a b
c d

)
∈ Γ, the map δ 7→ (c, d) induces a

bijection between the orbit set H\Γ and the set of (c, d) ∈ A2 with c, d relatively prime.
We consider the factor of automorphy

µα,m(δ, z) = det(δ)−mJα
γ ,

where m and α are positive integers (later, m will also determine a type, that is, a class modulo
q − 1).
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Let V1(δ) be the row matrix (χt(c), χt(d)). It is easy to show that the row matrix

µα,m(δ, z)−1um(δ(z))V1(δ)

only depends on the class of δ ∈ H\Γ, so that we can consider the following expression:

Eα,m(z) =
∑

δ∈H\Γ

µα,m(δ, z)−1um(δ(z))V1(δ),

which is a row matrix whose two entries are formal series.
Let V be the set of functions Ω → Mat1×2(C∞[[t]]). We introduce, for α,m integers, f ∈ V

and γ ∈ Γ, the Petersson slash operator:

f |α,mγ = det(γ)m(cz + d)−αf(γ(z)) · ρt(γ).

This will be used in the next proposition, where we recall that log+q (x) denotes the maximum
between 0 and logq(x), the logarithm in base q of x > 0. We point out that we will not apply
this proposition in full generality.

Proposition 8 Let α,m be non-negative integers with α ≥ 2m + 1, and write r(α,m) = α −
2m− 1. We have the following properties.

1. For γ ∈ Γ, the map f 7→ f |α,mγ induces a permutation of the subset of V:

S = {µα,m(δ, z)−1um(δ(z))V1(δ); δ ∈ H\Γ}.

2. If t ∈ C∞ and α,m are chosen so that r(α,m) > log+q |t|, then the components of Eα,m(z, t)
are series of functions of z ∈ Ω which converge absolutely and uniformly on every compact

subset of Ω to holomorphic functions.

3. If |t| < 1, then the components of Eα,m(z, t) converge absolutely and uniformly on every

compact subset of Ω also if α− 2m > 0.

4. For any choice of α,m, t submitted to the convergence conditions above, the function tEα,m(z, t)
belongs to the space M2

α,m(tρ−1
t , r(α,m)).

5. If α− 1 6≡ 2m (mod (q − 1)), the matrix function Eα,m(z, t) is identically zero.

6. If α − 1 ≡ 2m (mod (q − 1)), α ≥ (q + 1)m + 1 so that Eα,m converges, then Eα,m is not

identically zero in its domain of convergence.

Proof. 1. We choose δ ∈ H\Γ corresponding to a couple (c, d) ∈ A2 with c, d relatively prime,
and set fδ = µα,m(δ, z)−1um(δ(z))V1(δ) ∈ S. We have

fδ(γ(z)) = µα,m(δ, γ(z))−1um(δ(γ(z)))V1(δ)

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z)))V1(δ),

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z)))V1(δγ) · ρt(γ)
−1,

= µα,m(γ, z)µα,m(δ′, z)−1um(δ′(z))V1(δ
′) · ρt(γ)

−1,

= µα,m(γ, z)fδ′ · ρt(γ)
−1,

with δ′ = δγ and fδ′ = µα,m(δ′, z)−1um(δ′(z))V1(δ
′), from which part 1 of the proposition follows.
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2. Convergence and holomorphy are ensured by simple modifications of [6, (5.5)], or by the
arguments in [9, Chapter 10]. More precisely, let us choose 0 ≤ s ≤ 1 and look at the component
at the place s+ 1

Es(z, t) =
∑

δ∈H\Γ

µα,m(δ, z)−1u(δ(z))mχt(c
sd1−s)

of the vector series Eα,m. Writing α = n(q−1)+2m+ l′ with n non-negative integer and l′ ≥ 1 we
see, following Gerritzen and van der Put, [9, pp. 304-305] and taking into account the inequality
|u(δ(z))| ≤ |cz+ d|2/|z|i (|z|i denotes, for z ∈ C∞, the infimum infa∈K∞

{|z− a|}), that the term
of the series Es:

µα,m(δ, z)−1um(δ(z))χt(c
sd1−s) = (cz + d)−n(q−1)−l′−2mu(δ(z))mχt(c

sd1−s)

(where δ corresponds to (c, d)) has absolute value bounded from above by

|z|−m
i

∣∣∣∣
χt(c

sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣ .

