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Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition

The arithmetics of the frequency and of the rotation number play a fundamental role in the study of reducibility of analytic quasi-periodic cocycles which are sufficiently close to a constant. In this paper we show how to generalize previous works by L.H.Eliasson which deal with the diophantine case so as to implement a Brjuno-Rüssmann arithmetical condition both on the frequency and on the rotation number. Our approach adapts the Pöschel-Rüssmann KAM method, which was previously used in the problem of linearization of vector fields, to the problem of reducing cocycles.

∀(θ, t) ∈ T d × R, X ′ (θ, t) = A(θ + tω)X(θ, t) [START_REF] Avila | A KAM scheme for SL(2, R) cocycles with liouvillean frequency[END_REF] where A is a continuous matrix-valued function on a torus T d and ω is a rationally independent vector of some space R d (the space of frequencies). Although the dynamics of such a system can be quite complicated, they are easily studied in case the system is reducible, i.e when there is a map Z, continuous on the double torus 2T d = R d /2Z d , taking its values in the group of invertible matrices and such that

∀θ ∈ 2T d , d dt Z(θ + tω) |t=0 = A(θ)Z(θ) -Z(θ)B
for some matrix B not depending on θ. Since smoothness is an issue, given a class of functions C, we will say that the cocycle is reducible in C if Z is in C. Here we will focus on the case in which A takes its values in sl(2, R), which is sufficient, for instance, for the study of the one-dimensional quasi-periodic Schrödinger equation. Moreover, we will consider solutions of (1) with A ∈ C ω r , the space of functions on T d having a holomorphic extension on {(z 1 , . . . , z d ) ∈ C d , ∀j | Im z j |< r}, whose "weighted norm" | • | r converges (see section 2.1).

The arithmetics of ω seem fundamental in the study of reducibility, as well as the arithmetics of the system's rotation number ρ (as it was defined in [START_REF] Johnson | The rotation number for almost periodic potentials[END_REF]; we recall the definition in Section 2.1). At least in the perturbative case, arithmetical conditions of diophantine type have long been used to obtain reducibility, which can be seen as the convergence of a certain sequence of analytic functions: a diophantine condition can be used to control small divisors and make sure that the sequence converges. This was achieved, in particular, by Eliasson in [4]:

Theorem 1.1 (Eliasson) Let r > 0, V ∈ C ω r (T d , R).
Suppose ω is a diophantine vector. There exists ǫ 0 depending only on r, ω such that if sup |Im θ|<r | V (θ) -V (0) |≤ ǫ 0 , then the cocycle which is solution of

d dt X(t, θ) = 0 V (θ + tω) -E 1 0 X(t, θ) (2) 
is reducible for all E for which the rotation number is rational or diophantine with respect to ω.

In this article, we will give a reducibility result for analytic cocycles under a weaker arithmetical condition than the diophantine one. In order to obtain an analytic reducibility result, we will have to pick a frequency and a rotation number with good approximation properties, in the sense of Rüssmann ( [START_REF] Rüssmann | KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character[END_REF]): ω will have to satisfy a strong irrationality condition controlled by an approximation function G, namely

∀m ∈ Z d \ {0}, | m, ω |≥ κ G(m)
for some positive κ (section 2.1), and ρ will have to satisfy a further arithmetical condition: its approximations by means of linear combinations of the frequencies are controlled by an approximation function g, i.e

∀m ∈ Z d \ {0}, | ρ -m, ω |≥ κ ′ g(m)
(we will say for short that ρ has g as approximation function with respect to ω with constant κ ′ ) with g, G satisfying some extra assumptions.

We will be particularly interested in the case of Brjuno frequency, i.e when

∞ 1 log G(t) t 2 dt < ∞ (3) 
and of 1 2 -Brjuno rotation number (with respect to ω), i.e when

∞ 1 log g(t) t 3 2 dt < ∞ (4) 
In dimension d = 2, Condition (3) coincides with the well-known Brjuno condition defined in terms of continued fraction expansion, which is closely related, as shown by Yoccoz, to the dynamical properties of the quadratic polynomial (see [START_REF] Yoccoz | Petits diviseurs en dimension 1, S.M.F[END_REF]). Classes of numbers defined by a condition analogous to (4) when d = 2, which is slightly stronger than Brjuno, were constructed in [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF]. Condition (3) was introduced by Rüssmann in KAM theory, making it possible to deal with a vector of frequencies. Brjuno-Rüssmann conditions are already known to be central in the study of the linearization of vector fields (see e.g. [START_REF] Giorgilli | Convergence radius in the Poincaré-Siegel problem[END_REF], [START_REF] Pöschel | KAM à la R[END_REF] and references therein).

