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 

Abstract—The paper focuses on stiffness matrix computation 

for manipulators with passive joints. It proposes both explicit 

analytical expressions and an efficient recursive procedure that 

are applicable in general case and allow obtaining the desired 

matrix either in analytical or numerical form. Advantages of 

the developed technique and its ability to produce both singular 

and non-singular stiffness matrices are illustrated by 

application examples that deal with stiffness modeling of two 

Stewart-Gough platforms. 

Keywords— stiffness modeling, parallel manipulators, passive 

joints, kinetostatic singularities, recursive computations 

I. INTRODUCTION 

N many applications, manipulator stiffness becomes one of 

the most important performance measures of a robotic 

system. In particular, for milling, drilling and other types of 

machining, the stiffness defines the positioning errors due to 

interaction between the workpiece and the technological 

tool. Similarly, in industrial pick-and-place automation, the 

manipulator stiffness defines admissible 

velocity/acceleration while approaching the target point, in 

order to avoid undesirable displacements due to inertia 

forces. Other examples include medical robots, where elastic 

deformations of mechanical components under the task load 

are the primary source of positioning errors.  

Numerically, this property is usually described by the 

stiffness matrix 
C

K , which defines a linear relation between 

the translational/rotational displacement in Cartesian space 

and the static forces/torques causing this transition (assuming 

that all of them are small enough). The inverse of 
C

K  is 

usually called the compliance matrix and is denoted as 
C

k . 

As it follows from related works, for conservative systems, 
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C
K  is 6 6  semi-definite non-negative symmetrical matrix 

but in general case its structure may be non-diagonal to 

represent the coupling between the translation and rotation. 

The problem of stiffness matrix computing for different 

types of manipulators is the focus of robotic experts for 

several decades [1-18]. The existing approaches may be 

roughly divided into three main groups: (i) the Finite 

Element Analysis (FEA) [19-23], (ii) the Matrix Structural 

Analysis (SMA) [24-25], and (iii) the Virtual Joint Method 

(VJM) [1-2,8,14,26-27]. The most accurate of them is 

obviously the FEA-based technique but it requires rather 

high computational expenses. The SMA is less 

computationally hard due to fairly large structural elements 

employed (3D flexible beams instead of numerous tiny 

tetrahedrals and hexahedrals of FEA) but it nevertheless is 

not convenient for the parametric analysis. And finally, the 

VJM method is the most attractive in robotic domain since it 

operates with an extension of the traditional rigid model that 

is completed by a set of compliant virtual joints (localized 

springs), which describe elastic properties of the links, joints 

and actuators. This paper contributes to the VJM technique 

and focuses on some particularities of the manipulators with 

passive joints. 

For conventional serial manipulators (without passive 

joints), the VJM approach yields rather simple analytical 

presentation of the desired stiffness matrix 
C

K . Relevant 

expression 
θ

-1

C θ

-T

θ
· ·K J K J  can be found in the work of 

Salisbury [1] who assumed that the mechanical elasticity is 

concentrated in actuators and the deflections are small 

enough to apply linear approximation of the force-deflection 

relation. Here the matrix 
θ

K  aggregates the stiffness 

coefficients of all elastic joints, and 
θ

J  is the corresponding 

kinematic Jacobian. Further, this result was extended by 

Gosselin for the case of parallel manipulators taking into 

account elasticity of other mechanical elements [2]. More 

recent publications present VJM-based stiffness analysis for 

particular case studies, such as various variants of the 

Stewart–Gough platform, manipulators with US/UPS legs, 

CaPAMan, Orthoglide, H4 etc. [27-34].  

It should be noted that in majority of related works, the 

presence of passive joints does not cause any specific 

computational problems, since these joints are eliminated via 

geometrical constraints describing assembling of the relevant 

parallel architecture [2]. Besides, in most of publications, it 

is implicitly assumed that the Jacobian 
θ

J  describing 
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influence of the elastic joints on the end-location is non-

singular
1
, i.e. 

