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Singular surfaces and cusps in symmetric planar 3-RPR manipulators

We study in this paper a class of 3-RPR manipulators for which the direct kinematic problem (DKP) is split into a cubic problem followed by a quadratic one. These manipulators are geometrically characterized by the fact that the moving triangle is the image of the base triangle by an indirect isometry. We introduce a specific coordinate system adapted to this geometric feature and which is also well adapted to the splitting of the DKP. This allows us to obtain easily precise descriptions of the singularities and of the cusp edges. These latter second order singularities are important for nonsingular assembly mode changing. We show how to sort assembly modes and use this sorting for motion planning in the joint space.

I. INTRODUCTION

Planar parallel manipulators have received a lot of attention [START_REF] Hunt | Structural Kinematics of In Parallel-Actuated Robot-Arms[END_REF], [START_REF] Hunt | Assembly Configurations of some In-Parallel-Actuated Manipulators[END_REF], [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF]- [START_REF] Urizar | Researching into nonsingular transitions in the joint space[END_REF] because of their relative simplicity with respect to their spatial counterparts. Moreover, studying the former may help understand the latter. Planar manipulators with three extensible leg rods, referred to as 3-RPR manipulators, have often been studied. Such manipulators may have up to six assembly modes (AM) [START_REF] Hunt | Assembly Configurations of some In-Parallel-Actuated Manipulators[END_REF] and their direct kinematics can be written in a polynomial of degree six [START_REF] Rojas | The Forward Kinematics of 3-RPR Planar Robots: A Review and a Distance-Based Formulation[END_REF]. It was first pointed out that to move from one assembly mode to another, the manipulator should cross a singularity [START_REF] Hunt | Assembly Configurations of some In-Parallel-Actuated Manipulators[END_REF]. However, [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF] showed, using numerical experiments, that this statement is not true in general. More precisely, this statement is only true under some special geometric conditions, such as similar base and mobile platforms [START_REF] Mcaree | An explanation of never-special assembly changing motions for 3-3 parallel manipulators[END_REF], [START_REF] Kong | Forward displacement analysis of thirdclass analytic 3-RPR planar parallel manipulators[END_REF]. Recently, [START_REF] Husty | Non-singular assembly mode change in 3-RPR-parallel manipulators[END_REF] provided a mathematical proof of the decomposition of the workspace into two aspects (singularity-free regions) using geometric properties of the singularity surfaces. Since a parallel manipulator becomes uncontrollable on a singular configuration, the possibility to change its assembly-mode without encountering a singularity is interesting as it can enlarge its usable workspace. Knowing whether a parallel manipulator has this feature is of interest for both the designer and the end-user. The second-order singularities, which form cusp points in plane sections of the joint space, play an important role in non-singular assemblymode changing motions. Indeed, encircling a cusp point makes it possible to execute such motions [START_REF] Mcaree | An explanation of never-special assembly changing motions for 3-3 parallel manipulators[END_REF], [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF], [START_REF] Zein | Non-singular assembly-mode changing motions for 3-RPR parallel manipulators[END_REF]- [START_REF] Urizar | Researching into nonsingular transitions in the joint space[END_REF] A special class of planar 3-RPR manipulators has been studied recently [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF], [START_REF] Wenger | Degeneracy study of the forward kinematics of planar 3-RPR parallel manipulators[END_REF]. These manipulators have the peculiarity that the resolution of the direct kinematics problem is split into a cubic equation and a quadratic equation. Their geometry is characterized by the fact that the platform triangle is congruent to the base triangle via an indirect isometry of the plane; this is the reason why we call them "symmetric".

We propose here a coordinate system for the workspace which is adapted to this specific class and reflects the splitting of the direct kinematic problem (section II). We pay attention to the description of singularities (section III) and cusps (section IV) using these coordinates. We show how to sort assembly modes and use this sorting to do motion planning in the joint space (section V).

II. ALTERNATIVE COORDINATES FOR THE WORKSPACE

The base triangle is denoted by A 1 A 2 A 3 . In the direct orthonormal frame F with origin A 1 and first axis oriented by ---→ A 1 A 2 , the coordinates of A 2 are (b, 0) and those of A 3 are (d, h). The platform triangle is denoted by B 1 B 2 B 3 . Due to the symmetry property, the coordinates of B 2 and B 3 in the direct orthonormal frame with origin B 1 and first axis oriented by ---→ B 1 B 2 are respectively (b, 0) and (d, -h). The length of the leg A i B i is as usual denoted by ρ i .

