N

N

Hyperbolic Eisenstein series for geometrically finite
hyperbolic surfaces of infinite volume.

Thérese Falliero

» To cite this version:

Thérese Falliero. Hyperbolic Eisenstein series for geometrically finite hyperbolic surfaces of infinite
volume.. Publications of the Research Institute for Mathematical Sciences, In press. hal-00610249v4

HAL Id: hal-00610249
https://hal.science/hal-00610249v4

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00610249v4
https://hal.archives-ouvertes.fr

Hyperbolic Eisenstein series for geometrically finite hyperbolic surfaces
of infinite volume.

Thérése FALLIERY
classification: Primary 30F30, 32N10, 47A10; Secondary 53C20, 11M36, 11F12

keywords: Harmonic differential, Eisenstein series, Degenerating surfaces.

INTRODUCTION.

The spectrum of the Laplace-Beltrami operator for a compact Riemann surface
is discrete, but this is no longer the case when M is non-compact. For example,
when we remove one point from M, there arises a continuous part in the spectrum
whose spectral measure is described by an Eisenstein series. The study of the limit-
ing behaviour of the spectrum of the Laplace-Beltrami operator for a degenerating
family of Riemann surfaces with finite area hyperbolic metric has been used to ex-
plain this phenomenon (see for example [27], [17], [14]). The present paper has one
of its motivations in the general study of the approximation of Eisenstein series (see
for example the question of Ji in [I7], p. 308, line 15, concerning the approximation
of Eisenstein series by suitable eigenfunctions of a degenerating family of hyperbolic
Riemann surfaces). We hope to surround it via hyperbolic Eisenstein series (for
results on degenerating Eisenstein series, see, for example [22], [23], [8], [9]). This
article is organized as follows. In section 1 we provide the necessary background on
geometrically finite hyperbolic surfaces of infinite volume. In section 2 we recall the
definition and verify the convergence of hyperbolic Eisenstein series in the infinite
volume case, like suggested in [20]. In section 3 we review the spectral decompo-
sition for a geometrically finite hyperbolic surface of infinite volume. We obtain
the analytic continuation of hyperbolic Eisenstein series and then the fact that this
permits realizing a harmonic dual form to a simple closed geodesic on a geometri-
cally finite hyperbolic surface of infinite volume (Theorem . In a similar way,
in section 4, we realize a harmonic dual form to an infinite geodesic joining a pair
of punctures (Theorem . Moreover in Section 5 we generalize the definition of
hyperbolic Eisenstein series to the case of g—forms (see Section 5 formula )
After we study the limiting behavior of these g—forms on a degenerating family
of geometrically finite hyperbolic surfaces of infinite volume (see Theorem and
Theorem . In particular we obtain a degeneration of hyperbolic Eisenstein se-
ries to horocyclic ones (Theorem [5.3(2)). Since this new result is at the heart of
our motivation, we will be a little more precise.

Main Theorem

Let (S;); be a degenerating family of Riemann surfaces with infinite area hyper-
bolic metrics, S; having a funnel F; whose boundary geodesic is denoted ¢;. We
denote by €., = ; the hyperbolic Eisenstein series of the Kudla—Millson theory
associated to the pinching geodesic ¢; (see Section 2), Sy = I'\H the component of
the limiting surface containing the cusp oo of stabilizer I'o, (see Section 5.1) and E
the horocyclic Eisenstein series associated to the limiting cusp defined, for Res > 0
by Exc(s+1,2) =3 p_\rIm(oz)* d(oz) (see (12)). For s € {Res > —1/2}, except
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possibly a finite number of points in (—1/2,0), the family of C*° 1-forms on S; de-
pending meromorphically on s, ZS%QZ (s,.) converges uniformly on compact subsets

of Sy to %Imgw(s +1,.); where ImE.(s + 1,.) is to be understood as
1 -
I Eao (s +1,2) = (D Tm(02)° d(oz) — Y Tm(o2)° d(0%)).

Too\T Too\T

1. PRELIMINARY DEFINITIONS

Let us recall the standard analytic and geometric notations which will be used.