The classical Brjuno condition on the frequency was also considered by Young in [START_REF] Young | Lyapunov exponents for some quasi-periodic cocycles[END_REF], who constructed examples of non-reducible discrete cocycles in this case. For discrete cocycles with one frequency, Zhou and Wang recently obtained in [START_REF] Wang | Reducibility results for quasiperiodic cocycles with liouvillean frequency[END_REF] a positive measure reducibility result for non-Brjuno frequencies for non-degenerate one-parameters families of cocycles. Other results have been obtained on quasiperiodic cocycles regardless of any arithmetic condition on the frequency, worth mentioning although they are not reducibility results in our sense. In [START_REF] Avila | A KAM scheme for SL(2, R) cocycles with liouvillean frequency[END_REF], it is shown that without any condition on the frequency, the Schrödinger cocycle (2) can be conjugated to a rotation-valued cocycle for a positive measure set of energies; in [START_REF] Wang | Reducibility results for quasiperiodic cocycles with liouvillean frequency[END_REF], Zhou and Wang showed that in the case d = 2, for any frequency, for a non-degenerate analytic one-parameter family which is close to a constant, the cocycle can be analytically diagonalized for a positive measure set of parameters.

Our main result states:

Theorem 1.2 Let ω be a Brjuno vector, A ∈ sl(2, R), r > 0, F ∈ C ω r (T d , sl(2, R)). Suppose ρ(A + F ) is a 1
2 -Brjuno number with respect to ω. There exists ǫ 0 depending only on ω, ρ(A + F ), r such that if | F | r ≤ ǫ 0 , then there exists r ′ ∈ (0, r) such that

A + F is reducible in C ω r ′ .
This dt: Brjuno-Rüssmann conditions are therefore not optimal in this problem as they might be in other dynamical problems.

In fact, our method gives this more explicit theorem: Theorem 1.3 Let κ > 0 and let G, g be positive increasing functions such that

• G(1) ≥ 1, g(1) ≥ 1, • +∞ 1 log G(t) + log g(t) t 2 dt < +∞, (5) 
• the map t → g(t 2 ) G(t) is bounded.

Suppose ω has G as an approximation function with constant κ.

Let A ∈ sl(2, R), r > 0, F ∈ C ω r (T d , sl(2, R)). Let n 0 ∈ N.
There exist ǫ 0 depending only on g, κ, G, n 0 , r such that if

1. | F | r ≤ ǫ 0 ,
2. ρ(A + F ) has g as an approximation function with respect to ω with constant κ ′ > κ sup t≥n 0 g(t 2 )

G(t) ,
then there exists r ′ ∈ (0, r) such that

A + F is reducible in C ω r ′ (2T d , sl(2, R)).
A discussion on the dependence of ǫ 0 on g, G and the other parameters is given in subsection 3.4.

As an application, we consider the case when g and G look like exponentials (section 3.4):

Theorem 1.4 Let κ > 0, κ ′ > 0 and let G(t) = e t (log t) δ , g(t) = e t α , δ > 1, α < 1. Suppose ω has G as an approximation function with constant κ. Let A ∈ sl(2, R), r > 0, F ∈ C ω r (T d , sl(2, R)). There exist ǫ 0 depending only on α, κ, δ, κ ′ , r such that if 1. | F | r ≤ ǫ 0 ,
2. ρ(A + F ) has g as an approximation function with respect to ω with constant κ ′ , then there exists r ′ ∈ (0, r) such that

A + F is reducible in C ω r ′ (2T d , sl(2, R)).
Our aim is to adapt the Pöschel-Rüssmann method (see [START_REF] Rüssmann | KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character[END_REF] and [START_REF] Pöschel | KAM à la R[END_REF]), which was used in the problem of linearization for vector fields, to the problem of reducing cocycles. It is a KAM-type method in which the speed of convergence is linear. First of all, we will build a setup in which a system A + F with A constant and F small is conjugated to another system which is arbitrarily close to a constant, in an analytic class which, however, cannot be well controlled: this follows the technique used in [START_REF] Eliasson | Almost reducibility of linear quasi-periodic systems[END_REF] and is obtained by iterating (as in subsection 3.1) infinitely many steps (described in section 2) in which one conjugates a system A n + F n to a system A n+1 + F n+1 where A n , A n+1 are constant and

| F n+1 | rn+1 ≤ C | F n | rn ,
with C < 1 being independent of n and r n being a decreasing sequence controlling how analytic a function is. Thus, if r n tends to a non zero limit, we have analytic reducibility. At each step, in order to proceed, the constant part has to be non resonant, and if it is resonant, then we will have to remove the resonances, as explained in subsection 2.2.

Our setup makes sure that r n tends to a non zero limit whenever there is only a small enough number of steps at which one has to remove resonances in the constant part. The Brjuno-Rüssmann condition on the frequency and on the rotation number of the cocycle is required exactly at this stage.
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The basic step

In this section, we will prove the iterative step, which consists in conjugating a system to another one with a smaller non constant part, whether the constant part be resonant or not.

