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Introduction.

The spectrum of the Laplace–Beltrami operator for a compact Riemann surface
is discrete, but this is no longer the case when M is non-compact. For example,
when we remove one point from M , there arises a continuous part in the spectrum
whose spectral measure is described by an Eisenstein series. The study of the limit-
ing behaviour of the spectrum of the Laplace–Beltrami operator for a degenerating
family of Riemann surfaces with finite area hyperbolic metric has been used to ex-
plain this phenomenon (see for example [27], [17], [14]). The present paper has one
of its motivations in the general study of the approximation of Eisenstein series (see
for example the question of Ji in [17], p. 308, line 15, concerning the approximation
of Eisenstein series by suitable eigenfunctions of a degenerating family of hyperbolic
Riemann surfaces). We hope to surround it via hyperbolic Eisenstein series (for
results on degenerating Eisenstein series, see, for example [22], [23], [8], [9]). This
article is organized as follows. In section 1 we provide the necessary background on
geometrically finite hyperbolic surfaces of infinite volume. In section 2 we recall the
definition and verify the convergence of hyperbolic Eisenstein series in the infinite
volume case, like suggested in [20]. In section 3 we review the spectral decompo-
sition for a geometrically finite hyperbolic surface of infinite volume. We obtain
the analytic continuation of hyperbolic Eisenstein series and then the fact that this
permits realizing a harmonic dual form to a simple closed geodesic on a geometri-
cally finite hyperbolic surface of infinite volume (Theorem 3.1). In a similar way,
in section 4, we realize a harmonic dual form to an infinite geodesic joining a pair
of punctures (Theorem 4.2). Moreover in Section 5 we generalize the definition of
hyperbolic Eisenstein series to the case of q−forms (see Section 5 formula (18)).
After we study the limiting behavior of these q−forms on a degenerating family
of geometrically finite hyperbolic surfaces of infinite volume (see Theorem 5.2 and
Theorem 5.3). In particular we obtain a degeneration of hyperbolic Eisenstein se-
ries to horocyclic ones (Theorem 5.3(2)). Since this new result is at the heart of
our motivation, we will be a little more precise.

Main Theorem
Let (Sl)l be a degenerating family of Riemann surfaces with infinite area hyper-

bolic metrics, Sl having a funnel Fl whose boundary geodesic is denoted cl. We
denote by Ωcl = Ωl the hyperbolic Eisenstein series of the Kudla–Millson theory
associated to the pinching geodesic cl (see Section 2), S0 = Γ\H the component of
the limiting surface containing the cusp∞ of stabilizer Γ∞ (see Section 5.1) and E∞
the horocyclic Eisenstein series associated to the limiting cusp defined, for Re s > 0
by E∞(s+ 1, z) =

∑
Γ∞\Γ Im(σz)s d(σz) (see (12)). For s ∈ {Re s > −1/2}, except
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possibly a finite number of points in (−1/2, 0), the family of C∞ 1-forms on Sl de-
pending meromorphically on s, 1

ls+1 Ωl(s, .) converges uniformly on compact subsets

of S0 to
Γ(1+ s

2 )
Γ( 1

2 )Γ( 1
2 + s

2 )
Im E∞(s + 1, .); where Im E∞(s + 1, .) is to be understood as

Im E∞(s+ 1, z) =
1

2i
(
∑

Γ∞\Γ

Im(σz)s d(σz)−
∑

Γ∞\Γ

Im(σz)s d(σz)).

1. Preliminary definitions

Let us recall the standard analytic and geometric notations which will be used.
In this paper, a surface is a connected orientable two-dimensional manifold, with-
out boundary unless otherwise specified. We denote by H the hyperbolic upper
half-plane endowed with its standard metric of constant Gaussian curvature −1. A
topologically finite (i.e. finite Euler characteristic) surface is a surface homeomor-
phic to a compact surface with finitely many points excised and a geometrically
finite hyperbolic surface M is a topologically finite, complete Riemann surface of
constant curvature -1. We will require that M be of infinite volume, i.e. there exists
a finitely generated, torsion free, discrete subgroup Γ of PSL(2,R), unique up to
conjugation, such that M is the quotient of H by Γ acting as Möbius transforma-
tions, Γ is a Fuchsian group of the second kind, and Γ has no elliptic elements. The
group Γ admits a finite sided polygonal fundamental domain in H. We recall now
the description of the fundamental domain of M = Γ\H (see [1]). Let L(Γ) be the
limit set of Γ, that is the set of limit points (in the Riemann sphere topology) of
all orbits Γz for z ∈ H and O(Γ) = R∪{∞}−L(Γ). As L(Γ) is closed in R∪{∞},
O(Γ) is open and so can be written as a countable union O(Γ) = ∪α∈AOα where
the Oα are disjoint open intervals in R∪{∞}. Now let Γα = {γ ∈ Γ, γ(Oα) = Oα}.
This is an elementary hyperbolic subgroup of Γ. The fixed points of Γα are exactly
the end-points of Oα. There is a finite subset {α(1), α(2), ..., α(nf )} ⊂ A such that
for α ∈ A, Oα is conjugate to precisely one Oα(j) (1 ≤ j ≤ nf ). Let λα be the
half-circle, lying in H, joining the end-points of Oα. Let ∆α be the region in H
bounded by Oα and λα. The ∆α (α ∈ A) are mutually disjoint.
Let P be the set of parabolic vertices of Γ, and for p ∈ P , let Γp be the parabolic
subgroup of Γ fixing p. There is a finite subset {p(1), p(2), ..., p(nc)} ⊂ P such that
Γp is conjugate to precisely one Γp(j) (1 ≤ j ≤ nc). A circle lying in H and tangent
to ∂H at p is called a horocycle at p. We can construct an open disc Cp determined
by a horocycle at p ∈ P such that

(i) if p, q ∈ P, p 6= q, then Cp ∩ Cq = ∅,
(ii) γ(Cp) = Cγ(p) (γ ∈ Γ),

(iii) Cp ∩∆α = ∅ (p ∈ P, α ∈ A).

If we consider the set H − (
⋃
p∈P Cp ∪

⋃
α∈A ∆α), we see that it is invariant under

Γ. We can find a finite-sided fundamental domain D for the action of Γ on this set;
D is relatively compact in H.

Proposition 1.1. There is a fundamental domain D for Γ of the form

D = K∗ ∪ ∪nfj=1Dα(j) ∪nck=1 D
∗
p(k)
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where
1) K∗ is relatively compact in H,
2) Dα(j) is a standard fundamental domain of Γα(j) on ∆α(j),
3) D∗p(k) is a standard fundamental domain for Γp(k) on Cp(k).

We should note that nf 6= 0 if and only if Γ is of the second kind.

The Nielsen region of the group Γ is the set Ñ = H − (∪α∈A∆α), the truncated

Nielsen region of Γ is K̃ = Ñ − (∪p∈PCp), K = Γ\K̃ is called the compact core
of M . So the surface M = Γ\H can be decomposed into a finite area surface
with geodesic boundary N , called the Nielsen region, on which infinite area ends Fi
are glued: the funnels. The Nielsen region N is itself decomposed into a compact
surface K with geodesic and horocyclic boundary on which non compact, finite area
ends Ci are glued: the cusps. We have M = K ∪ C ∪ F , where C = C1 ∪ ... ∪ Cnc
and F = F1 ∪ ... ∪ Fnf .

A hyperbolic transformation T ∈ PSL(2,R) generates a cyclic hyperbolic group
〈T 〉. The quotient Cl = 〈T 〉\H is a hyperbolic cylinder of diameter l = l(T ). By
conjugation, we can identify the generator T with the map z 7→ elz, and we define
Γl to be the corresponding cyclic group. A natural fundamental domain for Γl
would be the region Fl = {z ∈ H, 1 ≤ |z| ≤ el}. The y−axis is the lift of the only
simple closed geodesic on Cl, whose length is l. The standard funnel of diameter
l > 0, Fl, is the half hyperbolic cylinder Γl\H, Fl = (R+)r × (R/Z)x with the
metric ds2 = dr2 + l2 cosh2(r)dx2.
We can always conjugate a parabolic cyclic group 〈T 〉 to the group Γ∞ generated
by z 7→ z + 1, so the parabolic cylinder is unique up to isometry. A natural
fundamental domain for Γ∞ is F∞ = {0 ≤ Re z ≤ 1} ⊂ H. The standard cusp
C∞ is the half parabolic cylinder Γ∞\H, C∞ = ([0,∞[)r × (R/Z)x with the metric
ds2 = dr2+e−2rdx2. The funnels Fi and the cusps Ci are isometric to the preceding
standard models. We define the function r as the distance to the compact core K
and the function ρ by

(1) ρ(r) =

{
2e−r in F
e−r in C

,

with ρ extended to a smooth non vanishing function inside K in some arbitrary
way. We will adopt (ρ, t) ∈ (0, 2]×R/ljZ as the standard coordinates for the funnel
Fj , where t is the arc length around the central geodesic at ρ = 2.
For the cusp, our standard coordinates (ρ, t) ∈ (0, 1]×R/Z are based on the model
defined by the cyclic group Γ∞. The cusp boundary is y = 1, so that y = er and
ρ = 1/y. We set t ≡ x (mod Z).

2. Hyperbolic Eisenstein series on a geometrically finite hyperbolic
surface of infinite volume.

2.1. Return to the definition of Kudla and Millson of a hyperbolic Eisen-
stein series. In the following, M will denote an arbitrary Riemann surface and
L2(M), the Hilbert space of square integrable 1-forms with inner product

(w1, w2) =
1

2

∫
M

w1 ∧ ∗w2 ,

and corresponding norm ||.||L2 . The pointwise norm of a 1-form w is defined by
w ∧ ∗w = ||w||2 ∗ 1 where ∗1 is the volume form.
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Let c be a simple closed curve on M . We may associate with c a real smooth closed
differential nc with compact support such that

(2)

∫
c

ω =

∫
M

ω ∧ nc ,

for all closed differentials ω. Since every cycle c on M is a finite sum of cycles
corresponding to simple closed curves, we conclude that to each such c, we can
associate a real closed differential nc with compact support such that (2) holds.
Let a and b be two cycles on the Riemann surface M . We define the intersection
number of a and b by

a.b =

∫
M

na ∧ nb .

In [20], Kudla and Millson construct the harmonic 1-form dual to a simple closed
geodesic on a hyperbolic surface of finite volume M in terms of Eisenstein series.
Let us recall the definition:

Definition 2.1. Let η be a simple closed geodesic or an infinite geodesic joining p
and q. A 1-form α is dual to η if for any closed 1-form ω with compact support,∫

M

ω ∧ α =

∫
η

ω .