Applying the first part of the proposition, to check convergence, we can freely substitute z with
z + a with a ∈ A and we may assume, without loss of generality, that |z| = |z|i. We verify that,
either λ = degθ z = max(I) ∈ Q \ Z, or λ ∈ Z case in which cλ 6∈ Fq. In both cases, for all c, d,
|cz + d| = max{|cz|, |d|}. Then, the series defining Es can be decomposed as follows:

Es =
∑

fδ∈H\Γ

fδ =




∑′

|cz|<|d|

+
∑′

|cz|≥|d|


µα,m(δ, z)−1um(δ(z))χt(c

sd1−s).

We now look for upper bounds for the absolute values of the terms of the series above separating
the two cases in a way similar to that of Gerritzen and van der Put in loc. cit.

Assume first that |cz| < |d|, that is, degθ c+ λ < degθ d. Then

∣∣∣∣
χt(c

sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣ ≤ κmax{1, |t|}degθ d|d|−n(q−1)−l′ ≤ κqdegθ d(log+q |t|−n(q−1)−l′),

where κ is a constant depending on λ, and the corresponding sub-series converges with the
imposed conditions on the parameters, because log+q |t| − n(q − 1)− l′ < 0.

If on the other side |cz| ≥ |d|, that is, degθ c+ λ ≥ degθ d, then

∣∣∣∣
χt(c

sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣ ≤ κ′ max{1, |t|}degθ d|c|−n(q−1)−l′ ≤ κ′qdegθ c(log+q |t|−n(q−1)−l′),

with a constant κ′ depending on λ, again because log+q |t| − n(q − 1) − l′ < 0. This completes
the proof of the second part of the Proposition.

3. This property can be deduced from the proof of the second part because if logq |t| < 0, then
|χt(c

sd1−s)| ≤ 1.

4. The property is obvious by the first part of the proposition, because Eα,m =
∑

f∈S f.

5. We consider γ = Diag(1, λ) with λ ∈ F×
q ; the corresponding homography, multiplication by

λ−1, is equal to that defined by Diag(λ−1, 1). Hence, we have:

Eα,m(γ(z)) = λα−mEα,m(z) ·Diag(1, λ−1)

= λmEα,m(z) ·Diag(λ, 1),

10



from which it follows that Eα,m is identically zero if α− 1 6≡ 2m (mod q − 1).

6. If m = 0, we postpone the proof to Lemma 10. Assuming now that m > 0, the series
zE1(z, θ) + E0(z, θ) converges to the Poincaré series of weight α− 1 for Γ so that [9, Proposition
10.5.2] suffices for our purposes.

Let α,m be non-negative integers such that α− 2m > 1 and α− 1 ≡ 2m (mod (q − 1)). We
have functions:

Eα,m : Ω → Mat1×2(R<r),

F : Ω → Mat2×1(R∞),

with r = r(α,m) as in Proposition 8, and tEα,m ∈ M2
α,m(tρ−1

t , r), F ∈ M2
−1,0(ρt,∞). Therefore,

after Lemma 6, the functions

Gα,m,k = (τkEα,m) · F = Eqkα,m · F : Ω → T<r

satisfy Gα,m,k ∈M !
qkα−1,m ⊗ Tr .

A special case. After Proposition 8, if α > 0 and α ≡ 1 (mod q − 1), then Eα,0 6= 0. We call
these series deformations of vectorial Eisenstein series.

Lemma 9 With α > 0 such that α ≡ 1 (mod q − 1), the following identity holds:

Eα,0(z, t) = L(χt, α)
−1

∑′

c,d

(cz + d)−αV1(c, d),

and Eα,0 is not identically zero.