Definitions and notations

We will adopt the following conventions:

Definition: Let m = (m 1 , . . . , m d ) ∈ Z d . We denote by | m | its modulus: | m |= d j=1 | m j |. Definition: Let F ∈ C 0 (T d ) and r > 0; we say that F ∈ C ω r (T d ) if there exists an analytic continuation of F on a product of strips {(z 1 , . . . , z d ) ∈ C d , ∀j | Im z j |< r} and if the weighted norm | F | r = k∈Z d || F (k) || e 2π|k|r (6) 
where || . || is the relevant norm for F (k) (for matrices, we use the operator norm), is finite.

Note that C ω r (T d ) is a Banach space.

Notation: For F ∈ C ω r (T d ), we denote its truncation by

F N (θ) = |m|≤N F (m)e 2iπ m,θ .
Remark: The weighted norms are particularly convenient since they satisfy, for any integer N,

| F -F N | r = k∈Z d ,|k|>N || F (k) || e 2π|k|r =| F | r -| F N | r . (7) 
Moreover, they are related (although not equivalent) to the usual sup norms since it is easy to see that

sup |Im θ|<r || F (θ) ||≤| F | r .
For r ′ < r, we still have

| F | r ′ ≤ C(r -r ′ ) sup |Im θ|<r || F (θ) ||
where C(r -r ′ ) does not depend on F but depends on r -r ′ .

Definition:

If A ∈ C 0 (T d , sl(2, R)) and X is the solution of d dt X(t, θ) = A(θ+tω)X(t, θ); X(0, θ) = Id, the rotation number ρ(A) is the quantity ρ(A) = lim t→+∞ 1 t Arg(X(t, θ)φ -φ)
where φ ∈ R 2 ≃ C, θ ∈ T d and Arg stands for the variation of the complex argument (ρ(A) is independent of θ, φ).

Here and in what follows, we will fix ω ∈ R d rationally independent (i.e such that for all non zero m ∈ Z d , m, ω = 0): the vector ω will be the frequency of the cocycles we will consider. We will always assume that κ, κ ′ > 0 and that G, g are two positive continuous and strictly increasing functions such that G(1) ≥ 1, g(1) ≥ 1.

Definition: NR(κ, G) = {ω ∈ R d , ∀m ∈ Z d \ {0}, | m, ω |≥ κ G(|m|) }.
Remark: There exists a positive increasing and unbounded function

G ∈ C 0 (R * + ) with G(1) ≥ 1 and κ > 0 such that ω ∈ NR(κ, G). Indeed, one can take κ = min i | ω i | and G(N) = max |m|≤N κ | m,ω | . As noticed by H. Rüssmann ([10]), a condition NR(κ, G) with G such that ∞ 1 log G(t) t 2 dt < ∞ (8) 
is fulfilled by all Bruno vectors (see [START_REF] Bruno | An analytic form of differential equations[END_REF]), i.e vectors satisfying:

k≥1 | log α 2 k -1 | 2 k < +∞ (9) 
where

α k = min l≤k min j=1,...,d min |m|=l+1 | m, ω -ω j | . (10) 
In [START_REF] Giorgilli | Convergence radius in the Poincaré-Siegel problem[END_REF] it is shown that condition ( 9) is equivalent to

k≥1 | log α k | k(k + 1) < +∞ (11) 
and condition [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF] implies condition [START_REF] Yoccoz | Petits diviseurs en dimension 1, S.M.F[END_REF], so that ( 8), ( 9) and ( 11) are equivalent. Moreover, in dimension d = 2, these conditions are equivalent to the usual Brjuno condition on ω 2 ω 1 (see [START_REF] Yoccoz | Petits diviseurs en dimension 1, S.M.F[END_REF]). This suggests the following definition: Definition: The vector ω is a Brjuno vector if ω ∈ NR(κ, G) with G satisfying [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF].

We now have to introduce another type of arithmetic condition, related to the well-known "second Melnikov condition".

Definition: Let N ∈ N \ {0}; we set NR N ω (κ ′ , g) = α ∈ C, ∀m ∈ Z d \ {0}, 0 <| m |≤ N ⇒| α -iπ m, ω |≥ κ ′ g(| m |) (12) 
and NR ω (κ ′ , g) = ∩ N ∈N NR N ω (κ ′ , g).

Remark: If g(t) = t τ for some τ > 1, this is a diophantine condition.

Definition: Let ν > 0. The number α is a ν-Brjuno number with respect to ω if α ∈ NR ω (κ ′ , g) with g satisfying ∞ 1 log g(t) t (1+ν) < +∞. (13) 
This extended Brjuno condition was first considered in [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF].

Elimination of resonances

Now we shall prove the uniqueness of a resonance, i.e the situation of the spectrum being close to a number of the form m, ω , m ∈ Z d , when it exists.