Or, equivalently, for any closed oriented cycle c′,

(3)

∫
c′
α = η . c′.

Kudla and Millson construct a meromorphic family of forms on M , called the
hyperbolic Eisenstein series associated to an oriented simple closed geodesic c. Let
c̃ be a component of the inverse image of c in the covering H →M and Γ1 the stabi-
lizer of c̃ in Γ. The hyperbolic Eisenstein series are expressed in Fermi coordinates
in the following way for Re s > 0:

(4) Ωc(s, z) = Ω(s, z) =
1

k(s)

∑
Γ1\Γ

γ∗
dx2

(coshx2)s+1
, k(s) :=

Γ
(

1
2

)
Γ
(

1
2 + s

2

)
Γ
(
1 + s

2

) .

By applying an element of SL(2,R), we may assume that c̃ is the y−axis in H and
that Γ1 is generated by γ1 : z 7→ elz. The Fermi coordinates (x1, x2) associated to
c̃ are related to Euclidean polar coordinates by

r = ex1 ,

sin θ =
1

coshx2
.

We obtain

(5) Ω(s, z) =
1

k(s)

∑
Γ1\Γ

γ∗(sin θ)s d θ.

Using the following equalities

Im γz = |γz| sin θ(γz) = |γ′z| Im z,

d log
γz

γz
= 2idθ(γz) ,



5

we find

(6) Ω(s, z) =
1

2ik(s)
(Im z)s

∑
Γ1\Γ

(
γ′z

|γz|

)s
γ′z

γz
dz −

(
γ′z

|γz|

)s
γ′z

γz
dz̄

 .

We denote, with a little misuse of notation, to simplify Ω(s, z) = Im(Θ(s, z))
with

(7) Θ(s, z) =
1

k(s)

∑
Γ1\Γ

γ∗
(

ys

z|z|s
dz

)
= iΩ(s, z)− ∗Ω(s, z),

keeping in mind that the complex conjugation is apply on z and “not on s”.
At the end of their paper, they make the remark that “it is also interesting to

consider the infinite volume case.”

2.2. The infinite volume case. We are going to verify that this definition is
still meaningful in the case of a geometrically finite hyperbolic surface of infinite
volume, M = Γ\H, Γ being a Fuchsian group of the second kind without elliptic
elements. We identify M locally with its universal cover H. By d(z, w) we denote
the hyperbolic distance from z ∈ H to w ∈ H. For z0 ∈ H and ε > 0, by
B(z0, ε) ⊂ H we denote the hyperbolic metric ball centered at z0 with radius ε.

Proposition 2.1. The hyperbolic Eisenstein series Ω(s, z) converges for Re s > 0,
uniformly on compact subsets of H, is bounded on M , and represents a C∞ closed
form which is dual to c. Moreover, it is an analytic function of s in Re s > 0.

The proof in the infinite volume case is as straightforward as in the finite volume
case ([20], [10]), but for the convenience of the reader we give some details.

Proof. Recall first that if K is a compact subset of the fundamental domain D of
Γ, then there exists η > 0 such that for all z0 ∈ K, the balls (B(γz0, η))γ∈Γ1\Γ are

disjoint.
For a fundamental domain of Γ1, let us choose D1 = {z ∈ H : 1 ≤ |z| ≤ β}.

After passing to ordinary Euclidean polar coordinates (r, θ), with σ = Re s, where
||Ω|| denotes the pointwise norm of Ω, we obtain

||Ω(s, z)|| ≤ 1

|k(s)|
∑
Γ1\Γ

1

(chx2(γz))σ+1

≤ 1

|k(s)|
∑
Γ1\Γ

(y
r

)σ+1

(γz) ≤ 1

|k(s)|
∑

[γ]∈Γ1\Γ,γz∈D1

yσ+1(γz).

Now ys is an eigenfunction of all the invariant integral operators on H. Let k(z, z′)
be the point-pair invariant defined by k(z, z′) = 1 or 0 according as the distance
between z and z′ is less or no less than η. Then there exists a Λη independent of
z0 such that ∫

B(z0,η)

yσ
dxdy

y2
=

∫
H

k(z0, z)y
σ dxdy

y2

and ∫
B(z0,η)

yσ
dxdy

y2
= Ληy(z0)σ .
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This is a particular case of a more general result we will need further on (see
Proposition 5.2).
We write, as in [20], R(T1, T2) = {P ∈ D1 : T1 < x2(P ) < T2}. So for T > 2η,

1

|k(s)|
∑

γ∈Γ1\Γ,γz 6∈R(−T,T )

1

(ch(x2(γz)))σ+1
≤ 1

|k(s)|
∑

[γ]∈Γ1\Γ,γz∈D1\R(−T,T )

yσ+1(γz).

We need the following.

Lemma 2.1. Let γ ∈ Γ1\Γ, z, ζ ∈ H such that for γz 6∈ R(−T, T ), γζ ∈ B(γz, η).
Then γζ 6∈ R(−T + 2η, T − 2η).

Proof. Let π : H → c̃ be the orthogonal projection on c̃. As π is 1-Lipschitzian, we
have for the hyperbolic distance d(πγz, πγζ) ≤ d(γz, γζ) ≤ η. If x2(γz) ≥ T ,

T ≤ d(γz, πγz) ≤ d(γz, γζ) + d(γζ, πγζ) + d(πγz, πγζ) .

Then

T − 2η ≤ d(γζ, πγζ) .

�

Then ∑
γ∈Γ1\Γ,γz 6∈R(−T,T )

yσ+1(γz) =
1

Λη

∑
γ∈Γ1\Γ,γz 6∈R(−T,T )

∫
B(γz,η)

yσ+1 dxdy

y2

≤ 1

Λη

∫
Rc(−T+2η,T−2η)

yσ+1 dxdy

y2

where Rc(−T + 2η, T − 2η) is the complement in D1 of R(−T + 2η, T − 2η). Note

that if γz 6∈ R(−T, T ), then y(γz) ≤ β

chT
, so

∑
γ∈Γ1\Γ,γz 6∈R(−T,T )

yσ+1(γz) ≤ β

Λη

∫ β
ch(T−2η)

0

yσ−1 dy

≤ β

Λησ

(
β

ch(T − 2η)

)σ
.

From this, there follows the uniform convergence of Ω(s, z) on compact subsets of
H, uniformly on compact subsets of the half-plane Re s > 0.
We next show that Ω(s, z) is bounded on D. For this we use a very useful funda-
mental lemma (see [15], p. 178, [12], pp. 27, 214 note 30):

Proposition 2.2. Suppose that q > 1. For any Fuchsian group Γ, there exists a
C(q,Γ) such that for all z ∈ H,∑

γ∈Γ

y(γz)q

[1 + |γz|]2q
≤ C(q,Γ).

The constant C(q,Γ) depends only on q and Γ.
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Proof. Let z ∈ H. Then there exists a system of representatives S of Γ1\Γ (de-
pending on z) such that for all γ ∈ S, |γz| ≤ β. In effect, let (δ1, ..., δn, ...) be
a system of representatives of Γ1\Γ, then for all n there exists pn ∈ Z such that
γpn1 δn(z) ∈ D1.

Then

∑
Γ1\Γ

y(γz)σ+1

(1 + β)2(σ+1)
≤

∑
Γ1\Γ

y(γz)σ+1

(1 + |γz|)2(σ+1)

≤
∑

Γ

y(γz)σ+1

(1 + |γz|)2(σ+1)

≤ C(σ + 1,Γ)

and the result follows.
�

Remark 2.1. The constant C(q,Γ) depends solely on q and D where D is a tiny
circular disk such that:
D ∪ ∂D ⊂ H and T (D) ∩ D = ∅ for all T ∈ Γ− {I}.

The fact that Ω(s, z) is dual to c follows straightforwardly from the construction
of Kudla and Millson. �

3. Spectral decomposition and analytic continuation.

The aim is to realize the injection H1
c → H1, where H1

c is the first de Rham
cohomology group with compact support of M and H1 is the space of L2 harmonic
1-forms of M . Recall that in our context, dimH1 =∞ (see [2], p. 27).
We are going to prove, as in [20], that the hyperbolic Eisenstein series have an
analytic continuation. The essential difference from the finite volume case is the
spectral decomposition of L2(M).

3.1. Spectral theory. For any non-compact geometrically finite hyperbolic sur-
face M , the essential spectrum of the (positive) Laplacian ∆M defined by the hy-
perbolic metric on M (the Laplacian on functions) is [1/4,∞) and this is absolutely
continuous. The discrete spectrum consists of finitely many eigenvalues in the range
(0, 1/4). In the finite-volume case, one may also have embedded eigenvalues in the
continuous spectrum, but these do not occur for infinite volume surfaces. Then if
M has infinite volume, the discrete spectrum of ∆M is finite (possibly empty). The
exponent of convergence δ of a Fuchsian group Γ is defined to be the abscissa of
convergence of the Dirichlet series

δ = inf{s > 0,
∑
T∈Γ

e−sd(z,Tw) <∞}

for some z, w ∈ H, where d(z, w) again denotes the hyperbolic distance from z ∈ H
to w ∈ H.

Let Γ be a Fuchsian group of the second kind and L(Γ) be its limit set. Then
0 < δ < 1 with δ > 1/2 if Γ has parabolic elements. Patterson and Sullivan showed
that δ is the Hausdorff dimension of the limit set when Γ is geometrically finite.
Furthermore, if δ > 1/2, then δ(1 − δ) is the lowest eigenvalue of the Laplacian
∆M . The connection with spectral theory was later extended to the case δ ≤ 1/2
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by Patterson. In this case, the discrete spectrum of ∆M is empty and δ is the
location of the first resonance. For a detailed account of the spectral theory of
infinite area surfaces, we refer the reader to [1].

3.2. Tensors and automorphic forms. This section introduces the notations
used in the following subsection 3.3 and Section 5. Let M be a geometrically finite
hyperbolic surface. Let z be a local conformal coordinate and ds2 = ρ|dz|2 the
Poincaré metric. Let ωM = T ∗M be the holomorphic cotangent bundle of M and
for any integers n and m, let Er,s(M,ωnM ⊗ ωmM ) be the vector space of smooth
differential forms of type (r, s) on M with values in the line bundle ωnM ⊗ ωmM . For
an integer q, a q−form (or q−differential) is an element of T q = E0,0(M,ωqM ), the
space of tensors of type q on M , written locally as f(z)(dz)q. M may be realized
as Γ\H, where H is the upper half-plane and Γ a discrete subgroup of PSL(2,R).
The hyperbolic metric on M induces the natural scalar product on T q:

(ϕ,ψ) =

∫
Γ\H

ϕ(z)ψ(z)y2q−2 dxdy .