B 1 B 2 B 3 A 1 A 2 A 3 b h d Fig. 1. A symmetric 3-RPR manipulator.
The platform triangle B 1 B 2 B 3 is the image of the base triangle A 1 A 2 A 3 by a glide reflection S. We encode this glide reflection S by the triple (ψ, r, g) such that the glide reflection is the orthogonal symmetry with respect to the line ∆ with equation x cos(ψ) + y sin(ψ) -r = 0 followed by the translation of vector 2g -sin(ψ) cos(ψ) parallel to the symmetry axis (the equation of ∆ and the coordinates of the translation vector are given in frame F attached to the base triangle -see figure 2). We choose the angle ψ in [-π/2, π/2] and make the identification of (-π/2, r, g) with (π/2, -r, -g).

r 90 • B 1 B 2 B 3 A 1 A 2 A 3 A ′ 1 A ′ 2 A ′ 3 2g ∆ Fig. 2. The glide reflection sending A 1 A 2 A 3 to B 1 B 2 B 3 .
Usually the workspace is viewed as the space of rigid motions in the plane and a pose of the manipulator is encoded by the rigid motion R carrying the half-line

[A 1 A 2 ) to the half-line [B 1 B 2 ).
The rigid motion R and the glide reflection S are related in the following way: S is the orthogonal symmetry with respect to (A 1 A 2 ) followed by R. If the rigid motion R is given (as in [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF], for instance) by the angle of rotation ϕ and the translation vector x y , then the relation between the two systems of coordinates is as follows:

ϕ = 2ψ + π (mod 2π) (1 
) x = 2 (r cos(ψ) -g sin(ψ))

(2) y = 2 (r sin(ψ) + g cos(ψ)) .

(

) 3 
It is easy to compute the lengths ρ i of the legs A i B i in terms of (ψ, r, g), since B i is the image of A i by the glide reflection. The square ρ 2 i is the sum of the square of the double of the distance of A i to the axis ∆ and the square of the norm of the translation vector, which is 4g 2 . This gives:

ρ 2 1 = 4 r 2 + g 2 , (4) ρ 2 2 = 4 (b cos(ψ) -r) 2 + g 2 , ( 5 
) ρ 2 3 = 4 (d cos(ψ) + h sin(ψ) -r) 2 + g 2 . (6) It will be convenient to introduce δ 2 = (ρ 2 2 -ρ 2 1 )/4 and δ 3 = (ρ 2 3 -ρ 2 1
)/4. These quantities depend only on ψ and r, and not on g:

δ 2 = -2 b cos (ψ) r + b 2 (cos (ψ)) 2 , ( 7 
) δ 3 = (d cos (ψ)+h sin (ψ)) 2 -2r (d cos (ψ)+h sin (ψ))(8)
Eliminating r between these two equations and writing the equation obtained in t = tan(ψ), we get the third degree equation:

δ 2 ht 3 + bh 2 -bδ 3 + δ 2 d t 2 + 2 bdh -b 2 h + δ 2 h t -bδ 3 + δ 2 d + bd 2 -b 2 d = 0 . (9)
This equation is essentially the same as the third degree characteristic polynomial obtained in [START_REF] Wenger | Degeneracy study of the forward kinematics of planar 3-RPR parallel manipulators[END_REF].

We shall use (ρ 2 1 , ρ 2 2 , ρ 2 3 ) as coordinates for the actuated joint space. Of course, this joint space is contained in the positive orthant (R + ) 3 .

The direct kinematic problem (DKP) can be solved as follows:

1) Take a real solution in t of equation ( 9), which determines ψ = arctan(t). Generically there are 3 or 1 real solutions, depending on the sign of the discriminant of the equation. 2) Compute r from ψ using equation [START_REF] Husty | Non-singular assembly mode change in 3-RPR-parallel manipulators[END_REF], which gives

r = 1 2 b cos(ψ) - δ 2 b cos(ψ) . ( 10 
)
3) Solve the equation ( 4) for g. It has two real opposite solutions when ρ 2 1 > 4r 2 . One should take care in the resolution of the DKP of the case ψ = ±π/2, i.e. t = ∞. This corresponds to the vanishing of the third degree term in equation ( 9), which occurs when δ 2 = 0. In this case one can use equation [START_REF] Wenger | Workspace and Assembly modes in Fully-Parallel Manipulators: A Descriptive Study[END_REF] to compute r, which gives r = (h 2 -δ 3 )/2h for ψ = π/2.