Lemma 2.1 Let α ∈ C. Let N ∈ N \ {0}. There exists m ∈ Z d such that | m |≤ N and α -iπ m, ω ∈ NR N ω ( κ 4G(N ) , g); if m is non zero, then | α -iπ m, ω |< κ 4G(N)g(| m |) and α -iπ m, ω ∈ NR N ω ( κ G(N ) , g). Proof: Suppose α is not in NR N ω ( κ 4G(N ) , g), i.e there exists m ∈ Z d , 0 <| m |≤ N, such that | α -iπ m, ω |< κ 4G(N)g(| m |)
.

Then for all m ′ ∈ Z d with 0 <| m ′ |≤ N,

| α -iπ m + m ′ , ω |≥| π m ′ , ω | -| α -iπ m, ω |≥ κ G(| m ′ |) - κ 4G(N)g(| m |) (14) so | α -iπ m + m ′ , ω |≥ κ G(N)g(| m ′ |) (15) 
and so α -iπ m, ω ∈ NR N ω ( κ G(N ) , g).

The following proposition explains how to eliminate resonances in the spectrum of a trace zero matrix.

Proposition 2.2 Let A ∈ sl(2, R) with eigenvalues ±α. Let N ∈ N. Suppose that α is not in NR N ω ( κ 4G(N ) , g). There exists Φ ∈ ∩ r ′ ≥0 C ω r ′ (2T d , SL(2, R)) and a numerical constant C ′ such that ∀r ′ ≥ 0, | Φ | r ′ ≤ C ′ e πN r ′ ; | Φ -1 | r ′ ≤ C ′ e πN r ′ (16) 
and if à with eigenvalues ±α is such that

∂ ω Φ = AΦ -Φ Ã (17) then α ∈ NR N ω ( κ G(N ) , g). Moreover, | α |< κ 4G(N)
.

Proof: Lemma 2.1 gives a number m, 0 <| m |≤ N, such that letting

α = α -iπ m, ω then α ∈ NR N ω ( κ G(N ) , g).
Let P be such that P -1 AP is diagonal and || P ||= 1. We define Φ(θ) = P -1 e iπ m,θ 0 0 e -iπ m,θ P.

Relation (17) gives

à = P -1 α 0 0 -α P.
To obtain the estimate (16), we use an estimate shown for instance in [START_REF] Eliasson | Almost reducibility of linear quasi-periodic systems[END_REF], Lemma A:

|| P -1 ||≤ max 1, C. || A || 2 | α | 6
where C is a numerical constant, and since A is diagonalizable whenever its eigenvalues are non zero,

|| P -1 ||≤ max 1, C. | α | 2 | α | 6 ≤ C ′
where C ′ is a numerical constant, which gives (16).

Solution of the linearized homological equation

Our aim is to solve an equation of the form

∂ ω Z = (A + F )Z -Z(A ′ + F ′ )
where A and F are known, A ∈ sl(2, R) and F is analytic with values in sl(2, R). If A is non-resonant, we first solve

∂ ω X = [A, X] + aF N -a F (0)
where F N is some truncation of F and a is close enough to 1; then we define A ′ = A+a F (0) and F ′ by

∂ ω e X = (A + F )e X -e X (A ′ + F ′ )
and then we estimate

F ′ to get | F ′ | r ′ ≤ √ 1 -a | F | r .
If A is resonant, we conjugate A + F to a system à + F where à is non-resonant and we proceed in the same way as in the non-resonant case. So, from now on, to simplify the notations, we will assume that A, Ã, A ′ ∈ sl(2, R), that F, F , X, F ′ have values in sl(2, R) and Z, Φ have values in SL(2, R).

Proposition 2.3 Let N ∈ N and r, r ′ > 0. Let à with eigenvalues ±α ∈ NR N ω ( κ 4G(N ) , g). Let F ∈ C ω r (T d ). Then equation ∀θ ∈ T d , ∂ ω X(θ) = [ Ã, X(θ)] + F N (θ) -F (0); X(0) = 0 (18) has a unique solution X ∈ C ω r ′ (T d ) such that | X | r ′ ≤ 4 κ G(N)g(N) | F N | r ′ (19) 
Proof: In Fourier series, equation ( 18) can be written:

∀m ∈ Z d ,0 <| m |≤ N ⇒ 2iπ m, ω X(m) = [ Ã, X(m)] + F (m); | m |∈ {0} ∪ [N + 1, +∞[⇒ 2iπ m, ω X(m) = [ Ã, X(m)]. ( 20 
) So for | m |∈ {0} ∪ [N + 1, +∞[, X(m) = 0 is a solution (not necessarily unique).
For 0 <| m |≤ N, the solution is formally written as