In this paper, a surface is a connected orientable two-dimensional manifold, with-
out boundary unless otherwise specified. We denote by H the hyperbolic upper
half-plane endowed with its standard metric of constant Gaussian curvature —1. A
topologically finite (i.e. finite Euler characteristic) surface is a surface homeomor-
phic to a compact surface with finitely many points excised and a geometrically
finite hyperbolic surface M is a topologically finite, complete Riemann surface of
constant curvature -1. We will require that M be of infinite volume, i.e. there exists
a finitely generated, torsion free, discrete subgroup I' of PSL(2,R), unique up to
conjugation, such that M is the quotient of H by I acting as Mobius transforma-
tions, I' is a Fuchsian group of the second kind, and I" has no elliptic elements. The
group I admits a finite sided polygonal fundamental domain in H. We recall now
the description of the fundamental domain of M = T'\H (see [1]). Let L(T") be the
limit set of T, that is the set of limit points (in the Riemann sphere topology) of
all orbits I'z for z € H and O(T") = RU{oo} — L(T"). As L(T") is closed in RU {c0},
O(T) is open and so can be written as a countable union O(T") = U,e4O0, where
the O, are disjoint open intervals in RU{oo}. Now let T'y, = {7 € T',¥(O,) = O4 }.
This is an elementary hyperbolic subgroup of I'. The fixed points of I', are exactly
the end-points of O,. There is a finite subset {a(1), @(2),...,a(ny)} C A such that
for a € A, O, is conjugate to precisely one Ou ;) (1 < j < ny). Let A\, be the
half-circle, lying in H, joining the end-points of O,. Let A, be the region in H
bounded by O, and A,. The A, (a € A) are mutually disjoint.
Let P be the set of parabolic vertices of I', and for p € P, let I';, be the parabolic
subgroup of T fixing p. There is a finite subset {p(1), p(2), ..., p(n.)} C P such that
I', is conjugate to precisely one I'(;) (1 < j <n.). A circle lying in H and tangent
to OH at p is called a horocycle at p. We can construct an open disc C), determined
by a horocycle at p € P such that

(i) if p, g€ P,p # q,then C,NC, =0,

(“) 'V(Cp) = C’y(p) ('7 € F)v
(#i1) OpmAa:(Z) (pe P,aeA).

If we consider the set H — (U,cp Cp UUyea Do), We see that it is invariant under
I". We can find a finite-sided fundamental domain D for the action of I on this set;
D is relatively compact in H.

Proposition 1.1. There is a fundamental domain D for T' of the form

D = K" UU}Z, Doy Upey Doy



where

1) K* is relatively compact in H,

2) Dy;y is a standard fundamental domain of T'n(;) on Dy,
3) D;(k) is a standard fundamental domain for Ty on Cpy.

We should note that ny # 0 if and only if I' is of the second kind.

The Nielsen region of the group I is the set N = H — (UaycaAg), the truncated
Nielsen region of I'is K = N — (UpeprCy), K = I'\K is called the compact core
of M. So the surface M = I'\H can be decomposed into a finite area surface
with geodesic boundary N, called the Nielsen region, on which infinite area ends F;
are glued: the funnels. The Nielsen region IV is itself decomposed into a compact
surface K with geodesic and horocyclic boundary on which non compact, finite area
ends C; are glued: the cusps. We have M = K UC U F', where C =C1 U...UC),,
and FF=Fy U... Uan.

A hyperbolic transformation T' € PSL(2,R) generates a cyclic hyperbolic group
(T"). The quotient C; = (T')\H is a hyperbolic cylinder of diameter | = [(T). By
conjugation, we can identify the generator T with the map z — ez, and we define
I'; to be the corresponding cyclic group. A natural fundamental domain for I’
would be the region F; = {z € H,1 < |z| < e!}. The y—axis is the lift of the only
simple closed geodesic on Cj, whose length is [. The standard funnel of diameter
[ > 0, F, is the half hyperbolic cylinder I')\H, F; = (R"), x (R/Z), with the
metric ds? = dr? + (2 cosh?(r)dxz?.

We can always conjugate a parabolic cyclic group (T') to the group I'y, generated
by z +— z + 1, so the parabolic cylinder is unique up to isometry. A natural
fundamental domain for 'y, is Fow = {0 < Rez < 1} € H. The standard cusp
Co is the half parabolic cylinder ' o\ H, Co = ([0, o0[) X (R/Z),, with the metric
ds? = dr?+e~?"dz?. The funnels F; and the cusps C; are isometric to the preceding
standard models. We define the function r as the distance to the compact core K
and the function p by

2¢e7" in F
(1) o ={ % nE
with p extended to a smooth non vanishing function inside K in some arbitrary
way. We will adopt (p,t) € (0,2] xR/I;Z as the standard coordinates for the funnel
F;, where t is the arc length around the central geodesic at p = 2.
For the cusp, our standard coordinates (p,t) € (0, 1] x R/Z are based on the model
defined by the cyclic group I'os. The cusp boundary is y = 1, so that y = €” and
p=1/y. We set t =z (mod Z).

2. HYPERBOLIC EISENSTEIN SERIES ON A GEOMETRICALLY FINITE HYPERBOLIC
SURFACE OF INFINITE VOLUME.

2.1. Return to the definition of Kudla and Millson of a hyperbolic Eisen-
stein series. In the following, M will denote an arbitrary Riemann surface and
L?(M), the Hilbert space of square integrable 1-forms with inner product

1 .
(w1, we) = = wy N *W3
2 m

and corresponding norm ||.||z2. The pointwise norm of a 1-form w is defined by
w A *w = ||w||? * 1 where 1 is the volume form.