Note that the existence of a solution to the DKP depends

• first, on the existence of a solution (ψ, r) to the system of equations ( 7) and ( 8), • second, given such a solution (ψ, r), on the existence of a solution g to equation ( 4). These two conditions of existence will be important for the discussion of singularities in the next section.

III. SINGULARITIES

The singular surface in the actuated joint space is thus given as the union of two surfaces S 1 and S 2 , corresponding respectively to steps 1 and 3 of the resolution of the DKP described above. The fact that the singular surface splits in two components has already been observed in [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF]. We will now describe these two surfaces. We will also describe the critical surfaces Σ 1 and Σ 2 in the workspace, whose images by the mapping (ψ, r, g)

→ (ρ 2 1 , ρ 2 2 , ρ 2 
3 ) given by equations ( 4), ( 5) and ( 6) are S 1 and S 2 respectively.

A. The first singular surface

The surface S 1 is the intersection of the actuated joint space (always with coordinates (ρ 2 1 , ρ 2 2 , ρ 2 3 )) with a cylinder having generatrix parallel to (1, 1, 1) and basis a curve C in the plane of coordinates (δ 2 , δ 3 ). An equation for C can be obtained as the discriminant of equation ( 9); it is a quartic. An alternative way to describe C is to compute the jacobian determinant of the mapping Φ : (ψ, r) → (δ 2 , δ 3 ) given by equations [START_REF] Husty | Non-singular assembly mode change in 3-RPR-parallel manipulators[END_REF] and [START_REF] Wenger | Workspace and Assembly modes in Fully-Parallel Manipulators: A Descriptive Study[END_REF]. The jacobian curve Γ in the space with coordinates (ψ, r) is given by

r = cos(ψ) h (h 2 + bd -d 2 ) cos(ψ) sin(ψ)+ (2d -b) h cos(ψ) 2 + (b -d) h . (11) 
Observe that r(ψ + π) = -r(ψ). The critical surface Σ 1 in the workspace is the set of all (ψ, r, g) such that (ψ, r) belongs to Γ. The curve C is the image of Γ by the mapping Φ, and it can be parameterized by rational functions of t = tan(ψ) as

       δ 2 = b ((2d -b)h t 2 + (2d 2 -2bd -2h 2 ) t + (b -2d)h) (1 + t 2 ) 2 h δ 3 = (h t + d) 2 (h t 2 + 2(d -b) t -h) (1 + t 2 ) 2 h ( 12 
) So C is indeed a rational quartic. Its singular points are three real cusps that can be found by looking at the stationary points of the parameterization. These stationary points correspond to parameters t which are roots of the cubic equation

(b-2d)h t 3 +3(h 2 -d 2 +db) t 2 +3h(2d-b) t+d 2 -db-h 2 = 0 . ( 13 
) Since the discriminant 108 (d 2 + h 2 ) 2 ((d-b) 2 + h 2 ) 2 of
this cubic equation is strictly positive, there are always three real roots and hence three real cusps on the curve C. Actually, transforming the equation to an equation in ψ, one obtains

tan(3ψ) = d 2 -bd -h 2 (b -2d) h (14) 
Note that the curve C has no other singular point than the three cusps. Indeed, a rational quartic may have only up to three singular points. The curve C always has the shape of a deltoid, i.e. a closed curve with three cusps connected by arcs concave to the exterior.

B. The second singular surface

The second critical surface Σ 2 in the workspace is simply given by g = 0; so it is independent of the geometry of the manipulator (this is already observed in [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF]). Its image S 2 in the actuated joint space is parameterized by substituting g = 0 in equations [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF][START_REF] Mcaree | An explanation of never-special assembly changing motions for 3-3 parallel manipulators[END_REF][START_REF] Kong | Forward displacement analysis of thirdclass analytic 3-RPR planar parallel manipulators[END_REF]. So the surface S 2 is the image of the elliptic cylinder

ρ 1 = 2 r , ( 15 
) ρ 2 = 2 (r -b cos(ψ)) , ( 16 
) ρ 3 = 2 (r -d cos(ψ) -h sin(ψ)) (17) 
by the mapping

(ρ 1 , ρ 2 , ρ 3 ) → (ρ 2 1 , ρ 2 2 , ρ 2 
3 ). The implicit equation of S 2 can also be obtained by eliminating t between equation ( 9) and the equation

ρ 2 1 = δ 2 2 (1 + t 2 ) b 2 -2δ 2 + b 2 1 + t 2 ,
where the right hand side is the expression for 4r 2 derived from [START_REF] Wenger | Degeneracy study of the forward kinematics of planar 3-RPR parallel manipulators[END_REF]. The implicit equation for S 2 obtained in this way is a quartic equation in ρ 2 1 , ρ 2 2 , ρ 2 3 , not a very nice one.