X(m) = L -1 m F (m) (21)
where L m is the operator

L m : sl(2, R) → sl(2, R), M → 2iπ m, ω M -[ Ã, M]. Its spectrum is {2iπ m, ω -2 α, 2iπ m, ω + 2 α, 2iπ m, ω }. Since ω ∈ NR(κ, G) and α ∈ NR N ω ( κ 4G(N ) , g), L m is invertible and we have for all m ∈ Z d such that | m |∈ (0, N], || L -1 m ||≤ max{ G(| m |) κ , 4G(N)g(| m |) κ } = 4G(N)g(| m |) κ therefore for all m ∈ Z d such that 0 <| m |≤ N, || X(m) ||≤ 4G(N) g(| m |) κ || F (m) || (22) therefore | X | r ′ ≤ 4G(N) m∈Z d \{0},|m|≤N g(| m |) κ || F (m) || e 2π|m|r ′ ≤ 4 G(N)g(N) κ | F N | r ′ . (23) 

Solution of the full homological equation without resonances

This section explains the basic step in case the constant part is non resonant, i.e when its eigenvalues are far from all m, ω , m ∈ Z d \ {0}.

Proposition 2.4 Let 0 < r ′ ≤ r, a ′ ∈ (0, 1], N ∈ N, F ∈ C ω r (T d ), Ã ∈ sl(2, R). If σ( Ã) = {±α}, α ∈ NR N ω ( κ 4G(N ) , g), then there exists X, F ′ ∈ C ω r ′ (T d )and A ′ ∈ sl(2, R) such that | A ′ -Ã |≤|| F (0) || (24) ∂ ω e X = ( Ã + F )e X -e X (A ′ + F ′ ) (25) | X | r ′ ≤ 4a ′ G(N)g(N) κ | F N | r ′ (26)
and

| F ′ | r ′ ≤ e | X| r ′ (1 -a ′ ) | F | r ′ +e | X| r ′ a ′ | F -F N | r ′ + e | X| r ′ | F | r ′ | X | r ′ (e | X| r ′ + a ′ + a ′ e | X| r ′ ). ( 27 
)
Proof: Let X be a solution of

∀θ ∈ T d , ∂ ω X(θ) = [ Ã, X(θ)] + a ′ F N (θ) -a ′ F (0); X(0) = 0 (28)
as given by Proposition 2.3 (so it satisfies (26)). Let A ′ = Ã + a ′ F (0) so that (24) holds, and let F ′ be defined by

∂ ω e X = ( Ã + F )e X -e X (A ′ + F ′ ).
We have

F ′ =e -X ( F -a ′ F N ) + e -X F (e X -Id) + a ′ (e -X -Id) F (0) -e -X k≥2 1 k! k-1 l=0 Xl (a ′ F N -a ′ F (0)) Xk-1-l . ( 29 
) Since | F -a ′ F N | r ′ ≤ a ′ | F -F N | r ′ +(1 -a ′ ) | F | r ′ . (30) 
one easily obtains (27).

Remark: Denote ǫ =| F | r . Suppose 2G(N)g(N)ǫ ≤ κ(1 -a ′ ) 2 . (31) 
Then (26

) implies | X | r ′ ≤ a ′ (1 -a ′ ) thus e | X| r ′ ≤ 2. By (27), if one assumes moreover that e -2πN (r-r ′ ) ≤ 1 -a ′ (32) 
with r ′ > 0, then

| F -F N | r ′ ≤ (1 -a ′ ) | F -F N | r therefore | F ′ | r ′ ≤ 2(1 -a ′ )ǫ + 2a ′ (1 -a ′ )ǫ + 2ǫa ′ (1 -a ′ )(2 + 3a ′ ). (33) 
Thus, if a ′ is close enough to 1 (i.e larger than 1 -1 14 2 ),

| F ′ | r ′ ≤ (1 -a ′ ) 1 2 ǫ. (34) 

Solution of the full homological equation with resonances

This section presents the basic step when there are resonances in the constant part, i.e when its eigenvalues are too close to some m, ω , m ∈ Z d \ {0}.

Proposition 2.5 Let a ∈ (0, 1), c 0 > 0, C ′ as in Proposition 2.2, N ∈ N, r > 2 log(g(N )G(N )) πN , F ∈ C ω r (T d ), | F | r = ǫ, A ∈ sl(2, R). Suppose the eigenvalues ±α of A are not in NR N ω ( κ 4G(N ) , g). If 2G(N) 2 g(N) 2 ǫ ≤ (1 -a) 2 2 κ 2 (35) 
and

eC ′ (G • g)(N + 1) -c 0 ≤ 1 -a (36) 
then letting r ′ = r 2 -c 0 log(G•g)(N +1) 4πN
, there exists