Let Hq be the L2−closure of T q with respect to this scalar product.
We recall now the link between q−forms and automorphic forms of weight2 2q,

also called q−automorphic forms for the following reason. As before, we make use
of the uniformization theorem.

Using the notations of [11] and [7], set

jγ(z) =
(cz + d)2

|cz + d|2
=
cz + d

cz̄ + d
=

(
γ′z

|γ′z|

)−1

γ =

(
a b
c d

)
∈ Γ.

Let Fq be the space of all functions f : H → C with

f(γz) = jγ(z)qf(z), γ ∈ Γ ,

and if D = Γ\H is a fundamental domain for Γ, define the Hilbert space Hq =

{f ∈ Fq, 〈f, f〉D =
∫
D |f(z)|2 dµ(z) <∞} with areal measure dµ(z) = dxdy

y2 and the

inner product

(8) 〈f, g〉 =

∫
D
f(z)g(z)dµ(z).

An element in Hq is called an automorphic form of weight 2q. Hq is isometric to
Hq through the correspondence

(9) I : Hq 3 f(dz)q 7→ yqf ∈ Hq.

Maass introduced the differential operators

Lq = (z̄ − z) ∂∂z̄ − q : Fq → Fq−1

Kq = (z − z̄) ∂∂z + q : Fq → Fq+1

We also have

Lq = −2iy1+q ∂

∂z̄
y−q = K−q,

Kq = 2iy1−q ∂

∂z
yq = L−q.

2Some authors refer to them as weight q or −2q
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We write

−Lq+1Kq = −∆2q + q(q + 1),

−Kq−1Lq = −∆2q + q(q − 1)

with

∆2q = y2(
∂2

∂x2 +
∂2

∂y2 )− 2iqy
∂

∂x
.

These second order differential operators are self-adjoint on Hq.
Now, the metric and complex structure determine a covariant derivative

∇ = ∇q ⊕∇q : E0,0(M,ωqM ) −→ E1,0(M,ωqM )⊕ E0,1(M,ωqM )

on the line bundle ωqM . With the identifications E1,0(M,ωqM ) ∼= T q+1 and E0,1(M,ωqM ) ∼=
T q−1, we have
∇q : T q → T q+1, ∇q : T q → T q−1.
Under the correspondence Ik, Ik : Hk 3 f(dz)k 7→ ykf ∈ Hk, k = q − 1, q, q + 1

the operators ∇q, ∇q go over to the Maass operators according to the commutative
diagram

Hq−1 ∇q← Hq
∇q→ Hq+1

↓ ↓ ↓
Hq−1

Lq← Hq
Kq→ Hq+1

and so are given locally by

∇q = I−1
q+1KqIq = 2iρq∂ρ−q and ∇q = I−1

q−1LqIq = −2iρ−1∂̄ ,

where ∂ = ∂
∂z and ∂̄ = ∂

∂z̄ .

The Laplacians ∆+
q and ∆−q on T q are defined by ∆+

q = −∇q+1∇q = −I−1
q Lq+1Iq+1I

−1
q+1KqIq =

I−1
q (−Lq+1Kq)Iq, ∆−q = −∇q−1∇q = I−1

q (−Kq−1Lq)Iq and then the isometry I

conjugates ∆+
q with −∆2q+q(q+1) and ∆−q with −∆2q+q(q−1). Thus ∆M = ∆±0

is the Laplacian on functions. The ∆±q are non-negative self-adjoint operators.
We are first interested in the case q = 1. Let ∆Diff be the (positive) Laplacian

on 1-forms on a geometrically finite hyperbolic surface, ∆Diff = dδ+ δd, δ = −∗ d∗
with ∗ the Hodge operator. In the following, we write ∆Diff = ∆. If ω is a 1-form
in the holomorphic cotangent bundle, ω = f(z) dz, then we define its image by the

isometry I to be I(w) = I(f dz) = yf(z) = f̃(z). We have y∆(f dz) = −(∆2f̃)dz,
in other words, in the preceding notation, ∆ = ∆−1 .

3.3. Generalized eigenfunctions. We are going to give the spectral expansion
in eigenforms of ∆; we use [7], [24], [1]. With the notation of Section 1, for a
finitely generated group of the second kind, for each cusp and for each funnel of
the quotient there is a corresponding Eisenstein series, which is what we are going
to develop now.

We will denote Rs,q the resolvent operator defined for Re s > 1/2, s /∈ [1/2, 1]
by Rs,q = (∆2q + s(1− s))−1.

Proposition 3.1. For an integer q, for Re s > δ, Gs(z, w, q), the kernel of the
resolvent Rs,q, for the self-adjoint operator ∆2q, acting on the Hilbert space Hq of
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automorphic forms of weight 2q, is given by the convergent series

Gs(z, w, q) =
∑
γ∈Γ

jγ(w)qgs(z, γw, q)

with

gs(z, w, q) = −
(
w − z̄
z − w̄

)q
Γ(s+ q)Γ(s− q)

4πΓ(2s)
cosh−2s(d(z, w)/2)F (s+q, s−q, 2s; cosh−2(d(z, w)/2))

and F being Gauss’s hypergeometric function.

We collect some properties we can find for example in [24], vol I, p. 100, with [1],
Chapters 6 and 7. The resolvent kernel Gs(z, w, q) has a meromorphic continuation
to all of C. Following these references, we define generalized eigenfunctions.

For the funnel case, we identify z′ with the standard coordinates (ρ′, t′) (see (1))

in the funnel Fj , and, with x′ = et
′
, we denote

(10) x′sEfj,q(s, z, x
′) = (1− 2s) lim

ρ′→0
ρ′
−s
Gs(z, z

′, q) ,

for j = 1, ..., nf . In the cusp Cj , with standard coordinates z′ = (ρ′, t′), we set

(11) Ecj,q(s, z) = (1− 2s) lim
ρ′→0

ρ′
1−s

Gs(z, z
′, q) ,

for j = 1, ..., nc.
We will call them respectively (standard) funnel Eisenstein series and cuspidal

Eisenstein series. The Poisson kernel is

P (z, ζ) = Im(z)/|z − ζ|2

where z ∈ H and ζ ∈ R. For b ∈ O(Γ) = R ∪ {∞} − L(Γ), define the Eisenstein
series ([24] [3])

Eb(z, s, k) =
∑
γ∈Γ

j(γ, z)kP (γ(z), b)s(γ(z), b)k ,

where j(γ, z) = γ′(z)/|γ′(z)| and (z, b) = (z̄− b)/(z− b). It converges uniformly on
compact subsets of H if Re s > δ.

Proposition 3.2. The series Eb(z, s, k) can be continued to the whole complex
plane as a meromorphic function in s.

One verifies that −∆2kEb(z, s, k) = s(1− s)Eb(z, s, k).

Remark 3.1. Thus, if δ < 1/2, then Eb(z, s, k) is analytic in a neighbourhood of
Re s = 1/2.

For the standard funnel Fl which corresponds to the region Re z ≥ 0 in the model
Cl = Γl\H, we have (see [7], p. 200)

Efl,q(s, z, x
′) = (1− 2s) lim

z′→x′
(Im z′)−sGs(z, z

′, q)

= −(1− 2s)
4s

4π

Γ(s+ q)Γ(s− q)
Γ(2s)

Ex′(z, s, q).

In the case of 1-forms we write,

Efl(s, z, x′) =
Efl,1(s, z, x′)

y
dz.

Now we point out the link between cuspidal and classical Eisenstein series.
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Remark 3.2. Recall the definition of the classical Eisenstein series. We will as-
similate the standard cusp of a parabolic point with the latter. The stabilizer of a
cusp a is an infinite cyclic group generated by a parabolic motion,

Γa = {γ ∈ Γ : γ a = a} = 〈γa〉 ,
say. There exists a σa ∈ SL2(R), called a scaling matrix of the cusp a, such that

σa∞ = a, σ−1
a γaσa =

(
1 1
0 1

)
. σa is determined up to composition with a

translation from the right. The Eisenstein series for the cusp a is then defined by

Ea(s, z) =
∑
Γa\Γ

y(σ−1
a γz)s ,

where s is a complex variable with Re s > δ.

Definition 3.1. In a similar way we define the Eisenstein series of weight 2q
associated to a cusp a as the automorphic form of weight 2q, for Re s > δ:

Ea,q(s, z) =
∑

γ∈Γa\Γ

y(σ−1
a γz)sjσ−1

a γ(z)−q =
∑

γ∈Γa\Γ

y(σ−1
a γz)s

(
(σ−1

a γ)′z

|(σ−1
a γ)′z|

)q
.

We call a horocyclic Eisenstein series the 1-form corresponding to the Eisenstein
series of weight 2 associated to a cusp a, Ea,1 and defined for Re s > 1 by

(12) Ea(s, z) =
∑

γ∈Γa\Γ

y(σ−1
a γz)s−1 d(σ−1

a γz) =
Ea,1(s, z)

y
dz .

We now verify that this corresponds to the defining formula (11), that is Eca,q =
Ea,q.

For the standard cusp, we write for Re s > δ,

Gs(z, z
′, q) =

∑
Γ∞\Γ

(
cz̄ + d

cz + d

)q
GΓ∞
s (γz, z′, q) ,

where GΓ∞
s (z, z′, q) is the resolvent kernel of the standard cusp for automorphic

forms of weight 2q. We use then [7], p. 155 (38), p. 177 for Im z′ > Im γz, p. 172
(see also [1], pp. 72, 102) to conclude that

lim
y′→∞

y′
s−1

Gs(z, z
′, q) =

∑
Γ∞\Γ

(
cz̄ + d

cz + d

)q
(Im γz)s

1− 2s
=

1

1− 2s
E∞,q(s, z) .

In particular from the foregoing and the references cited, we have

Lemma 3.1. The funnel and cuspidal Eisenstein series, Efj,q(s, z, t
′) and Ea,q(s, z),

can be continued to the whole complex plane as a meromorphic function in s.