θ
( ) 6rank J , to ensure inversion of the 

related matrix in the modified expression 
-

θ θ

T 1

θ

T

C
·( )·


K J K J  that always produce non-singular 

C
K . It 

is obvious that the assumption concerning 
θ

J  is completely 

realistic if the VJM model includes at least a single 6-

dimensional virtual spring of a general type (see [35] for 

details), while it is not realistic that the manipulator stiffness 

matrix is always non-singular. Hence, common stiffness 

modelling techniques must be revised with respect to 

influence of passive joints, which in certain cases can not be 

straightforwardly eliminated from the kinetostatic equations 

and, consequently, may cause singularity of 
C

K  . 

In this paper, it is applied another approach that originates 

from our publication [27] where the desired stiffness matrix 

C
K  of size 6 6  is extracted from the inverse of a larger 

matrix, of size 
q q

(6 ) (6 )n n  , which additionally 

includes the passive joint Jacobian 
q

J  (
q

n  is the passive 

joint number). Advantages of this approach and its ability to 

produce singular stiffness matrices were confirmed by a 

number of examples, but explicit analytical solution was not 

presented. Hence, this work concentrates on analytical 

computations of the stiffness matrix and also on influence of 

the passive joints on particular elements of 
C

K . 

It is also worth mentioning that some previous works [36] 

propose (or at least discuss) a trivial solution of the 

considered problem, which deals with a straightforward 

modification of the matrix 
θ

K ,  in accordance with the 

passive joint type and geometry (some rows and colons are 

simply set to zero). However, as it will be shown below, this 

straightforward approach gives true results if (and only if) 

the matrix 
θ

K is diagonal, but it is not valid in general case 

where there is a coupling between different types of the 

elementary virtual springs presented by non-diagonal 

coefficients. 

The remainder of this paper is organized as follows. 

Section 2 presents a simple motivating example that 

confirms the problem non-triviality. Then, Sections 3 and 4 

propose relevant analytical solutions for a serial kinematic 

chain and a parallel robot respectively. Section 5 focuses on 

computational issues and proposes recursive procedure and a 

set of corresponding analytical rules. Section 6 contains 

application examples that demonstrate the developed 

technique advantages. And finally, Section 7 summarizes the 

main results and gives prospective for future work. 

 
1 It is important to distinguish the conventional kinematic Jacobian J , 

which is computed with respect to actuated coordinates and may be both 

singular and non-singular,  and the Jacobian 
θ

J  that is computed with 

respect to the virtual springs coordinates and is always non-singular. 

Besides, they differ in sizes, which for a standard serial 6-d.o.f. manipulator 

are respectively 6x6 and 6 36 . 

II.  MOTIVATING EXAMPLE 

Let us present first a simple example that demonstrates 

non-trivial transformation of the stiffness matrix due to the 

presence of passive joints. For the purpose of simplicity, let 

us limit our study to 2D Cartesian space and consider a 

single manipulator link, which is assumed to be fixed at the 

left end. It is also assumed that the external loading (the 

forces ,
yx

F F  and the torque 
z

M ) is applied to the right end; 

either directly or via a passive joint.  

Under these assumptions, the elastostatic properties of the 

link can be described by a symmetrical stiffness matrix 

ij
K 

 
K  of size 3 3  and its potential energy due to 

elastic deformations (linear deflections ,x y   and angular 

deflection  ) may be expressed as 

 

   

11 12 13

21 22 23

31 32 33

, , · · ·
1

2

K K K x

x y x y K K K y

K K K

E



      



   

   

   

      

  (1) 

 

If the link is equipped with a passive joint, the energy of 

this mechanical system (link with passive joint) must be 

minimised with respect to the joint variable. For instance, in 

the case of the rotational passive joint 
z

R  allowing free 

rotation around the z-axis at the reference point, the potential 

energy should be rewritten as 

 

   mi, , ,n
p

x y E yE x


      (2) 

 

and the passive joint variable   may be expressed via the 

remaining coordinates as 
13 23 33

( ) /K x K y K      . 