F ′ ∈ C ω r ′ (T d ), A ′ ∈ sl(2, R) and Z ∈ C ω r ′ (2T d ) such that ∂ ω Z = (A + F )Z -Z(A ′ + F ′ ) (37) 
and

| F ′ | r ′ ≤ (1 -a)ǫ. (38) 
Proof: One first applies Proposition 2.2 on A. Let Φ, Ã be as in Proposition 2.2 so that σ

( Ã) = ±α, α ∈ NR N ω ( κ G(N ) , g) and | α |≤ κ 4G(N ) ; let F = ΦF Φ -1 .
Notice that, by construction of Φ, the map F remains continuous on T d . Apply Proposition 2.4 with a ′ = 1 and with

r ′ = r 2 -c 0 log(G•g)(N +1) 4πN to get X ∈ C ω r ′ (T d ), A ′ , F ′ ∈ C ω r ′ (T d
) such that (25) and (27) hold as well as

| X | r ′ ≤ 4 G(N)g(N) κ | F N | r ′ (39) 
and let Z = Φe X ∈ C ω r ′ (2T d ) so that Z satisfies (37). Condition (35) implies that

(G • g)(N) | X | r ′ ≤ (1 -a) 2 | F N | r ′ ǫ so (27) with a ′ = 1 gives | F ′ | r ′ ≤ eC ′ | F -F N | r e -2πN (r-2r ′ ) + eC ′ | F N | r ′ e 2πN r ′ (1 -a) 2 (G • g)(N) (2e + 1) (40) 
and by the choice of r ′ ,

| F ′ | r ′ ≤ eC ′ | F | r (G • g)(N + 1) -c 0 . (41) 
This implies, by assumption (36), that

| F ′ | r ′ ≤ (1 -a) | F | r . ( 42 
)
3 Iteration, reducibility and arithmetical conditions

Iteration

In this section we will first introduce the Brjuno-Rüssmann condition and then show how one can use it to control the convergence of the KAM iteration scheme.

Assumption 1 The functions g and G satisfy

∞ 1 log[g(t)G(t)] t 2 dt < ∞. (43) 
In order to iterate the basic step, we will now fix the parameters as follows: let C ′ be as in Proposition 2.2. Furthermore, let r 0 > 0, n 0 ∈ N and choose

c 0 = r 0 4 n 0 +3 (sup t∈[1,n 0 ] log(G•g)(t+1) t + 1) Let a ∈ [1 -ā, 1) where ā = min( 1 14 2 , 1 (G•g)(2) 2 )
. Let ǫ 0 > 0 be small enough to assure that

∞ (G•g) -1   κ 2(1-a) n 0 -5 4 ǫ 1 2 0   log(G • g)(t) t 2 dt ≤ r 0 4 n 0 (44) 
and

eC ′ ǫ c 0 4 0 ≤ (1 -a) 2 κ 2 . ( 45 
)
For all n ∈ N, let ǫ n = (1 -a) n 2 ǫ 0 and let N n be the biggest integer such that

(G • g)(N n ) 2 ≤ (1 -a) 2 4ǫ n κ 2 (N n exists since ǫ n ≤ (1-a) 2 κ 2 4e(G•g)(1) 2 ).
The above choices of the sequences ǫ n and N n are made in such a way that the following holds:

∞ Nn 0 log(G • g)(t) t 2 dt ≤ r 0 4 n 0 +2 . ( 46 
)
Remark: : The number ǫ 0 will then only depend on a, κ, g, G, n 0 and r 0 (the larger n 0 and the smaller r 0 are, the smaller ǫ 0 will be).

To simplify the notations, from now on the functions A n are understood to be in sl(2, R), while the F n have their values in sl(2, R) and Z ′ n , Z n have their values in SL(2, R).

Proposition 3.1 Let A ∈ sl(2, R) and F ∈ C ω r 0 (T d ). If | F | r 0 ≤ ǫ 0 , then there exist sequences (r n ) n∈N , r n > 0, Z n , ∈ C ω rn (2T d ), A n with spectrum ±α n , F n ∈ C ω rn (2T d )
, and m n ∈ Z d , such that 1. if all m n are zero when n ≥ n 0 , then r n has a positive limit;

2. if m n = 0 then | α n -π m n , ω |≤ κ 4G(Nn) ; 3. m n has modulus less than N n , 4. | F n | rn ≤ ǫ n ; 5. ∂ ω Z n = (A + F )Z n -Z n (A n + F n ); 6. | α n-1 -iπ m n-1 , ω -α n |≤ √ ǫ n-1 .
Remark: Proposition 3.1 implies that A + F is reducible in C ω r ′ for some r ′ > 0 if all m n are zero for n ≥ n 0 .

Proof: This proposition is shown by recurrence. Suppose these sequences are defined up to some n ∈ N and suppose that for all n ′ ≤ min(n -1, n 0 ), r n ′ +1 ≥ r n ′ 4 . We must distinguish two cases according to the possibility that the spectrum of A n is resonant or not.