Proof. We recall the notation

V1(c, d) = (χt(c), χt(d)) ∈ Mat1×2(Fq[t]).

We have

∑′

c,d

(cz + d)−αV1(c, d) =
∑

(c′,d′)=1

∑

a∈A+

a−α(c′z + d′)−αV1(ac
′, ad′)

= L(χt, α)Eα,0(z, t),

where the first sum is over couples of A2 distinct from (0, 0), while the second sum is over the
couples (c′, d′) of relatively prime elements of A2. Non vanishing of the function follows from
Proposition 8.

3 Proof of the Theorems

Following Gekeler [6, Section 3], we recall that for all α > 0 there exists a polynomial Gα(u) ∈
C∞[u], called the α-th Goss polynomial, such that, for all z ∈ Ω, Gα(u(z)) equals the sum of the
convergent series

π̃−α
∑

a∈A

1

(z + a)α
.
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Several properties of these polynomials are collected in [6, Proposition (3.4)]. Here, we will
need that for all α, Gα is of type α as a formal series of C∞[[u]]. Namely:

Gα(λu) = λαGα(u), for all λ ∈ F×
q .

We also recall, for a ∈ A, the function

ua(z) := u(az) = eCar(π̃az)
−1 = u|a|fa(u) = u|a| + · · · ∈ A[[u]],

where fa ∈ A[[u]] is the a-th inverse cyclotomic polynomial defined in [6, (4.6)]. Obviously, we
have

uλa = λ−1ua for all λ ∈ F×
q .

To continue, we will state and prove three auxiliary lemmas.

Lemma 10 Let α be a positive integer such that α ≡ 1 (mod q − 1). We have, for all t ∈ C∞

such that |t| < 1 and z ∈ Ω, convergence of the series below, and equality:

∑′

c,d∈A

χt(c)

(cz + d)α
= −π̃α

∑

c∈A+

χt(c)Gα(uc(z)),

from which it follows that Eα,0 6= 0.

Proof. Convergence features are easy to deduce from Proposition 8. Indeed, we have convergence
if log+q |t| < r(α,m) = α − 1, that is, max{1, |t|} ≤ qα−1 if α > 1 and we have convergence, for
α = 1, for |t| < 1. In all cases, convergence holds for |t| < 1.

We then compute:

∑′

c,d

χt(c)

(cz + d)α
=

∑

c 6=0

χt(c)
∑

d∈A

1

(cz + d)α

= π̃α
∑

c 6=0

χt(c)
∑

d∈A

1

(cπ̃z + dπ̃)α

= π̃α
∑

c 6=0

χt(c)Gα(uc)

= π̃α
∑

c∈A+

χt(c)Gα(uc)
∑

λ∈F
×

q

λ1−α

= −π̃α
∑

c∈A+

χt(c)Gα(uc).

The non-vanishing of Eα,0 comes from Lemma 9 and the non-vanishing contribution of the term
Gα(u) in the latter series.

Lemma 11 Let α > 0 be an integer such that α ≡ 1 (mod q − 1). For all t ∈ C∞ such that

|t| < 1, we have

lim
|z|i=|z|→∞

d1(z)
∑′

c,d

χt(c)

(cz + d)α
= 0.
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Proof. We recall from [16] the series expansion

d1(z) =
π̃

sCar(t)
s2(z) =

π̃

sCar(t)

∑

n≥0

eΛz

( z

θn+1

)
tn,

converging for all t such that |t| < q and all z ∈ Ω.
By a simple modification of the proof of [7, Lemma 5.9 p. 286], we have

lim
|z|i=|z|→∞

u(z)tneΛz
(z/θn+1)q = 0

uniformly in n > 0, for all t such that |t| ≤ q.
Moreover, it is easy to show that

lim
|z|i=|z|→∞

u(z)eΛz
(z/θ)q = π̃−q lim

|z|i=|z|→∞
eqCar(π̃z/θ)/eCar(π̃z) = 1.