We recall the property (see for example [7], p. 196, [24], [1], p.94)

Remark 3.3. The possible poles of the resolvent Gs(z, z
′, q) in Re s > 1/2 are

simple and at s1,q, ..., sN,q ∈ ( 1
2 , 1) corresponding to the eigenvalues λk,q 1 ≤ k ≤ N

of the Laplacian −∆2q on Sl.

Recall the decomposition (see Section 1) M = K ∪ncj=1 Cj ∪
nf
j=1 Fj , with the

preceding notation and formula(8), we then have (see for example [7], [24])
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Proposition 3.3. For f ∈ Hq,

f(z) =

N∑
k=1

(f)λk,q (z) +
1

4π

nc∑
j=1

∫ +∞

−∞
〈f,Ecj,q(1/2 + it, .)〉Ecj,q(1/2 + it, z) dt +

1

4π

nf∑
j=1

∫ +∞

−∞

[∫ elj

1

〈f,Efj,q(1/2 + it, ., b)〉Efj,q(1/2 + it, z, b) db

]
dt;

where the first sum in the right member is the projection of f on the discrete spec-
trum.

Let’s formulate the spectral decomposition we needed in the case of 1-forms.

Proposition 3.4. For w = f(z) dz square integrable,

w(z) =

m∑
i=1

(w)λi(z) +
1

4π

nc∑
j=1

∫ +∞

−∞

(
w, Ecj (1/2 + it, .)

)
Ecj (1/2 + it, z) dt +

1

4π

nf∑
j=1

∫ +∞

−∞

[∫ elj

1

(
w, Efj (1/2 + it, ., b)

)
Efj (1/2 + it, z, b) db

]
dt;

where the first sum in the right member is the projection of w on the discrete
spectrum, Ecj and Efj are the Eisenstein series associated to the cusp Cj and the
funnel Fj, respectively.

Remark 3.4. One can easily deduce the formula for an arbitrary square integrable
1-form, with the following notations,

Ecj (s, z)+ = Ecj (s, z) Efk(s, z, b)+ = Efk(s, z, b)

Ecj (s, z)− = Ecj (s̄, z) Efk(s, z, b)− = Efk(s̄, z, b)

Ω(z) = f dz + g dz̄ =

m∑
i=1

(Ω)λi(z) +

1

4π

nc∑
j=1

∫ +∞

−∞

(
Ω, Ecj (1/2 + it, .)+

)
Ecj (1/2 + it, z)+ +

(
Ω, Ecj (1/2 + it, .)−

)
Ecj (1/2 + it, z)− dt

+
1

4π

nf∑
j=1

∫ +∞

−∞

∫ elj

1

(
Ω, Efj (1/2 + it, ., b)+

)
Efj (1/2 + it, z, b)+ db dt

+
1

4π

nf∑
j=1

∫ +∞

−∞

∫ elj

1

(
Ω, Efj (1/2 + it, ., b)−

)
Efj (1/2 + it, z, b)− db dt

For simplicity, we will write

(13) Ω(z) = (Ω)λi(z) +
1

4π

∫ +∞

−∞

(
Ω, Ecj (1/2 + it, .)±

)
Ecj (1/2 + it, z)± dt+

1

4π

∫ +∞

−∞

[∫ elk

1

(Ω, Efk(1/2 + it, ., b)±) Efk(1/2 + it, z, b)± db

]
dt .
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3.4. Harmonic dual form. We are now going to see

Proposition 3.5. If c is an oriented simple closed geodesic on M , then, for Re s >
0, the hyperbolic Eisenstein series Ωc(s, .) are square integrable.

Proof. We consider a fundamental domain D contained in {z, 1 ≤ |z| ≤ el} in which
the segment (i, iel) represents the geodesic c. We write Cλ = {z ∈ D, d(z, c) = λ}
and Fλ = {z ∈ D, d(z, c) ≥ λ}. Without loss of generality we may assume that
there is only one funnel on M and no cusps. Let Vλ be the volume of Fλ − Fλ+1.
Then there exists a constant c1 such that Vλ ≥ c1(sinh(λ + 1) − sinh(λ)). For
Re s = σ > 0, ||Ωc(s, z)|| = ||Ω(s, z)|| ≤ 1

|k(s)|
∑

Γ1\Γ
1

(cosh x2(γz))σ+1 . Let η(z) =∑
Γ1\Γ

1
(cosh x2(γz))σ+1 . We know from Section 2 that there exists a constant K > 0

such that ∀z ∈ H, η(z) ≤ K.
We have∫
D

||Ωc(s, z)||2dµ(z) ≤ 1

|k(s)|2

∫
D

η2(z)dµ(z)

≤ 1

|k(s)|2

∫
1≤x1≤el ,−∞<x2<+∞

η(z)
1

(coshx2(z))σ+1
coshx2 dx1 dx2

≤ K

|k(s)|2

∫
1≤x1≤el ,−∞<x2<+∞

1

(coshx2(z))σ+1
coshx2 dx1 dx2 .

The last integral is
Γ( 1

2 )Γ(σ2 )
Γ( 1

2 +σ
2 )

(el − 1) and the result follows. �

As in [20], we verify that

∆(Ω(s, z)) + s(s+ 1)Ω(s, z) = s(s+ 1)Ω(s+ 2, z) .

This formula has the consequence that for fixed s with Re s > 0, the function
∆k(Ω(s, z)) is again square integrable for any k > 0.
Set Re s > 0. Then with the notation of Remark 3.4, in particular in the last
equality (13), we decompose the first sum of the right member as Ω0(z) the harmonic
part of Ω(s, z) plus the projection on the non zero discrete spectrum. More precisely

Ω(s, z) = Ω0(z) + ai(s)ϕi(z) +
1

4π

∫ +∞

−∞
h
cj
± (s, t)Ec(1/2 + it, z)± dt

(14) +
1

4π

∫ +∞

−∞

[∫ elk

1

Hfk
± (s, t, b)Ef (1/2 + it, z, b)± db

]
dt ,

where, {ϕi} is a complete orthonormal basis of eigenforms of ∆ with corresponding
positive eigenvalues, ai(s) = (Ω(s, .), ϕi), h

cj
± (s, t) =

(
Ω(s, .), Ecj (1/2 + it, .)±

)
and

Hfk
± (s, t, b) = (Ω(s, .), Efk(1/2 + it, ., b)±).

We obtain with H corresponding to any Hfk
±(

1/4 + t2 + s(s+ 1)
)
H(s, t, b) = s(s+ 1)H(s+ 2, t, b) .

From this we get a continuation of H to the region Re s > −1/2 and we note that
for all t and all b we have H(0, t, b) = 0.
Moreover, for Re s > −1/2, Re(s + 2) > 0 and we may substitute in (14) to
obtain a continuation of Ω(s, z) to Re s > −1/2. In particular s = 0 is a regular
value. Substituting s = 0 into ∆Ω(s, z) + s(s + 1)Ω(s, z) = s(s + 1)Ω(s + 2, z)
we obtain ∆Ω(0, z) = 0. Moreover for any closed oriented cycle c′, for Re s > 0,
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c′

Ω(s, .) = c.c′ and by analytic continuation, for Re s > −1/2, in particular for
s = 0. Thus we have proved the following theorem:

Theorem 3.1. Ω(s, z) has a meromorphic continuation to Re s > −1/2 with s = 0
a regular point and Ω(0, z) is a harmonic form which is dual to c.

Remark 3.5. 1) Another way to see this is:
write Ω(s, z) = (∆ + s(s + 1))−1(s(s + 1)Ω(s + 2, z)) and use the meromorphic
continuation of the resolvent (see for example [1], [25]).
2) Using methods analogous to those of [20] (see also [18]), we can obtain a complete
description of the singularities of the hyperbolic Eisenstein series.

4. The case of an infinite geodesic joining two points.

Without loss of generality, we suppose that the two cusps p and q are 0 and ∞
and, as the lift of the geodesic, we take the imaginary axis. Let η be the infinite
geodesic ]p, q[. Can we carry out the same construction as Kudla and Millson? As
in the finite volume case, the problem reduces to studying the following series for
Re s > 1:

(15) η̂s(z) =
1

k(s− 1)

∑
γ∈Γ

γ ∗

[(
y

|z|

)s−1

Im(z−1dz)

]
= Im(θs(z)) ,

where

θs(z) =
1

k(s− 1)

∑
γ∈Γ

γ ∗

[(
y

|z|

)s−1
dz

z

]
,

k(s− 1) =
Γ(1/2)Γ(s/2)

Γ(1/2 + s/2)
, and the notation

Im(θs(z)) =
1

2ik(s− 1)

∑
γ∈Γ

γ ∗

[(
y

|z|

)s−1
dz

z

]
− γ ∗

[(
y

|z|

)s−1
dz̄

z̄

] .

4.1. Some useful estimates. As usual, we can suppose Γ∞ = 〈z 7→ z + 1〉 to be
the stabilizer of∞ in Γ and the stabilizer of 0, Γ0, is then generated by z 7→ z

−c20z+1

(for some non-zero constant c0).
First of all we note that, unlike in the finite volume case (see Proposition 3.1 and
(11)):

Lemma 4.1. The series
∑
γ∈Γ∞\Γ Im(γz) is convergent.

Another way to see this is ‘by hand’: We know that for Re s > δ,
∑
T∈Γ e

−sd(i,Tz)

converges; moreover there exists a constant C > 0 such that
∑
γ∈Γ∞\Γ ImRe s(γz) ≤

C
∑
T∈Γ e

−Re s d(i,Tz), as in our case δ < 1, we have the result.

As
∑
γ∈Γ∞\Γ

∣∣∣Ims(γz) cz̄+dcz+d

∣∣∣ =
∑
γ∈Γ∞\Γ ImRe s(γz), we also deduce the conver-

gence of the series representing E∞,1(1, z) (3.2).

Lemma 4.2. We have the following asymptotic behaviour for Re s > δ:
1) in a funnel, for all cusps a, Ea(s, z) is square integrable;
2) at a =∞, E∞(s, z)− ys = O(y1−s) and E0(s, z) = O(y1−s);
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3) near a = 0, E0(s, z) − ys/(c20|z|2)s = O(y1−s/(c20|z|2)s−1) and E∞(s, z) =
O(y1−s/(c20|z|2)s−1).