First case: α

n ∈ NR Nn ω ( κ 4G(Nn) , g). Let r n+1 = r n -c 0 |log(1-a)| 2πNn , so that r n+1 ≥ rn 2 if n ≤ n 0 . One can apply Proposition 2.4 with r = r n , r ′ = r n+1 , N = N n , F = F n and à = A n and obtain Z ′ n = e Xn ∈ C ω r n+1 (T d ), F n+1 ∈ C ω r n+1 (T d ), A n+1 such that ∂ ω Z ′ n = (A n + F n )Z ′ n -Z ′ n (A n+1 + F n+1 ) (47) 
and

| F n+1 | r n+1 ≤ (1 -a) 1 2 ǫ n = ǫ n+1 . (48) 
One then takes Z n+1 = Z n Z ′ n .

Second case: α n / ∈ NR Nn ω ( κ 4G(Nn) , g). Assumption (35) is satisfied by definition of N n ; assumption (36) is also satisfied since, by maximality of N n ,

(G • g)(N n + 1) -c 0 ≤ 2ǫ n (1 -a) 2 κ 2 c 0 2 ≤ 2ǫ 0 (1 -a) 2 κ 2 c 0 2 (49)
which, together with (45), implies that

(G • g)(N n + 1) -c 0 ≤ 1 -a eC ′ . (50) 
Therefore, one can apply Proposition 2.5 with r = r n , r

′ = r n+1 = rn 2 -c 0 log(G•g)(Nn+1) πNn , so that r n+1 ≥ rn 4 if n ≤ n 0 , and N = N n . It follows that there exists A n+1 ∈ sl(2, R), F n+1 ∈ C ω r n+1 (T d ) and Z ′ n ∈ C ω r n+1 (2T d ) such that ∂ ω Z ′ n = (A n + F n )Z ′ n -Z ′ n (A n+1 + F n+1 ) and | F n+1 | r n+1 ≤ (1 -a) | F n | rn ≤ ǫ n+1 One then takes Z n+1 = Z n Z ′ n .
To complete the proof, we now need to show that (r n ) n has a positive limit if all m n are zero for n ≥ N 0 . We have

lim n r n = r n 0 - ∞ k=n 0 (r k -r k+1 ) ≥ r 0 4 n 0 - k≥n 0 | log(1 -a) | 2πN k . (51) 
Now, for all n,

N n = E (G • g) -1 (1 -a)κ 2 √ ǫ n thus lim n r n ≥ r 0 4 n 0 - | log(1 -a) | 2π ∞ n 0 (G • g) -1 κ 2(1 -a) n 4 -1 -1 dn. (52) 
Through the change of variables X

= κ 2(1-a) n 4 -1 , lim n r n ≥ r 0 4 n 0 - ∞ (G•g)(Nn 0 ) 1 π(G • g) -1 (X)X dX. (53) 
Letting now Y = (G • g) -1 (X), the integral becomes

∞ (G•g)(Nn 0 ) 1 π(G • g) -1 (X)X dX = ∞ Nn 0 1 πY (G • g)(Y ) d(G • g)(Y ) = -log(G • g)(N n 0 ) N n 0 + ∞ Nn 0 log(G • g)(Y ) Y 2 dY. (54) 
Therefore (56) which is positive.

lim n r n ≥ r 0 4 n 0 + log(G • g)(N n 0 ) πN n 0 - 1 π ∞ Nn 0 log(G • g)(Y ) Y 2 dY ( 
ρ(A + F ) = ρ(A ∞ ) + π j≥0 m j , ω (59) 
(see also [START_REF] Eliasson | Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation[END_REF]). Therefore 

ǫ n ≤ (1 -a) 2 κ 2 4G(N n ) 2 g(N n ) 2 then κ ′ ≤ κ G(N n ) g( j≤n | m j |). (64) 
Now, note that j≤n | m j |≤ N 2 n . This comes from the fact that, denoting by m j k the subsequence of non-zero m j 's, then for all k,

| m j k+1 , ω | <| m j k+1 , ω -α j k+1 | + | m j k , ω -α j k + α j k+1 | + | m j k , ω -α j k | < κ 4G(N j k+1 ) + 2 √ ǫ j k + κ 4G(N j k ) ≤ κ 4G(N j k+1 ) + κ 2G(N j k ) + κ 4G(N j k ) (65)
which together with the arithmetic condition on ω implies that N j k+1 > N j k ≥ k. Therefore

κ ′ ≤ κ G(N n ) g(N 2 n ) (66) 
and since by assumption g(t 2 ) G(t) is bounded,

κ ′ ≤ κ sup t≥n g(t 2 ) G(t) . (67) 
In other words, if

κ ′ > κ sup t≥n g(t 2 ) G(t) (68) 
then m n = 0 for all n ≥ n 0 ; and so A + F is analytically reducible.