C. An example

We consider the manipulator with parameters b = 1, h = 1, d = 0. In this case the curve C in the plane (δ 2 , δ 3 ) is a hypocycloid with three cusps (a deltoid) inscribed in the circle with center (1/4, 1/4) and radius 9/8. The three The critical surface Σ 2 in the workspace is always given by g = 0. The critical surface Σ 1 is parameterized by ψ, -cos(ψ) (-1 -sin(ψ) cos(ψ) + cos(ψ) 2 ), g . Both critical surfaces are represented in figure 4. It may be interesting to compare this figure with figure 2 in [START_REF] Wenger | Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators[END_REF], which represents the same surfaces (with the same color code), but in a different coordinate system. The choice of coordinates made here "straightens" the critical surfaces.

The three black lines of figure 4 are the lines of points which correspond to cusps in the joint space.

We represent now the singular surfaces S 1 and S 2 in the joint space (See figures 5 and 6 ). The surface S 1 is a part of a cylinder on the hypocycloid and has three half-lines of cusps. The drawing of the singular surfaces is made using their parameterizations by (ψ, g) for S 1 and by (ψ, r) for S 2 . 

IV. CUSPS

The singular surface S 1 has three half-lines of cusps, all parallel to the vector (1, 1, 1). So the cusps are entirely determined once we know the origins of these three halflines. The three possible angles ψ are determined by equation ( 14):

ψ cusp = 1 3 arctan d 2 -bd -h 2 (b -2d) h + k π 3 (mod π)
for k = 0, 1, 2. For each of these three values of ψ cusp , the corresponding value r cusp is given by equation [START_REF] Zein | Singular curves and cusp points in the joint space of 3-RPR parallel manipulators[END_REF]. The couple (ψ cusp , r cusp ) determines the line supporting the halfline of cusps, and the origin of this half-line corresponds to g = 0. So we get three values for the ρ 2 1 of the origins of the three half-lines of cusps, which are the three values for 4r 2 cusp . These three values for ρ 2 1 are the roots of a third degree polynomial with coefficients depending on b, h, d; the constant term of this polynomial is

4h 2 (-2d+b) 2 (d 3 -2bd 2 +h 2 d+b 2 d-2bh 2 ) 2 (-h 2 +2bd-d 2 ) 2 ,
and its discriminant is always nonnegative.

Let 0 ≤ β 1 ≤ β 2 ≤ β 3 be the three bifurcation values of ρ 2 1 for the number of cusps, i.e. the ρ 2 1 of the origins of the half-lines of cusps. Then the slice at

ρ 2 1 = c has 0 cusp if 0 ≤ c < β 1 , 1 if β 1 < c < β 2 , 2 if β 2 < c < β 3 and 3 if β 3 < c.
One of the bounded intervals may be empty, if the constant term of the equation of the third degree in ρ 2 1 vanishes (for the first interval) or if its discriminant vanishes (for the second or third interval). One has to understand that the number of cusps is the number of cusp points in the slice of the joint space. Over each of these cusps there are two triple solutions of the DKP, corresponding to opposite values of g. Figure 7a represents the bifurcation values as function of h and d, with b fixed equal to 1 (green for β 1 , yellow for β 2 and red for β 3 ). Figure 7b shows detail for the first and second bifurcation values when 0 ≤ d ≤ 1.

V. SORTING ASSEMBLY MODES AND MOTION PLANNING IN THE JOINT SPACE

The essential idea here is the following: when one starts from a nonsingular solution of the DKP at a point in the joint space with coordinates (ρ 2 1 , ρ 2 2 , ρ 2 3 ) and moves in the direction of the vector (1, 1, 1), then the solution of the DKP follows smoothly, without crossing a singularity in the workspace. Indeed, consider equations (4-6): the motion ρ 2 i → ρ 2 i + λ 2 , increasing λ, can be lifted in the workspace (with coordinates (ψ, r, g)) to a path with ψ and r fixed and g increasing to g 2 + λ 2 /4.