Proof. With the notations of 3.1 and taking ρ to be the standard coordinate for
the cusp a, we re-write the results of [1](p. 110) in the following way:

(16) Ea(s, .) = ρ−s(1− χ0(ρ)) + 0(ρsfρ
s−1
c ),

where we define χ0 ∈ C∞0 (M) such that, r being the distance to the the compact
core for a point in cusp a,

χ0(ρ) = χ0(e−r) =

{
1, r ≤ 0
0, r ≥ 1

;

and ρf (resp. ρc) is the standard coordinate in the funnels (resp. cusps). Now
Γ contains parabolic elements then δ > 1/2. The area form in standard funnel

coordinates is dA = ρ−2
f dρfdt + O(1), so ρ

1/2
f is the threshold for L2 asymptotic

behavior in a funnel. Then for Re s > δ > 1/2 we have 1). The cusp area form is

dA = dρcdt, so borderline L2 behavior is ρ
−1/2
c . For 2) and 3) we can use (16), see

also [5] proposition 3.1. �

4.2. Convergence of the hyperbolic Eisenstein series and its analytic con-
tinuation. The computations to prove the convergence of (15) are easily adapted
from the finite volume case. For the convenience of the reader, we recall the essen-
tial points.

We have ||
∑
γ∈Γ γ ∗

(
y
|z|

)s−1

Im(z−1dz)|| ≤
∑
γ∈Γ

(
y
|z|

)σ
(γz) , where σ = Re s > 1

and if we put S =
∑
γ∈Γ

(
y

|z|

)σ
(γz), we have

S =
∑

γ∈Γ∞\Γ

yσ(γz)
∑
n∈Z

1

|γz + n|σ
= S1 + S2 ,

with

S1 =
∑

γ∈Γ∞\Γ

yσ(γz)

|γz|σ
and S2 =

∑
γ∈Γ∞\Γ

yσ(γz)
∑
n∈Z∗

1

|γz + n|σ
.

Let Sz be a system of representatives of Γ∞\Γ such that |Re γz| ≤ 1/2. Then

||S|| ≤ S1 + 2
∑
γ∈Sz

yσ(γz)

∞∑
n=1

1

(n− 1/2)σ
.

We have∑
γ∈Γ∞\Γ

yσ(γz)

|γz|σ
=

∑
Γ0\(Γ∞\Γ)

yσ(γz)

|γz|σ
∑
n∈Z

1

| − nc20γz + 1|σ

=
∑

γ∈Γ0\(Γ∞\Γ)

yσ(γz)

|γz|σ
+

∑
γ∈Γ0\(Γ∞\Γ)

yσ(γz)

|γz|σ
∑
n∈Z∗

1

|nc20|σ[(x(γz)− 1/nc20)2 + y2(γz)]σ/2
.

For K a compact set in H there exists m in H such that

∀z ∈ K, ∀γ ∈ Γ0\Γ∞\Γ, |γz| ≥ |m| and Im γz ≥ Imm.
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So

S1 ≤
∑

γ∈Γ0\(Γ∞\Γ)

yσ(γz)

|m|σ
+

∑
γ∈Γ0\(Γ∞\Γ)

yσ(γz)

|m|σ
∑
n∈Z∗

1

|nc20|σ(Imm)σ

≤ 1

|m|σ
∑

Γ∞\Γ

yσ(γz) + 2
∑
n∈N∗

1

(nc20)σ
1

|m|σ(Imm)σ

∑
Γ∞\Γ

yσ(γz) ;

and lastly, for all z in K

||S|| ≤ 1

|m|σ
∑

Γ∞\Γ

yσ(γz) + 2
∑
n∈N∗

1

(nc20)σ
1

|m|σ(Imm)σ

∑
Γ∞\Γ

yσ(γz)+

2
∑

Γ∞\Γ

yσ(γz)

∞∑
n=1

1

(n− 1/2)σ
,

with uniform convergence on all compact subsets of H and all compact subsets of
Re s > 1.

From this last inequality we conclude that θs is square integrable in the funnels
as the Eisenstein series E∞. Moreover using the notation in formula (4 ) we can
write ηs(z) =

∑
γ∈Γ γ

∗ϕs, where ϕs = 1
k(s−1)

dx2

(cosh x2)s satisfies ∆ϕs + s(s− 1)ϕs =

s(s− 1)ϕs+2. To conclude, we have the following theorem:

Theorem 4.1. For Re s > 1, the Eisenstein series associated to the geodesic η =
(p, q) converges uniformly on all compact sets. It represents a C∞ closed form which
is dual to η. For Re s > 1 it satisfies the differential functional equation:

∆η̂s = s(1− s)[η̂s − η̂s+2].

Now we want to prove that η̂s has an analytic continuation to Re s > 1/2 and
s = 1 is a regular value. For this, first of all, we are going to show that θs(z) −
1/i(E∞(1, z) − E0(1, z)) is square integrable. As we have shown that θs is square
integrable in the funnels, what we have to do is to investigate the Fourier expansion
of θs at each inequivalent cusp, i.e. at 0 and ∞, and to show that ||θs|| is bounded
at the cusps. As in the finite volume case, we have ([5]):

Proposition 4.1. At ∞

θs(z) = (
1

i
+O(1/y)) dz ,

and at 0

θs(z) = (− 1

ic20z
2

+O(1/y)) dz .

By Proposition 4.1 and Lemma 4.2, we conclude:

Proposition 4.2. The 1-forms θs(z)−1/i(E∞(1, z)−E0(1, z)) and η̂s(z)+Re(E∞(1, z)−
E0(1, z)) are square integrable.

Proof. Let’s, for example, treat the case at ∞. Recall that

ηs(z) =
1

2ik(s− 1)

∑
γ∈Γ

γ ∗

[(
y

|z|

)s−1
dz

z

]
− γ ∗

[(
y

|z|

)s−1
dz̄

z̄

] .
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The asymptotic behavior of 1
k(s−1)

∑
γ∈Γ γ ∗

[(
y
|z|

)s−1
dz̄
z̄

]
can be deduced from the

preceding study. For example at∞ it behaves like −( 1
i +O(1/y)) dz. We conclude

that ηs(z) = − 1
2 (dz + dz̄) +O(1/y dz) and the result.

�

Lastly, as in [5]:

Theorem 4.2. The 1-form η̂s has a meromorphic continuation to Re s > 1/2, with
s = 1 a regular point and η̂ is a harmonic form which is dual to η.

5. Degenerations.

5.1. Background material and the main results. A family of degenerating
geometrically finite hyperbolic surfaces consists of a surface M and a smooth family
(gl)l>0 of Riemannian metrics that meet the following assumptions:

(1) The Riemannian manifold Ml = (M, gl) is a geometrically finite hyperbolic
surface for each l.

(2) There are finitely many disjoint open subsets Cl,i ⊂M that are diffeomor-
phic to cylinders R/Z× Ji where Ji ⊂ R is a connected neighborhood of 0
with the metric (x, a) 7→ (li(l)

2 +a2)dx2 + ((li(l)
2 +a2)−1da2 and li(l)→ 0

as l→ 0. The curve ci = R/Z× {0} is a closed geodesic of length li(l).
(3) The complement of (C1 ∪ ... ∪ Cnc) ∪ (F1 ∪ ... ∪ Fnf ) ∪i Cl,i where we may

have some Fj ⊂ Cl,i is relatively compact.
(4) On M0 := M\ ∪i ci, the metrics gl converge smoothly to a hyperbolic

metric g0 as l→ 0. M0 is a possibly non connected hyperbolic surface that
contains a pair of cusps for each i.

First of all, we recall some material and results. The following lemma can be
found, for example, in [1], p. 252-253. The neighbourhood of points within a
distance a of a geodesic γ, where d(z, γ) is the hyperbolic distance from z to γ,

Ga = {z ∈ K, d(z, γ) ≤ a} ,

is isometric for small a to a half-collar [0, a]× S1, ds2 = dr2 + l2 cosh2 r dθ2.

Lemma 5.1. Suppose that γ is a simple closed geodesic of length l(γ) on a geomet-
rically finite hyperbolic surface M . Then γ has a collar neighbourhood of half-width
d, such that

sinh(d) =
1

sinh(l(γ)/2)
.

As a consequence, if η is any other closed geodesic intersecting γ transversally (still
assuming γ is simple), then the lengths of the two geodesics satisfy the inequality

sinh(l(η)/2) ≥ 1

sinh(l(γ)/2)
.

Lemma 5.2. Let γ be a simple closed geodesic of length l on a complete hyperbolic
surface M . If α is a simple closed geodesic that does not intersect γ, then, putting
d(γ, α) to be the hyperbolic distance of γ to α,

cosh d(γ, α) ≥ coth(l/2) .
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A standard collar for a geodesic of length l is a cylinder isometric to 〈z 7→ elz〉\C
with C = {z = reiθ, 1 ≤ r ≤ el, l < θ < π − l} ⊂ H with the restriction of the
hyperbolic metric, and 〈z 7→ elz〉 the cyclic group generated by the transformation
z 7→ elz. There is a constant k0 (the short geodesic constant) such that each closed
geodesic on Ml of length at most k0 has a neighbourhood isometric to the standard
collar and each cusp for Ml has a neighbourhood isometric to the standard cusp;
furthermore, the collars for short geodesics and the cusp regions are all mutually
disjoint.

Here we consider a family of surfaces Sl = Γl\H degenerating to the surface S
with only one geodesic cl being pinched, Γl containing the transformation σl(z) =
elz corresponding to cl. Let Kl be Sl minus Cl the standard collar for cl. There exist
homeomorphisms fl from Sl\cl to S, with fl tending to isometries C2-uniformly on
the compact core Kl ⊂ Sl; define πl = f−1

l . Suppose that p is one of the two cusps
of S arising from pinching cl. Let S0 = Γ\H be the component of S containing
p and conjugate Γ to represent the cusp by the translation w 7→ w + 1. In the
following, p =∞.

Let, for Re s > 1, αl(s, z) =
∑
γ∈〈σl〉\Γl γ ∗

[(
y
|z|

)s−1

Im(z−1dz)

]
be such that

the hyperbolic Eisenstein series Ωcl = Ωl is related by Ωl(s, z) = 1
k(s)αl(s + 1, z).

Without loss of generality we suppose Sl has only one funnel F1. With the notation
of the beginning of the paper, Sl = K∪(C1∪...∪Cnc)∪F1 and cl is the one geodesic
of the boundary of the compact core K. We consider the specific case of p, the limit
of the right side of the cl-collar, contained in Sl\F1. With the misuse of notation
already mentioned

Theorem 5.1. Let Re s > 1. Then the family of 1-forms 1
lsαl(s, πl(.)) converges

uniformly on compact subsets of S0 to Im E∞(s, .).

This is a particular case of Theorem 5.2 below.