Then, after relevant transformations and computations of the 

second-order derivatives  

 
2 2

11 12 3

2 2

3

2
/ , / , ... /

p p

p p

p

p
K E x K E x y K E            (3) 

 

the desired stiffness matrix of links with passive joint may be 

expressed as 

 

13 31 32 13

11 12

33 33

23 31 23 32

21 22

33 33

· ·
0

· ·
0

0 0 0

p

K K

K K

K

K K
K K

K

K

K K
K K

K

 



 

 

 

 

 

 

 















K  (4) 

This expression clearly shows that, if the matrix K  is 

non-diagonal, a trivial transformation that was proposed in 

some previous works (i.e., simple setting to zero of the third 

raw and column) does not produce a truthful result. 

Moreover, the elements of the upper-left 2 2  block must be 



  

modified taking into account the elements of K  that are 

located outside of this block. This conclusion motivates 

development of a general methodology of the stiffness 

matrix transformation, which is presented below. 

III. PASSIVE JOINTS IN A SERIAL CHAIN 

In contrast to conventional serial manipulators, whose 

kinematics does not include passive joints and assures full 

controllability of the end-effector, parallel manipulators 

include a number of under-actuated serial chains that are 

mutually constrained by special connection to the base and to 

the end-platform. Let us derive an analytical expression for 

the stiffness matrix of such kinematic chain taking into 

account influence of the passive joints. 

The kinematic chain under study (Fig.1) consists of a 

fixed base, a series of flexible links, a moving platform, and 

a number of actuated or passive joints separating these 

elements. Following the methodology proposed in our 

previous work [27], a relevant VJM model may be presented 

as a sequence of rigid links separated by passive joints and 

six-dimensional virtual springs describing elasticity of the 

links and actuators. For this VJM representation, the direct 

kinematics is defined by a product of homogeneous 

transformations that after extraction of the end-platform 

position and orientation is transformed into the vector 

function  

 

Fig. 1.  The VJM model of a general serial chain  

(Ps – passive joint, Ac – actuated joint) 

 

( , )t g q θ  (5) 

 

where the vector T T T
( , )t p φ  includes the position 

T
( , , )x y zp  and orientation T

( , , )
x y z

  φ  of the 

platform in Cartesian space, the vector T

1 2 nq
( , , ..., )q q qq  

contains passive joint coordinates, the vector 
T

2 nθ1
( , , ..., )  θ  collects coordinates of all virtual 

springs; 
q

n  and n


 are the sizes of q  and θ  respectively.  

It can be proved that the static equilibrium equations of 

this mechanical system may be written as  

 

θ q

T T
· · ; · 

θ
J F K θ J F 0  (6) 

 

where 
q θ

, ( , ) ( ,  )     J Jg q θ q g q θ θ  are kinematic 

Jacobians with respect to the passive and virtual joint 

coordinates respectively, F  is the external loading (force 

and torque), and 
θ

K  the aggregated stiffness matrix of the 

virtual springs. Using these equations simultaneously with 

(5) and applying the first-order linear approximation under 

assumption that corresponding values of the external force 

F  and the coordinate variations , ,  q θ t  are small 

enough, one can derive the matrix expression   

 
1

1 T

θ θ θ q

T

q

· · 






    
     
     

J K J JF t

J 0q 0
 (7) 

 

that allows obtaining the desired Cartesian stiffness matrix 

C
K  numerically. Corresponding procedure includes 

inversion of 
q q

(6 ) (6 )n n   matrix in the right-hand side 

of (7) and extracting from it the upper-left sub-matrix of the 

size 6 6  that defines a liner force-deflection relation in 

Cartesian space: 

 

C
·F K t  (8) 

 

In spite of computational simplicity, the above procedure 

is not convenient for the parametric stiffness analysis that 

usually relies on analytical expressions. To derive such 

expression for the matrix 
C

K , let us apply the blockwise  

inversion based on the Frobenius formula [37], that allows 

(after some transformations) to present the desired stiffness 

matrix as 

 

 
1

0 0 T 0 T 0

C C C q q C q q C
· · · · · ·



 K K J J K J J KK  (9) 

 

where the first term 0 1 T 1

C θ θ θ
· ·( )

 
K J K J  is the stiffness 

matrix of the corresponding serial chain without passive 

joints and the second term defines the stiffness decrease due 

to the passive joints. It is worth mentioning that this result is 

in good agreement with other relevant works [14],[38],[40] 

where 
C

K  was presented as the difference of two similar 

components but the second one was computed in a different 

way. 