This proves Theorem 1.3. Here is an easy consequence of the main result:

Corollary 3.3 Let A ∈ sl(2, R), r > 0, F ∈ C ω r (T d ). Assume
1. the map t → g(t 2 ) G(t) tends to 0, 2. ρ(A + F ) ∈ NR ω (κ ′ , g) for some κ ′ > 0.

There exist ǫ 0 depending only on g, κ, G, ρ(A + F ), r such that if

| F | r ≤ ǫ 0 ,
then there exists r ′ ∈ (0, r) such that A + F is reducible in C ω r ′ (2T d ).

|√ ǫ j = 1 1- 4 √

 14 ρ(A + F ) -π j≤n m j , ω | =| ρ(A ∞ ) + π j≥n+1 m j , ω | ≤| α n+1 | + j≥n+1 | α j -π m j , ω -α j+1 | ≤| α n+1 | + j≥n+1 √ ǫ j (60) Suppose ρ(A + F ) satisfies ∀m ∈ Z d , | ρ(A + F ) -π m, ω |≥ κ ′ g(| m |) .In particular,| ρ(A + F ) -π j≤n m j , ω |≥ κ ′ g(| j≤n m j |)and soκ ′ g(| j≤n m j |) ≤ j≥n+1 √ ǫ j + | α n+1 | .(61)Let n > n 0 . Assume m n = 0. Then we have| α n+1 |≤| α n -π m n , ω | + | α n -π m n , ω -α n+1 |≤ κ 4G(N n ) + (1 -a) 1 ǫ n ≤ 2 √ ǫ nand since, by definition of N n ,

A link between the Brjuno sum and the allowed perturbation

It is easily seen that the condition on ǫ 0 can also be expressed more conveniently as the following sufficient condition:

Indeed, we have the following bound:

and the conclusion follows easily from the upper bound on t.

Reducibility theorem

We will now need one more assumption on the approximation functions G and g.

Assumption 2

The map t → g(t 2 ) G(t) is bounded.

Now we can prove the main result:

Under assumptions 1 and 2 on the approximation functions g and G, there exist ǫ 0 > 0 depending only on g, κ, G, n 0 , r such that if

n∈N as defined at the beginning of section 3.1. Let (r n ), (α n ), (m n ), (A n ), (F n ), (Z n ) be the sequences given by Proposition 3.1. The sequence (A n ) is bounded in sl(2, R) for the operator norm so taking a subsequence (A n k ), we find that A n k tends to some A ∞ ∈ gl(2, R). Now ρ(A ∞ ) is the limit of ρ(A n k ) (see [START_REF] Eliasson | Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation[END_REF], Lemma A.3) which implies that for all n,

Moreover,

Proof: Let n 0 be the smallest integer such that κ ′ > sup t≥n 0 g(t 2 ) G(t) . Take ǫ 0 as in Theorem 3.2 so that it really depends on g, κ, G, ρ(A + F ), r and apply Corollary 3.2.

Theorem ?? is a particular case of Corollary 3.3 since we can take g

, as we will see in the next section. Our main result will be made more convenient by the following corollary:

Assume ω is a Brjuno vector and ρ(A + F ) is a 1 2 -Brjuno number with respect to ω. There exists ǫ 0 depending only on

By assumption, there exists κ ′ > 0 and g positive increasing and continuous such that

dt < +∞ and ρ(A + F ) ∈ NR ω (κ ′ , g); there also exists κ > 0 and G ′ positive increasing and continuous such that

dt < +∞ and ω ∈ NR(κ, G ′ ). Now let for all t, G(t) = t max(G ′ (t), g(t 2 )). The function G is positive increasing and continuous and ω ∈ NR(κ, G). Since g(t 2 ) G(t) ≤ 1 t for all t, we can apply the previous corollary.

Possible choices of approximation functions

Here we give a few examples of approximation functions to which Theorem 3.2 can be applied.

Verification of Assumption 2

Here are a few examples where Assumption 2 holds, i.e g(t 2 ) G(t) is bounded:

In the example 1, and if µ ′ > µ 2 , then, as noted in section 3.4, the condition on ǫ 0 does not depend on n 0 and κ ′ might be arbitrarily small, which corresponds to Eliasson's full-measure reducibility result in [START_REF] Eliasson | Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation[END_REF].

Smallness conditions

We shall make conditions (44) and (45) more explicit for the particular cases that we mentioned before, namely, when

or if

Proof: Rewrite Condition (44) as

(71)

. Integrating by parts, this is

It is enough that

that is,

which is true if (70) is satisfied. If moreover

then ( 74) is satisfied as long as

Proof: By plugging e t α +t α ′ into (44) and recalling that g • G is increasing, one finds that Condition (44) holds if

so, in particular, (77) is a sufficient condition.

.

(79)

Proof: In this case, (44) can be rewritten

. Integrating by parts, we compute

which implies (89)