The sketch of the proof of this theorem follows those of the finite volume case
([4], [27], see also [8]). To study the right side of the cl-collar, let w = 1

l log z, with

the principal branch z ∈ H, and conjugate Γl by the map w to obtain Γ̃l acting

on Sl = {w, 0 < Imw < π/l}. The hyperbolic metric on Sl is ds2
l =

(
l|dw|

sin(l Imw)

)2

,

which tends uniformly on compact subsets to
(
|dw|
Imw

)2

. Γ̃l is a (non-Möbius) group

of deck transformations acting on Sl; the quotient Γ̃l\Sl is Sl.
In the following if a group G acts on a domain D, we will denote by GA the

stabilizer in G of a subset A ⊂ D.
Let f̂l be the restriction of fl to the component S(r)

l of Sl\cl containing the right

half-collar for cl. Let Fl be a lift of f̂l to the universal covers Al and H, where Al
is the simply connected component of H\π−1

l (cl) which contains the standard right

collar {z = reiθ, 1 ≤ r ≤ el, l < θ < π/2}. S(r)
l = (Γl)Al\Al. More precisely [4], p.

350, [27]:

Lemma 5.3. The simply connected component Al contains {z = reiθ, 1 ≤ r ≤
el, lc(l) < θ < π/2} where c(l)→ 0, l→ 0.
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Start with the standard Γ fundamental domain F = {w ∈ H, 0 ≤ Rew <
1, Imw ≥ ImA(w),∀A ∈ Γ}. Set Dl = F−1

l (F), then Dl is a fundamental do-

main of S(r)
l . Divide the cosets of 〈σl〉\(Γl − 〈σl〉) into two classes D = {[A], A ∈

Γl, inf ReA(Dl) > 0} and G = {[A], A ∈ Γl, sup ReA(Dl) < 0}.
Then f̂l has a lift f̃l, a homeomorphism from a subdomain of Sl to H: f̃l =

Fl ◦ w−1 : w(Al) → H. The homeomorphism f̃l induces a group homomorphism

ρl : Γ → Γ̃l, A 7→ f̃−1
l Af̃l, A ∈ Γ. Now by our normalizations for Γ̃l and Γ, the

translation w 7→ w+ 1 corresponds to itself and induces an isomorphism from Γ to
(Γ̃l)w(Al). We call ρl(A) ∈ Γ̃l the element corresponding to A ∈ Γ. If we specify

the further normalization f̃l(i) = i, then the lifts f̃l are uniquely determined and
then we have (see, e.g. [27], p. 107)

Lemma 5.4. The f̃l tend uniformly on compact subsets to the identity, and thus
for A ∈ Γ, the corresponding elements ρl(A) tend uniformly on compact subsets to
A.

For q ∈ N, we associate to the pinching geodesic cl, the q−form defined for
Re s > 1 by

Al,q(s, z) =
∑
〈σl〉\Γl

(
γ′(z)

γ(z)

)q
sins−q θ(γz) dzq .

Remark 5.1. As suggested by the referee, it would be interesting to have a geomet-
ric meaning of Al,q(s, z). As far as I know, in the case of functions, they have been
study in particular in [8], [18], [19]. In the case of 1-forms, the analytic continuation
of the hyperbolic Eisenstein series gives a harmonic dual form to the corresponding
geodesic and the construction of an explicit geometric basis for the space of holo-
morphic 1-forms ([20]). In the case of 2-forms (quadratic differentials), they permit
to define vector fields on Teichmüller space ([27], Chapter 2). For q−forms (q > 2)
I could maybe find some answer in [21].

Divide the cosets 〈z 7→ z + 1〉\(Γ̃l − 〈z 7→ z + 1〉) into two classes, the left and

the right: for Fl = f̃−1
l (F), L = wGw−1 = {[A], A ∈ Γ̃l, inf ImA(Fl) > π/2l} and

R = wDw−1 = {[A], A ∈ Γ̃l, sup ImA(Fl) < π/2l} (the line {Imw = π/2l} is a lift
of cl, and we write [A] for the 〈z 7→ z + 1〉 coset of A). In particular the cosets

〈z 7→ z + 1〉\(Γ − 〈z 7→ z + 1〉) correspond to the right cosets of Γ̃l: {[ρl(A)], A ∈
Γ, 〈w 7→ w + 1〉} ⊂ R. Then we can write, where χ+ is the characteristic function
of {Re z > 0} and χ− that of {Re z ≤ 0},

Al,q(s, z) =
∑
〈σl〉\Γl

(
γ′(z)

γ(z)

)q
sins−q θ(γz) dzq

= y(z)s−q

(
1

zq|z|s−q
χ+ +

∑
D

γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q

)
dzq +

y(z)s−q

(
1

zq|z|s−q
χ− +

∑
G

γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q

)
dzq

and the q-form on S(r)
l :

ARl,q(s, z) = y(z)s−q

(
1

zq|z|s−q
χ+ +

∑
D

γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q

)
dzq
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(17) = lq(sin l Imw)s−q(χ+
∑
R

(γ̃′w)q|γ̃′w|s−q)dwq,

with w = 1
l log z and χ the characteristic function of w({Re z > 0}).

Theorem 5.2. Let Sl = Γl\H be a family of geometrically finite hyperbolic surfaces
degenerating to the surface S with only one geodesic cl being pinched and with Sl
having only one funnel F1; Γl contains the transformation σl(z) = elz corresponding
to cl and the right half-collar for cl is in Sl\F1. Let S0 = Γ\H be the component of
S containing p, the cusp arising from the right half-collar for cl, p = ∞. Let w =
1
l log z and write again with a little misuse of notation Al,q(s, w) = al,q(s, w) dwq

and the corresponding q-automorphic form (for Γ̃l) âl,q(s, w) = Im(w)qal,q(s, w).
Denote by âRl,q the right half of âl,q. Then the family ( 1

ls â
R
l,q(s, πl(.)))l converges

uniformly on compact subsets of S0 and on compact subsets of Re s > 1 to the
Eisenstein series for weight 2q:

E∞,q(s, w) =
∑

Γ∞\Γ

(Im γw)s
(
cw̄ + d

cw + d

)q
.

Remark 5.2. We have the analogous result: if we denote by âLl,q the left half of âl,q,

then 1
ls â

L
l,q(s, πl(.)) converges to (−1)qEa,q(s, .), where Ea,q(s, .) is the Eisenstein

series of weight 2q (see Definition 3.1) associated to a, the other cusp arising from
the left half-collar for cl.

Before proving this theorem we give some complements and its corollaries.

For Re s > 1 let bq(s) = eiπq/2
∫ π

0
(sinu)s−2e−iqu du. Note that b1(s) = k(s −

1). The function bq has the following properties (see e.g. [18]): bq(s + 2) =
s(s− 1)

s2 − q2
bq(s), bq admits a meromorphic continuation to all s ∈ C, more precisely

bq(s) = π2−s+2 Γ(s− 1)

Γ( s+q2 )Γ( s−q2 )
.

In order to be consistent with the definition of Kudla and Millson’s hyperbolic
Eisenstein series, we may use the normalized q−automorphic forms

(18) Ξl,q(s, z) =
1

bq(s)
Al,q(s, z).

We have indeed Ξl,1(s, z) = Θ(s− 1, z) defined in (7) Section 2.1.
We recall that the series (18) converges absolutely and locally uniformly for any
z ∈ H and s ∈ C with Re s > 1, and that it is invariant with respect to Γ.

Let ãl,q(s, z) (respectively, f̃l,q(s, z)) be the q−automorphic form associated to
Al,q(s, z) (respectively, Ξl,q(s, z)) via the correspondence (9). More precisely and
with the notation of Theorem 5.2

Al,q(s, z) =
ãl,q(s, z)

yq
dzq

=
âl,q(s, w)

wq
dwq,

Ξl,q(s, z) =
f̃l,q(s, z)

yq
dzq, f̂l,q(s, w) =

1

bq(s)
âl,q(s, w).
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A straightforward computation shows that these series satisfy the functional differ-
ential equations

∆2qãl,q(s, z) + s(1− s)ãl,q(s, z) = (s+ q)(q − s)ãl,q(s+ 2, z),

and

(19) ∆2q f̃l,q(s, z) + s(1− s)f̃l,q(s, z) = s(1− s)f̃l,q(s+ 2, z);

and so, the series Al,q(s, z) satisfies the functional differential equation

∆±q Al,q(s, z)− (s± q)(1− s± q)Al,q(s, z) = (s+ q)(s− q)Al,q(s+ 2, z),

and the series (18)

∆±q Ξl,q(s, z)− (s± q)(1− s± q)Ξl,q(s, z) = s(s− 1)Ξl,q(s+ 2, z).

Proposition 5.1. The series Al,q(s, z) (as well as Ξl,q(s, z)) admits a meromorphic
continuation to all of C.

Proof. There are different ways to prove this: one is to use the functional differential
equation (18) and to apply the method developed in [20] (see also [18]). More
precisely, from (19) we have

f̃l,q(s, z) = s(1− s)
∫
Dl
Gls(z, z

′, q)f̃l,q(s+ 2, z′) dµ(z′) ,

where Dl is a fundamental domain of Sl and Gls(z, z
′, q) has been defined in propo-

sition 3.1. Another way is to use [7]. We make precise another calculation which

we will develop further. We can rewrite ãl,q(s, z) as

ãl,q(s, z) =
∑
〈σl〉\Γl

(
cz̄ + d

cz + d

)q (
γz

γz

)q/2(
Im γz

|γz|

)s
and using the Fourier development ofGs(z, z

′, q) and the expansion of
∫ el

1
Gs(z, iy

′, q) d ln y′

we obtain the result (see [7] corollary 4.2, p. 188). �

We recall from Section 3.3 that

Remark 5.3. The possible poles of the resolvent Gls(z, z
′, q) in Re s > 1/2 are sim-

ple, in finite number and at sl1,q, ..., s
l
nl,q
∈ ( 1

2 , 1) corresponding to the eigenvalues

λlk,q, 1 ≤ k ≤ nl of the Laplacian −∆2q on Sl.

In particular, f̃l,q(s, z) is holomorphic in Σl = {Re s > 1/2}\{sl1,q, ..., slnl,q}.

We can then refine Theorem 5.2 to the following.

Theorem 5.3. Let λqk, 1 ≤ k ≤ n, be the eigenvalues of the Laplacian −∆2q

on S0 such that 0 < λq1 < λq2 < ... < λqn < 1/4 ≤ λqn+1 and the corresponding

sqk = 1
2 +

√
1
4 − λ

q
k with Re sqk ≥ 1/2 and let Σ = {Re s > 1/2}\{sq1, ..., sqn}.