Analyzing the latter expression, one can get to the 

following conclusion concerning computational singularities: 

Remark 1. The first term of the expression (9) is non-

singular if and only if 
θ

( ) 6rank J , i.e. if the VJM model of 

the chain includes at least 6 independent virtual springs. 

Remark 2. The second term of the expression (9) is non-

singular if and only if 
q q

( )rank nJ , i.e. if the VJM model 

of the chain does not include redundant passive joints. 

Remark 3. If both terms of (9) are non-singular, their 

difference produces a symmetrical stiffness matrix, which 

always singular and 
C q

( ) 6rank n K .  

Remark 4. If the matrix 0

C
K  of the chain without passive 



  

joints is symmetrical and positive-definite, the stiffness 

matrix of the chain with passive joints 
C

K  is also 

symmetrical but positive-semidefinite. 

Hence, in practice, expression (5) does not cause any 

computational difficulties and always produce a singular 

stiffness matrix of rank 
q

6 n . In analytical computations, 

the following proposition can be also useful that allows us to 

modify the original stiffness matrix 0

C
K  sequentially: 

Proposition. If the chain does not include redundant 

passive joints, expression (5) allows recursive presentation  

 

 
1

1 T T

C C C q q C q q C
; 1, 2, ...· · · · · ·

i i i i i i i i i
i



  K K K J J K J J K  (10) 

 

in which the sub-Jacobians 
q q

i
J J  are extracted from 

1 2

q q q
, , ... 

 
J J J  in arbitrary order (column-by-column, or 

by groups of columns). Here 0 1 T 1

C θ θ θ
· ·( )

 
K J K J  

Corollary. The desired stiffness matrix 
C

K  can be 

computed in 
q

n  steps, by sequential application of 

expression (6) for each single column of the Jacobian 
q

J  

(i.e. for each passive joint separately). 

These results give convenient analytical and numerical 

computational techniques that are presented in details in 

Section 6. 

 

IV. PASSIVE JOINTS IN A PARALLEL 

MANIPULATOR 

Let us consider now a parallel manipulator, which may be 

presented as a strictly parallel system of the actuated serial 

legs connecting the base and the end-platform (Fig. 2) [39]. 

Using the methodology described in previous section and 

applying it to each leg, there can be computed a set of m 

Cartesian stiffness matrices ( )

C

i
K , 1, ...,i m  expressed with 

respect to the same coordinate system but corresponding to 

different platform points. If initially the chain stiffness 

matrices were computed in local coordinate systems, their 

transformation is performed in standard way [41], as  

 
T

C C T

glob loc
  

     
   

R 0 R 0
K K

0 R 0 R
 (11) 

 

where R  is a 3 3  rotation matrix describing orientation of 

the local coordinate system with respect to the global one.  

To aggregate these matrices ( )

C

i
K , they must be also re-

computed with respect to same reference point of the 

platform. Assuming that the platform is rigid enough 

(compared to the legs), this conversion can be performed by 

extending the legs by a virtual rigid link connecting the end-

point of the leg and the reference point of the platform (see 

Fig.2 where these extensions are defined by the vectors 
i

v ).  

After such extension, an equivalent stiffness matrix of the 

leg may be expressed using relevant expression for a usual 

serial chain, i.e. as 
T 1

( ) ( ) ( )

C
· ·

i i i

v v

 

J K J , where the Jacobian ( )i

v
J  

defines differential relation between the coordinates of the i-

th virtual spring and the reference frame of the end-platform. 