The segment in the joint space can cross the second singular surface S 2 . This corresponds to the appearance of two new solutions to the DKP (one in each aspect), with a different couple (ψ, r). But it never crosses the first singular surface S 1 which is a cylinder with generatrix parallel to (1, 1, 1).

We denote ρ 2 1 + ρ 2 2 + ρ 2 3 by ν. Then (ν, δ 2 , δ 3 ) form a system of coordinates for the joint space which is convenient for our present discussion. Moving in the joint space in the direction of the vector (1, 1, 1) is increasing ν, keeping δ 2 and δ 3 fixed. The situation in the section ν = k stabilizes for sufficiently large values of k: the section of S 2 is a big oval surrounding the section of S 1 which is a deltoid with three cusps (the curve C, base of the cylinder). Inside this curve C there are, in each aspect, three continuous solutions of the DKP and between this curve C and the section of S 2 there is in the same aspect one continuous solution of the DKP. Label by 0 this solution, and label by 1, 2, 3 the three arcs of C between the cusps. Then we can label the three solutions inside the deltoid C by 1, 2, 3 according to the label of the arc of the deltoid through which they are connected with the solution 0. Figure 8 illustrates the labelling in the same example as above (the coordinates (δ 2 , δ 3 ) are used in the section ν = 8).

In this way we can label every solution of the DKP contained in one aspect by one of the labels 0,1,2 or 3. In each aspect, all points in the same label form a connected region and the boundaries between these regions are the socalled "characteristic surfaces" obtained by pulling back the singular surface S 1 in the aspect [START_REF] Wenger | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF]. The characteristic surfaces in the workspace with coordinates (ψ, r, g) are cylinders with generatrix parallel to the g-axis and basis the two curves in the (ψ, r) plane which are given by 9 represents a section of the characteristic surfaces (in green) by a plane g = constant of the workspace. The blue curve is a section of Σ 1 and separates the aspects. In each aspect, the characteristic surface delimitates the four sorts of assembly modes. The label 0 correspond to points which are mapped outside of the deltoid C in the joint space, and the labels 1, 2, 3 to points which are mapped inside. A path from 0 to 1 inside an aspect is mapped to a path going through the arc of the deltoid with label 1, etc.. We illustrate how the labelling can be used for motion planning in the joint space with an example, again for the manipulator with parameters b = 1, h = 1, d = 0. We choose a goal position for the manipulator, given by ψ = π/4, r = 1.1 and g = 0.4 (Figure 10).

r = h(2 d + b) cos (ψ) + (h 2 + bd -d 2 ) sin (ψ) 4 h ± (h 2 + d 2 ) (h 2 + d 2 + b 2 -2 bd) 4 h Figure
B 1 B 2 B 3 A 1 A 2 A 3 ν ≈ 7.99 δ 2 ≈ -1.06 δ 3 ≈ -1.06 2g r = 1.1 g = 0.4 ψ = 45 • 1. 12 
1.12 2.34 Fig. 10. The goal position.

The goal position corresponds to values ρ 1 ≈ 2.34, ρ 2 = ρ 3 ≈ 1.12 and ν ≈ 7.99; it is labelled 0 and mapped outside of the deltoid in the joint space. We explain how to plan (in the joint space) a path to the goal position from a position of the manipulator in the same aspect, with ν ≤ 7.99. The starting position corresponds to ρ 0 1 , ρ 0 2 , ρ 0 3 and label ℓ ∈ {0, 1, 2, 3}.

• Increase simultaneously ρ 1 , ρ 2 , ρ 3 following ρ i = (ρ 0 i ) 2 + t 2 until ν = ρ 2 i = 8 • Keeping ν = 8 constant, move in the plane with coordinates (δ 2 , δ 3 ) from (δ 0 2 = (ρ 0 2 ) 2 -(ρ 0 1 ) 2 , δ 0 3 = (ρ 0 3 ) 2 -(ρ 0 1 ) 2 ) to (-1.06, -1.06) following a path inside the red curve and crossing only arc #ℓ of the deltoid if the label is ℓ. 

VI. CONCLUSIONS

The choice of coordinates for the workspace well adapted to the special class of symmetric manipulators allowed us to take full advantage of the de-coupling of DKP (into a cubic and a quadratic equation) in the computations. We obtained rational parameterizations of the singular surfaces in the joint space. We obtained also a good description of the cusp curves on these surfaces, as well as precise information on the bifurcation of the number of cusps in the slices of the joint space. Finally, we were able to sort assembly modes in an aspect and to use this sorting for motion planning in the joint space.
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