(1) In the case where the geodesic cl is not separating, without loss of generality
we can suppose that the two limiting cusps are represented by ∞ and 0, the

family ( 1
ls f̂l,q(s, πl(.)))l converges uniformly on compact subsets of S0 and

on compact subsets of Σ to
1

bq(s)
E∞,q(s, .) +

(−1)q

bq(s)
E0,q(s, .).
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(2) In the case where cl is the geodesic boundary of a funnel, the family ( 1
ls f̂l,q(s, πl(.)))l

converges uniformly on compact subsets of S0 and Σ to
1

bq(s)
E∞,q(s, .).

Remark 5.4. In the case cl is separating and different from the geodesic boundary
of a funnel, as in Theorem 5.2 and Remark 5.2, we can define the right and left half

of 1
ls f̂l,q = 1

ls â
R
l,q+ 1

ls f̂
L
l,q each series in the right member converges to the Eisenstein

series of the corresponding cusp.

Remark 5.5. We remark that as σl is the geodesic in the funnel, it follows that
D = 〈σl〉\(Γl − 〈σl〉) and G = ∅.

We have seen that in the infinite volume case, s = 1 is a regular value for
E∞,q(s, z) for every q ∈ N. In the finite volume case, we know that s = 1 is a
simple pole for E∞,0(s, z), which is no longer the case for q ≥ 1:

Remark 5.6. For q ∈ N∗, s = 1 is a regular value of E∞,q(s, z).

Proof. This comes from the Fourier development of E∞,q(s, z): we have ([7], p.
175)

E∞,q(s, z) = ys + ϕq(s)y
1−s +

∑
m 6=0

am(y, s)qe
2iπmx ,

with ϕq(s) =
Γ2(s)

Γ(s− q)Γ(s+ q)
e−πiqϕ0(s). The function ϕ0 has a simple pole at

s = 1 (with residue Vol(S0)/π) and 1/Γ(s− q) has a zero at s = 1. �

We now give the poles of bq(s):

Lemma 5.5. For an even q, the poles of bq(s) are simple and at the numbers
s = 1− 2k, k ∈ N.
For an odd q, the poles of bq(s) are simple and at the numbers s = −2k, k ∈ N.

From the preceding results and Theorem (5.3) we deduce

Corollary 5.1. With the preceding notation,

(1) Suppose q is odd. If the geodesic cl is not separating (respectively, the
geodesic boundary of a funnel) the family ( 1

ls âl,q(s, πl(.)))l converges uni-
formly on compact subsets of S0 and on compact subsets of Σ to E∞,q(s, .)+
(−1)qE0,q(s, .) (respectively, E∞,q(s, .)).

(2) Suppose q is even, we have the same results as the preceding, on replacing
Σ by Σ\{1}.

Remark 5.7. For q = 1 we obtain the result announced in the Introduction.

5.2. Proofs of the main theorems and final remarks.
Proof of Theorem 5.2.

It is enough to demonstrate the convergence for β a relatively compact set in
the fundamental domain F . Given ε > 0, denote by Gε the set of cosets and repre-
sentatives for 〈z 7→ z + 1〉\Γ such that sup ImA(F) < ε for [A] 6∈ Gε and let Rl be

the corresponding cosets of 〈z 7→ z+ 1〉\Γ̃l with the corresponding representatives.

Lemma 5.6. The set Gε is finite.
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Proof. We have to show that the number of representatives for 〈z 7→ z+ 1〉\Γ such
that sup ImA(F) ≥ ε is finite. Take a real a such that the cusp for the parabolic
point ∞, {0 ≤ Re z < 1, Im z ≥ a} ⊂ F . As for all g ∈ Gε, different from the
identity, g(F) and F are disjoints, we have sup Im g(F) ≥ ε and sup Im g(F) ≤ a.
Let S a system of representatives of 〈z 7→ z + 1〉\Γ such that the disjoints sets
{[A](F), [A] ∈ S} recover B = {0 ≤ Re z < 1}. The disjoints sets {g(F), g ∈ Gε}
recovering the compact set {0 ≤ Re z ≤ 1, ε ≤ Im z ≤ a} of B, the cardinal of Gε
must be finite. �

The cosets Gε of Γ satisfy (modulo the action of 〈z 7→ z + 1〉) {0 ≤ Rew <
1, Imw > ε} ⊂ ∪A∈GεA(F); thus for l sufficiently small the cosets Rl satisfy (mod-
ulo the action of 〈z 7→ z + 1〉) {0 ≤ Rew < 1, 2ε < Imw < π/2l} ⊂ ∪A∈RlA(Fl)
(this is a consequence of the convergence on compact subsets of the f̃l and of the fact
that Fl contains the right half-collar for cl, {0 ≤ Rew < 1, c(l) ≤ Imw < π/2l},
see Lemma 5.3. Now for a right coset [A] ∈ R−Rl, we have that A(Fl) lies below
the cl geodesic {Imw = π/2l} and is disjoint modulo the action 〈z 7→ z + 1〉
from {0 ≤ Rew < 1, 2ε < Imw < π/2l}, since the latter is covered by the
Rl cosets. Thus for [A] ∈ R − Rl, modulo the action of 〈z 7→ z + 1〉, we have
A(Fl) ⊂ {0 ≤ Rew < 1, Imw < 2ε}. For w ∈ β, using (17), we write

1

ls
âRl,q(s, w) =

1

ls−q
(Imw)q(sin l Imw)s−q(χ+

∑
R

(γ̃′w)q|γ̃′w|s−q)

=
1

ls−q
(Imw)q(sin l Imw)s−q(χ+

∑
Rl

(γ̃′w)q|γ̃′w|s−q)

+
1

ls−q
(Imw)q(sin l Imw)s−q(

∑
R−Rl

(γ̃′w)q|γ̃′w|s−q).

Now on β for l sufficiently small, χ is identically unity and because of Lemma
5.4, the coset representatives for Rl approximate the coset representatives for Gε.
Thus for 1

ls â
R
l,q(s, .), in the last equality, the first sum is uniformly close to the

corresponding terms for E∞,q(s, .).
The principal problem lies in estimating the second sum: it remains to show that

lim
l→0

∑
R−Rl

|γ̃′w|σ = 0 ,

where σ = Re s.∑
R−Rl

|γ̃′w|σ =
∑

w−1(R−Rl)w

|zl
γ′zl
γzl
|σ ≤ |zl|σ

∑
w−1(R−Rl)w

|γ′zl|σ ,

where w = 1
l log zl and γFl ⊂ w−1({0 ≤ Rew < 1, Imw < 2ε} ∩ β). We deduce∑

R−Rl

|γ̃′w|σ ≤ 1

sinσ(l Imw)

∑
w−1(R−Rl)w

Imσ(γzl) .

Let ε0 ∈]0, sinh−1 1[ such that for all l sufficiently small and all w ∈ β, B(zl, ε0) ⊂
Fl, then ∪γ∈w−1(R−Rl)wB(γzl, ε0) ⊂ {z, 0 < arg z < 2εl, 1 ≤ |z| ≤ el}. Moreover
there exists a Λε0 independent of z0 ∈ H such that∫

B(z0,ε0)

yσ
dxdy

y2
= Λε0y(z0)σ ;
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this is a particular case of the following Proposition 5.2, needed further in a more
general case. Hence∑

w−1(R−Rl)w

(Im γzl)
σ =

1

Λε0

∑
w−1(R−Rl)w

∫
B(γzl,ε0)

yσ
dxdy

y2
.

Now (see, e.g. [27], p. 102):

Lemma 5.7. The multiplicity of the projection map H → Γ\H restricted to
B(z0, η) with 2η < c0 is at most Mρ−2(z0), where M is a constant and ρ(z0)
the injectivity radius at z0.

For the convenience of the reader, we give a detailed proof.

Proof. If B(z0, η) ∩ B(γz0, η) 6= ∅, γ ∈ Γ, then d(z0, γz0) < 2η < c0 and z0 is in a
cusp region or the collar for a short geodesic. Let c = c0/2. Then ρ(z0) < c. Denote
by m(η) the multiplicity of the projection restricted to B(z0, η). As 2η+ρ(z0) < 3c
and the B(γz0, ρ(z0)) are disjoint, we have

m(η)µ(B(z0, ρ(z0)) ≤ µ(B(z0, 3c)) .

Hence m(η) ≤ cosh 3c−1
cosh ρ(z0)−1 ≤ 2(cosh 3c− 1)ρ(z0)−2. �

Now we have∑
γ∈w−1(R−Rl)w

(Im γzl)
σ ≤ 1

Λε0
m(ε0)

∫
∪γ∈w−1(R−Rl)w

B(γzl,ε0)

yσ−2dxdy

≤ A(c0)

Λε0
ρ−2(zl)

∫
{z,0<arg z<2εl,1≤|z|≤el}

yσ−2dxdy,

with A(c0) = 2(ch 3c0
2 − 1).

Then

(20)
∑

w−1(R−Rl)w

(Im γzl)
σ ≤ A(c0)

Λε0
ρ−2(zl)

elσ − 1

σ

(2εl)σ−1

σ − 1
.

Moreover, as B(zl, ε0) ⊂ Fl, ρ(zl) ≥ ε0 and the conclusion follows.

Proof of Theorem 5.3.
The main point of the proof is to use Vitali’s theorem, as in the finite volume

case, we follow [4], Proof of Theorem 4.2. More precisely, first we will recall a
definition.

Definition 5.1. A family (fn) of meromorphic functions on a domain O in C is
called bounded in O if

(1) ∃(zm)m a discrete subset in O,
(2) ∀K compact set of O\{zm}, ∃n(K), ∀n ≥ n(K), fn has no pole in K,
(3) MK = supn≥n(K)(supz∈K |fn(z)|) < +∞.

As before, β will denote a relatively compact set in the fundamental domain F
of S0. The family ( 1

ls f̂l,q(s, π(w)))l, where f̂l,q(s, w) = 1
bq(s)

âl,q(s, w), is a family

of meromorphic functions on Σ = {Re s > 1/2}\{sq1, ..., sqn}. Now, by Theorem
(5.2), for every compact C ⊂ {Re s > 1} this family converges uniformly (a fortiori
simply) on C × β ⊂ {Re s > 1} × F to
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(1) 1
bq(s)

(E∞,q(s, .) + (−1)qE0,q(s, .)) in case (1) of Theorem (5.2),

(2) 1
bq(s)

E∞,q(s, .) in case (2).