This suffices to show that
lim

|z|i=|z|→∞
d1(z)Gα(uc(z)) = 0

uniformly for c ∈ A+, for all t such that |t| < q. The lemma then follows from an application of
Lemma 10.

Lemma 12 Let α > 0 be an integer such that α ≡ 1 (mod q − 1). For all t ∈ C∞ such that

|t| < 1, we have

lim
|z|i=|z|→∞

∑′

c,d

χt(d)

(cz + d)α
= −L(χt, α).

Proof. It suffices to show that

lim
|z|i=|z|→∞

∑

c 6=0

∑

d∈A

χt(d)

(cz + d)α
= 0.

For all (c, d) ∈ A \ {(0, 0)}, we have |cz + d| = max{|cz|, |d|}. We then have, for c 6= 0:

∑

d∈A

χt(d)

(cz + d)α
=




∑

|d|>|cz|

+
∑

|d|≤|cz|


 χt(d)

(cz + d)α
.

Now, if |d| > |cz|, we have, for |t| < 1:

∣∣∣∣
χt(d)

(cz + d)α

∣∣∣∣ ≤
∣∣∣∣
χt(d)

dα

∣∣∣∣ ≤ |d|−α ≤ |cz|−α.

If |d| ≤ |cz|, we have, again for |t| < 1:

∣∣∣∣
χt(d)

(cz + d)α

∣∣∣∣ ≤
∣∣∣∣
χt(d)

(cz)α

∣∣∣∣ ≤ |cz|−α.

Therefore, for c 6= 0, ∣∣∣∣∣
∑

d∈A

χt(d)

(cz + d)α

∣∣∣∣∣ ≤ |cz|−α.
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This implies that ∣∣∣∣∣∣

∑

c 6=0

∑

d∈A

χt(d)

(cz + d)α

∣∣∣∣∣∣
≤ |z|−α,

from which the Lemma follows.

The next step is to prove the following Proposition.

Proposition 13 For all α > 0 with α ≡ 1 (mod q− 1), Gα,0,0 ∈Mα−1,0 ⊗T<q and we have the

limit lim|z|=|z|i→∞ Gα,0,0 = −1.
Moreover, if α ≤ q(q − 1), then:

Gα,0,0 = −Eα−1,

where Eα−1 is the normalised Eisenstein series of weight α− 1 for Γ.

Proof. After Lemma 6, the sum of the series:

Fα(z, t) := d1(z)
∑′

c,d

χt(c)

(cz + d)α
+ d2(z)

∑′

c,d

χt(d)

(cz + d)α

converges on Ω to an element of M !
α−1,0 ⊗ T<q.

After (11), we have that for all t with |t| < 1, lim|z|i=|z|→∞ d2(z) = 1. From Lemmas 11 and
12,

lim
|z|i=|z|→∞

Fα(z, t) = −L(χt, α).

Therefore, for all t such that |t| < q, Fα(z, t) converges to an holomorphic function on Ω and is
endowed with a u-expansion. In particular, Fα(z, t) is a family of modular forms ofMα−1,0⊗T<q

and we have the first part of the proposition. Since for the selected values of α,Mα−1,0 = 〈Eα−1〉,
we obtain that Fα = −L(χt, α)Eα−1. After Lemma 9, the proposition follows.

Proof of Theorem 3. By Proposition 7, the matrix M = (F , τ−1F) is invertible. From (10) we
deduce that

τM−1 = (t− θ)sCarh

(
−d2 d1

τd2 −τd1

)
.