Hence, the final expression for the stiffness matrix of the 

considered parallel manipulator can be written as 

 

T 1
( ) ( ) ( ) ( )

С С

1

· ·

m

m i i i

v v

i

 



 K J K J  (12) 

 

where m is the number of serial kinematic chains in the 

manipulator architecture. Besides, it is implicitly assumed 

here that all stiffness matrices (both for the legs and for the 

whole manipulator) are expressed in the same global 

coordinate system. Hence, the axes of all virtual springs are 

parallel to the axes x, y, z of this system and corresponding 

Jacobians and their inverses can be easily computed 

analytically as 

 

3 3( ) ( ) 1

3 36 6 6 6

( ) ( )
,

i ii i

v v



 

     
    
   

I v I v
J J

0 I 0 I
 (13) 

 

where 
3

I  is a identity  matrix of size 3 3 , 
i

v  is the vector 

from the leg end-point to the platform reference point (see 

Fig.2) and ( )v  is a skew-symmetric matrix corresponding 

to the vector v  : 

 

0

( ) 0

0

z y

z x

y x

v v

v v

v v

 
 

   

 
 

v  (14) 

 

Therefore, expression (12) allows explicit aggregation of 

the leg stiffness matrices with respect to any given reference 

point of the platform. It is worth mentioning that in practice, 

the matrices ( )

C

i
K  are always singular while there 

aggregation usually produce non-singular singular matrix. 

Relevant examples are presented in following sections. 

 

 

 

Fig. 2.  Typical parallel manipulator (a) and transformation of  

its VJM models (b, c) 



  

V. COMPUTATIONAL TECHNIQUES  

Explicit expressions (9), (11) derived in previous sections 

allow obtaining the Cartesian stiffness matrix instantly, for 

any Jacobian 
q

J  describing special location of the passive 

joints. However, recursive equation (10) allows essentially 

simplify the computational procedure by sequential 

modification of the original stiffness matrix 0

C
K  for each 

passive joint independently, using separate columns of 

q q1, q 2
[ , ...]J J J . Moreover, for some typical cases, relevant 

computations may be easily performed analytically. This 

section presents some useful techniques related to this 

approach. 

A.  Recursive computations: single-joint decomposition 

Let us assume that a current recursion deals with a single 

passive joint corresponding to the i-th column of the 

Jacobian 
q

J , which is denoted as 
q

i
J  and has size 6 1 . In 

this case, the matrix expression T 1

q C q
· )·(

i i i 
J K J  is reduced to 

the size of 1 1  and the matrix inversion is replaced by a 

simple scalar division. Besides, the term  
C q

·
i i

K J  has size 

6 1 , so the recursion (10) is simplified to  

 

1 T ( 1) ( ) ( ) ( )

C C

1 1i i i i i i

i i jk jk j k
or K K u u

 

 
         
     

K K u u (15) 

 

where 
C q

·
i i

i
u K J  is a 6 1  vector and T

q C q
· ·

i i i
  J K J  is a 

scalar. It can be also proved that each recursions reduces the 

rank of the stiffness matrix by 1 

 

   1

C C
1

i i
rank rank


 K K  (16) 

 

provided that the current Jacobian 
q

i
J  is independent of the 

previous ones 
1 2

q q
, ...J J  (i.e. the i-th passive joints is not 

redundant relatively to the joints 1, ..., 1i   ).  

Since in practice any combination of passive joints can be 

decomposed into elementary translational and rotational 

ones, it is enough to consider only two types of the Jacobian 

columns 
q i

J : 

 

 

 

T

tran 1 2 3

T

tran 1 2 3 1 2 3

0 0 0 ;e e e

d d d e e e





J

J

 (17) 

 

where the unit vector  1 2 3
e e ee , 

T
1e e  defines 

orientation of the passive joint axis (both for translational 

and rotational ones) and the vector  1 2 3
d d dd  defines 

influence of the rotational passive joints on the linear 

velocity at the reference point,  i.e.  d e r  where r  is a 

vector from the joint centre point to the reference point.  