We will show that for every compact set K in Σ, there exists l(K) such that for all l

less than l(K), s 7→ 1
ls f̂l,q(s, π(.)) has no pole onK andMK = supl≤l(K)(sups∈K || 1ls f̂l,q(s, π(.))||∞,β) <

+∞—and then we can conclude the result.

The outline of the proof being independent of q, we will omit writing q and only
indicate the changes needed in the case of general q if necessary. In particular in
this paragraph we can write ∆ instead of ∆2q.

As in the finite volume case, we start from the equality

1

ls
f̃l(s, z) = s(1− s)

∫
Dl
Gs(z, z

′)f̃l(s+ 2, z′)/ls dµ(z′) ;

where, to simplify notation, we omit writing q = 0; but we can write Gls(z, z
′) to

insist on the dependence in l. The definition and properties of Gls(z, z
′) are given

in Section 3.3. We start from Remark (5.3), the poles of Gls(z, z
′) in Re s > 1/2 are

simple, in finite number and in ( 1
2 , 1), they correspond to the small eigenvalues (<

1/4) of the Laplacian on Sl. As l tends to zero, these poles tend to the corresponding
poles of the resolvent of the limit surface; in other words the small eigenvalues tend
to the small eigenvalues (see [26],[7]). Now take K a compact of Σ, there exists
l(K) such that for l ≤ l(K), all the finite number of poles of Gls(z, z

′) are in the

open set Σ\K, from the same Remark (5.3), s 7→ 1
ls f̂l,q(s, π(.)) has no pole on K.

We will suppose C is a compact subset of S0, Y ⊂ S0 is such that πl(Y ) is a standard
collar, and πl(Y ) ∩ πl(C) = ∅, X = S0\Y , K ′ a compact subset of Σ′ = Σ\{1}.
Decompose the preceding integral and write

1

ls
f̃l(s, πl(w)) = Il + Jl ,

where

Il =

∫
πl(Y )

Gs(πl(w), z′)f̃l(s+2, z′)/ls dµ(z′) , Jl =

∫
πl(X)

Gs(πl(w), z′)f̃l(s+2, z′)/ls dµ(z′) .

Now the main step is to estimate Gs(z, z
′, q). We apply [7] Corollary 1.3, p. 151:

Proposition 5.2. If ∆2qf = s(s− 1)f in some non-Euclidean disc Br of radius r
about z0 ∈ H, then f has the mean value property:

f(z0) =
1

mq(r, s)

∫
Br

f(z)

(
z − z̄0

z0 − z̄

)q
dµ(z) where mq(r, s) = 2π

∫ r

1

sh rPs,q(r) ≈ πr2 as r → 0 ;

Ps,q(r) = (1 − tanh2 r
2 )s F (s − q, s + q, 1; tanh2 r

2 ) and F is the Gauss’s hypergeo-
metric function.

to conclude that

(21) ∀w ∈ C,∀z′ ∈ πl(Y ),∀s ∈ K ′, |Gs(πl(w), z′, q)| ≤ O(1)||Gs(πl(w), ., q)||L2

(see also [4] Lemme 4.4).
The next point is to show that

(22) ∀(w, s) ∈ C ×K ′, ||Gs(πl(w), ., q)||L2 = O(1),

the constants in question depend only on the compact sets. We can use [26], theorem
15(1), but we give here another presentation using the spectral decomposition.



26

In effect, we have, using the notation in Section 3.3, in particular Proposition
(3.3), where {ϕn} is a complete orthonormal basis of eigenfunctions of ∆ with
corresponding eigenvalues {λn} and where we don’t note the dependence on l of
the eigenfunctions, cuspidal and funnel Eisenstein series:

Lemma 5.8. For a > 1

Gls(πl(w), z) = Gla(πl(w), z)+
∑
n

[
1

s(1− s)− λn
− 1

a(1− a)− λn

]
ϕn(πl(w))ϕn(z)+

1

4π

∑
j

∫ +∞

−∞

[
1

s(1− s)− (1/4 + t2)
− 1

a(1− a)− (1/4 + t2)

]
Ecj (

1

2
+it, πl(w))Ecj (

1

2
+ it, z) dt+

1

4π

∑
k

∫ +∞

−∞

[
1

s(1− s)− (1/4 + t2)
− 1

a(1− a)− (1/4 + t2)

] ∫ elk

1

Efk (
1

2
+it, πl(w), b)Efk (

1

2
+ it, z, b) db dt ,

all the sums are finite.

Proof. We can use and follow the method in for example [13] (and the references
therein), [1], p. 103, to prove it, but not to be too long we can also remark as in

[16], p. 87-88, [1], Theorem 6.2, p. 82, that, with Eα corresponding to any Ecj , E
f
k

∆Eα(
1

2
+ it, ) + (1/4 + t2)Eα(

1

2
+ it, ) = 0,

and Eα( 1
2 + it, .) ∈ ρ−1/2L2(Sl).

So for u, Reu > 1 (Reu− 1/2 > 1/2)

Ru(∆ + u(1− u))Eα = Eα.

We deduce that,(
Glu(πl(w), ), Eα(

1

2
+ it, )

)
=

1

ū(1− ū)− (1/4 + t2)
Eα(

1

2
+ it, πl(w))

and in a similar way as ϕn ∈ L2(Sl),

1

u(1− u)− sn(1− sn)
ϕn(πl(w), b) =

∫
Sl

Glu(πl(w), z)ϕn(z) dµ(z) .

Applying Proposition 3.3 to Gls(πl(w), ) − Gla(πl(w), ) by complex conjugation we
obtain the lemma for Re s > 1 and by analytic continuation, to Re s > 1/2. �

From this we now deduce, writing λu = u(1− u),

Lemma 5.9.

||Gls(πl(w), .)−Gla(πl(w), .)||2L2 = |λa − λs|2
∑
n

|ϕn(πl(w)|2

|λs − λn|2|λa − λn|2
+

|λa − λs|2
1

4π

∫ +∞

−∞

|Ecj (1/2 + it, πl(w))|2

|λs − (1/4 + t2)|2|λa − (1/4 + t2)|2
dt+

|λa−λs|2
1

4π

∫ +∞

−∞

1

|λs − (1/4 + t2)|2|λa − (1/4 + t2)|2

∫ elk

1

|Efk (1/2+it, πl(w), b)|2 db dt .
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So there exists a constant M , depending only on the compact set K ′ of Σ′, such
that

||Gs(πl(w), ., l)−Ga(πl(w), ., l)||2L2 ≤
|λa − λs|2

M
||Ga(πl(w), ., l)||2L2 .

The fact that we have for a > 1, ||Ga(πl(w), ., q)||L2
= O(1), the constants in

question depend only on the compact sets, is an adaptation of [13] or [14].
Now we are going to prove that Il = O(1) and Jl = O(l2).

With the same proof as [4] Lemma 4.3, we have
∫
πl(Y )

|f̃l(s + 2, z)| dµ(z) =

O(1)lRe s true for Re s > 1/2.
Recall that Sl = R∪C1 ∪ ...∪Cnc ∪F1 where here, we denote by R the compact

core. Jl =
∫
πl(X)∩RGs(z, z

′)f̃l(s+2, z′)/ls dµ(z′)+
∫
πl(X)∩(C1∪...∪Cnc∪F1)

Gs(z, z
′)f̃l(s+

2, z′)/ls dµ(z′) .

By Theorem 5.2 and (22),
∫
πl(X)∩K Gs(z, z

′)f̃l(s+ 2, z′)/ls dµ(z′) = O(l2).

For z′ ∈ C1 ∪ ... ∪ Cnc ∪ F1 we have the same estimates as in (21). Now let’s

verify that we have also
∫
R∩(C1∪...∪Cnc∪F1)

f̃l(s+ 2, z′)/ls dµ(z′) = O(1).

We have∫
R∩(C1∪...∪Cnc∪F1)

f̃l(s+ 2, z′) dµ(z′) ≤ 2

|k(s+ 1)|

∫
1≤r≤er

(sin θ)Re s drdθ

r

≤ 2

|k(s+ 1)|
l × lRe s+1

This allows concluding that Il = O(1) and Jl = O(l2). This ends like in [5].

Remark 5.8. 1) We refer also to the result of Fay [6], final remark, p. 201–202.
2) It is possible to establish a link between hyperbolic Eisenstein series and general-
ized eigenfunctions (I thank F. Naud for this suggestion) as presented in Borthwick
([1], p. 68)

Let Efl(s, z, t) correspond to the funnel with pinching boundary geodesic. We use
the first point of this remark and its notations to write Efl(s, z, t) = bsEf (s, z, b) =∑
n∈Z Fn,0(z, s)bn̄, where b = et and n̄ = 2iπn/l; and conclude that as l→ 0,

1

l

∫ l

0

Efl(s, z, t) dt→ E∞(s, z) .

Application. One of the applications we can think about is in studying the
degeneration of the residues of the hyperbolic Eisenstein series. Let us give an ex-
ample: we look at the case of a degenerating family of compact Riemann surfaces,
a non-separating geodesic being pinched, with the family of scalar-valued hyper-
bolic Eisenstein series degenerating. Remember that we obtained that the series
1
lsAl(s, z) converges uniformly on compact subsets of S0 to E∞(s, z)+E0(s, z). The
last sum of Eisenstein series has no poles on [1/2, 1] except at s = 1 and a finite

number of sk = 1
2 +

√
1
4 − λk where the λk correspond to the residual spectrum.

In other words, if (λk(l)) converges to λk, where λk is a small cuspidal eigenvalue,
then Res( 1

lsAl(s, z)) → 0, otherwise Res( 1
lsAl(s, z)) → Res(E∞(s, z) + E0(s, z)).

There are many obstacles to carrying this calculation further. First of all, we are
only dealing with small eigenvalues and so here there is no hope to characterize
the embedded eigenvalues through degeneration. Moreover, we need to take into
account the multiplicity of an eigenvalue λk(l). So the easiest result we can ob-
tain is a characterization of the residual spectrum (recall that an eigenvalue in the
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residual spectrum is simple) with αk(l) =
∫
cl
ψk,l(z) dµ(z) where the eigenfunction

ψk,l is associated to the eigenvalue λk(l); if λk is a pole of E∞(s, z) +E0(s, z), then

αk(l) = O(l1/2+
√

1/4−λk(l)), and otherwise αk(l) = o(l1/2+
√

1/4−λk(l)).
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