Therefore, we have the formulas:

Eα,0 =

= (Gα,0,0, τ
−1Gα,0,1) ·M

−1

= (t− θ1/q)h1/q(τ−1sCar)(Gα,0,0, τ
−1Gα,0,1) ·

(
−τ−1

d2 τ−1
d1

d2 −d1

)

= (t− θ1/q)h1/q(τ−1sCar)(τ
−1Gα,0,1d2 − Gα,0,0τ

−1
d2,−τ

−1Gα,0,1d1 + Gα,0,0τ
−1

d1).(12)

Now, we have, for all k ∈ Z,

Gα,0,k = gτGα,0,k−1 +∆(t− θq)τ2Gα,0,k−2. (13)

Applying this formula for k = 1 and by using Part 3 of Proposition 7, we obtain

τ−1Gα,0,1di − Gα,0,0τ
−1

di = ∆1/q(t− θ)((τGα,0,−1)di − Gα,0,0(τdi)), i = 1, 2.
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Replacing in (12), and using ∆1/qh1/q = −h and (t− θ1/q)τ−1sCar = sCar, we get the formula:

Eα,0 = (t− θ)sCarh(−(τGα,0,−1)d2 + Gα,0,0(τd2), (τGα,0,−1)d1 − Gα,0,0(τd1)). (14)

So far, we have not specified the value of α. The general computation of Gα,0,0 and Gα,0,−1

is a difficult problem, but for α = 1 we can apply Proposition 13. We have G1,0,0 = −1 and
G1,0,1 = Gq,0,0 = −g = −Eq−1. Therefore, Gα,0,−1 = 0 and the Theorem 3 follows.

Proof of Theorem 1. Lemma 10 and (14) imply that

L(χt, α) =
π̃α

∑
c∈A+ χt(c)Gα(uc)

(τsCar)h((τGα,0,−1)d2 − Gα,0,0(τd2))
.

For α = 1, we get

L(χt, α) = −
π̃
∑

c∈A+ χt(c)uc

(τsCard2)h
,

from which we deduce Theorem 1 and even some additional information, namely, the formula:

(τd2)h = −
∑

c∈A+

χt(c)uc.

Proof of Theorem 2. For general α, we know that there exists λα ∈ T<q such that
∑

c∈A+

χt(c)Gα(uc) = λαh((τGα,0,−1)d2 − Gα,0,0(τd2)). (15)

Let us write f for the series
∑

c∈A+ χt(c)Gα(uc), φ for λαhτGα,0,−1 and ψ for −λαhGα,0,0, so
that (15) becomes:

f = φd2 + ϕτd2.

We know, from the fact that h is in Mq+1,1, that φ ∈ Mα+q,1 ⊗ T<q. By (13), we also see that
ψ ∈ M !

α+1,1 ⊗ T<q. Let L be an algebraically closed field containing T<q. As for any choice of

w,m, M !
w,m embeds in C∞((u)) and there is a basis of this space with u-expansions defined over

K, Aut(L/Fq(t, θ)) acts on M
!
w,m ⊗ T<q through the coefficients of the u-expansions. Let σ be

an element of Aut(L/Fq(t, θ)) and, for µ ∈M !
w,m ⊗T<q, let us denote by µσ ∈M !

w,m⊗T<q the
form obtained applying σ on every coefficient of the u-expansion of µ.

Since f,d2 and τd2 are defined over Fq(t, θ), we get

f = φσd2 + ϕστd2.

Assume that φσ 6= φ or ϕσ 6= ϕ. We can suppose in fact that φσ 6= φ and ϕσ 6= ϕ. Then
τd2/d2 ∈ M !

q−1,0 ⊗ T<q which is impossible after the results of [16] (there, it is even proven
that the functions d2, τd2, g and h are algebraically independent over C((t))). This means that
the u-expansions of φ, ϕ are defined over Fq(t

1/qs , θ1/q
s

) for some s ≥ 0. By the fact that the
constant coefficients of Gα,0,0 and τGα,0,−1 are both equal to −1 (this follows from the first part
of Proposition 13), we get that λα ∈ Fq(t

1/qs , θ1/q
s

).
We have proven that π̃−αL(χt, α)(t − θ)sCar ∈ Fq(t

1/qs , θ1/q
s

). But we already know that
L(χt, α) ∈ K∞[[t]], sCar ∈ Ksep.[[t]] (separable closure), and π̃ ∈ Ksep.

∞ . Therefore,

λα ∈ Fq(t
1/qs , θ1/q

s

) ∩Ksep
∞ ((t)) = Fq(t, θ).
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