Hence, in general case, the recursion (10) involves rather 

intricate matrix transformation, different from simple setting 

to zero a row and/or a column. Let us consider now several 

specific (but rather typical) cases where the transformation 

rules are more simple and elegant. 

B. Analytical computations: trivial passive joints 

In practice, many parallel robots include kinematic chains 

for which the passive joint axes are collinear to the axes x, y 

or z of the Cartesian coordinate system. For such 

architectures, the vector-columns of the Jacobian 
q

J  include 

a number of zero elements, so the expressions (13) can be 

essentially simplified. Let us consider a set of trivial cases 

where 
q

i
J  are created from the columns of the identity matrix 

6 6
I : 

Corresponding passive joints will be further referred to as 

the „trivial‟ ones. It can be easily proved that they cover the 

following range of the joint geometry: 

(i) translational passive joint with arbitrary spatial 

position (but with the joint axis directed along x, y or 

z); 

(ii) rotational passive joints positioned at the reference 

point (and with the joint axis directed along x, y or z). 

Besides, it is worth to consider additional case-study 

corresponding to  

(iii) rotational passive joints shifted by a distance L with 

respect to the reference point in the direction either x, 

y or z (and with the joint axis directed along x, y or z), 

which will be further referred to as the „quasi-trivial‟ and 

gives the Jacobian columns of the following structure: 
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q q q

0

0

0
, ,

1 0 0

0 1 0

0 0 1

x x

y y

z z

d d

d d

d d
  

     

     

     

     
       

     

     

     
          

J J J  (18) 

 

where , ,
x y z

d d d  denote the elements of the vector d , which 

are equal here either L  or 0. 

For the trivial passive joints, assuming that 
( )

q

p
J denotes 

the vector-column with a single non-zero element in the p-th 

position, a straightforward substitution yields 
( )i

j jp
u K ; 

( )i

pp
K  . So, the recursive expression (9) for the 

Cartesian stiffness matrix is simplified to  
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i i
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jk jk i

pp

K K
K K

K


 

         
  

 (19) 

 

that is very similar to those presented in the motivating 

example (see Section 2). Also, here the p–th row and column 



  

of the matrix 1i

C


K  become equal to zero 

 
( 1) ( 1)

0; 0; 1, ...6
i i

pk kp
K K p

 
     (20) 

 

and the recursive computations are easily performed 

analytically. 

 

VI. APPLICATION EXAMPLES  

Let apply now the developed technique to computing of 

the stiffness matrix for two versions of a general Stewart-

Gough platform presented in Fig. 3 [42]-[44]. It is assumed 

that in both cases the manipulator base and the moving plate 

(platform) are connected by six similar extensible legs 

(Fig. 4) but their spatial arrangements are different: 

Case A: the legs are regularly connected to the base and 

platform, with the same angular distance 60° (it is obviously 

a degenerate design, where the stiffness matrix should be 

singular) 

Case B: the legs are connected to the base and platform 

in three pairs, with the angular distance of 120° between the 

mounting points (it is a classical design of Stewart-Gough 

where the stiffness matrix should be non-singular). 

For both designs, the original leg stiffness (i.e. without the 

passive joints) can be described by the sparse matrix 

corresponding to the symmetric beam. Further, to take into 

account the passive joints influence, the procedure (10) 

should be applied recursively, using the elementary 

Jacobians  

 

 

 

Fig. 3 Geometry of the Stewart-Gough platforms under study 

 

 

 

Fig. 4.  Geometry of the manipulator leg and its VJM model 
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where L is the leg length. It is obvious that, due to trivial 

structure of 
q

i
J , the recursive computations can be easily 

performed analytically.  

Hence, in final form, the derived matrix includes only the 

traction/compression term (and not bending, torsion, etc.) 

what perfectly agrees with other results on Stewart-Gough 

platforms.  

Further, to be applied to each leg, the obtained matrix 

must be transformed from the local to the global coordinate 

system. In this specific case, due to the special structure of 
5

C
K , relevant transformation [24][41] 
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K
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 (22) 

 

expressed via the orthogonal rotation matrix 
i

R describing 

orientation of the i-th local coordinate system with respect to 

the global one, is easily reduced to  
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   

  

u u 0
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where 0

i
u  is the unit vector directed along the leg axis 

i
u  

(see Fig.2). Besides, before aggregation, the stiffness 

matrices of separate legs 
iC

K must be re-computed with 

respect to same reference point in accordance with 

expressions (12), (13) which yields 
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 (24) 

 

where 
i

v  is the vector from the leg end-point to the platform 

reference point (see Fig.2). So, after relevant 

transformations, one can get the final expression of the 

manipulator stiffness matrix    
0
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where the vector 
i

u , 
i

v  describing spatial locations of the 

legs and computed via the direct kinematics, and 0

i i
v u  

denotes the vector product which is referred to the 

corresponding skew-symmetric matrix). 

The derived equation was applied to both case studies, 

assuming that the manipulators are in their “home” 

configurations when the platform is parallel to the base and it 

is symmetrical with respect to the vertical axis. 

Corresponding expressions for the leg vectors are 
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where for the case A 

 0, 60 , 120 , 180 , 240 , 300
i i

        , and for the case B 

 0, 120 , 120 , 240 , 240 , 360
i

       ; 

 60, 60, 180 , 180 , 300 , 300
i

      , h  is the vertical 

distance between the base and the platform. Substitution of 

these vectors to the expression (25) leads to the following 

stiffness matrices 
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and 
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where R and r  denote the circle radius which comprise the 

leg connection point at the base and moving platform 

respectively, 
a

d R r   ; / 2
b

d R r  ; L  is the leg length, 

and the superscripts „A‟ and „B‟ define the relevant case 

study. As follows from these expressions, in "home" 

location, the matrix ( )

C

A
K  is singular and allows “free” 

rotation of the end-platform around the vertical axis. In 

contrast, for the same location, the matrix ( )

C

B
K  is non-

singular and the manipulator resists to all external 

forces/torques applied to the platform. These results are in 

good agreement with previous research on the Stewart-

Gough platforms and confirm efficiency of the developed 

computational technique for manipulator stiffness modeling. 

VII. CONCLUSION  

For robotic manipulators with passive joints, the stiffness 

matrices of separate kinematic chains are singular. So, the 

most of existing stiffness analysis methods can not be 

applied directly and this problem is usually solved by 

elimination the passive joint coordinates via geometrical 

constraints describing the manipulator assembly. However, 

such techniques degenerate if the number of passive joints is 

redundant and/or the resulting matrix is inherently singular. 

To deal with such architectures in more efficient way, this 

paper proposes an analytical approach that allows obtaining 

both singular and non-singular stiffness matrices and which 

is appropriate for a general case, independent of the type and 

spatial location of the passive joints. The developed 

approach is based on the extension of the virtual-joint 

modelling technique and includes two basic steps which 

sequentially produce stiffness matrices of separate chains 

and then aggregate them in a common matrix. 

In contrast to previous works, the desired stiffness matrix 

is presented in an explicit analytical form, as a sum of two 

terms. The first of them has traditional structure and 

describes manipulator elasticity due to the link/joint 

flexibility, while the second one directly takes into account 

influence of the passive joints. It is proved that, for each 

chain, the rank-deficiency of the resulting matrix is equal to 

the number of independent passive joints. To simplify 

analytical computations, it is proposed a recursive procedure 

that sequentially modifies the original matrix in accordance 

with the geometry of each passive joint. For the trivial cases, 

for which the passive joint axes are collinear to the axes of 

the base coordinate system, this modification is presented in 

the form of simple analytical rules. 

Advantages of the developed technique are illustrated by 

application examples that deal with stiffness modelling of 

two Stewart-Gough platforms. They demonstrate its ability 

to produce both singular and non-singular stiffness matrices, 

and also show its feasibility for analytical computations. 

These examples give also some prospective for future work 

that include development of the dedicated techniques for the 

stiffness matrix aggregation in the case of non-rigid platform 

and an extension of these results for the case of manipulators 

with external loading. 
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