Let ¢ be a simple closed curve on M. We may associate with ¢ a real smooth closed
differential n. with compact support such that

® /Cw:/Mw/\nc,

for all closed differentials w. Since every cycle ¢ on M is a finite sum of cycles
corresponding to simple closed curves, we conclude that to each such ¢, we can
associate a real closed differential n, with compact support such that holds.

Let a and b be two cycles on the Riemann surface M. We define the intersection

number of a and b by
a.b= / Ng ANy .
M

In [20], Kudla and Millson construct the harmonic 1-form dual to a simple closed
geodesic on a hyperbolic surface of finite volume M in terms of Eisenstein series.
Let us recall the definition:

Definition 2.1. Let n be a simple closed geodesic or an infinite geodesic joining p
and q. A 1-form « is dual to n if for any closed 1-form w with compact support,

/w/\a:/w.
M n

Or, equivalently, for any closed oriented cycle ¢,

(3) /Cla:n.ca

Kudla and Millson construct a meromorphic family of forms on M, called the
hyperbolic Eisenstein series associated to an oriented simple closed geodesic c. Let
¢ be a component of the inverse image of ¢ in the covering H — M and I'y the stabi-
lizer of ¢ in I'. The hyperbolic Eisenstein series are expressed in Fermi coordinates
in the following way for Res > 0:

_ _ 1 . dz _TErG+3)
(4)  Qcls,2) =Q(s, 2) = k(s)rg:\rv Wa k(s) == W

By applying an element of SL(2,R), we may assume that ¢ is the y—axis in H and
that T'; is generated by 71 : z — e'z. The Fermi coordinates (x1,x5) associated to
¢ are related to Euclidean polar coordinates by

z

r = e,
1
sinfl - = .
St cosh zo
We obtain
1 oy
(5) s, z) = — Z ~*(sin)° d 6.
k(s) oy
Using the following equalities
Imvyz = |yz|sinf(yz) = |y 2| Im z,
dlog ﬁ = 2idf(vyz),

Yz



we find

(6) fﬂaz)IZ%;@)ﬂsz > (;;)Sv%dz—-<1;) 7'zd’

I\l vz

We denote, with a little misuse of notation, to simplify Q(s,z) = Im(O(s, z))
with
1 S
(7) O(s,z) = ) Z v* (ziyz|sdz> =1Q(s, 2) — *Q(s, 2),

A\l

keeping in mind that the complex conjugation is apply on z and “not on s”.
At the end of their paper, they make the remark that “it is also interesting to
consider the infinite volume case.”

2.2. The infinite volume case. We are going to verify that this definition is
still meaningful in the case of a geometrically finite hyperbolic surface of infinite
volume, M = I'\H, I being a Fuchsian group of the second kind without elliptic
elements. We identify M locally with its universal cover H. By d(z,w) we denote
the hyperbolic distance from z € H to w € H. For zg € H and ¢ > 0, by
B(zy,€) C H we denote the hyperbolic metric ball centered at zy with radius e.

Proposition 2.1. The hyperbolic Eisenstein series §)(s, z) converges for Res > 0,
uniformly on compact subsets of H, is bounded on M, and represents a C'°° closed
form which is dual to c. Moreover, it is an analytic function of s in Res > 0.

The proof in the infinite volume case is as straightforward as in the finite volume
case ([20], [I0]), but for the convenience of the reader we give some details.

Proof. Recall first that if K is a compact subset of the fundamental domain D of
T, then there exists 7 > 0 such that for all zg € K, the balls (B(vz0,7)) are
disjoint.

For a fundamental domain of I'y, let us choose D1y = {z € H : 1 < |z| < (}.
After passing to ordinary Euclidean polar coordinates (r, ), with o = Re s, where
[|1©2]| denotes the pointwise norm of §, we obtain

’YEFl\F

[1€2(s, 2)

IN

1
(s | Z (chza(yz))ot+t

A\l

L UH 1 o+1
) s X v

i\l [v]eT1\I',y2€D1

Now y* is an eigenfunction of all the invariant integral operators on H. Let k(z, 2’)
be the point-pair invariant defined by k(z,z’) = 1 or 0 according as the distance
between z and 2’ is less or no less than 7. Then there exists a A,, independent of

zo such that
- dxdy - dzdy
/ Y — :/ k(z0,2)y" —5
B(z0,m) Y H Y

dxdy
Yy’ —5— = Myy(z0)°
/B(Zom) y? !

and
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This is a particular case of a more general result we will need further on (see

Proposition .
We write, as in [20], R(T1,T2) = {P € D1 : T1 < 22(P) < T3}. So for T > 2,

1 1 1

IS < ) Y (72).
o+1

k() YETI\T,y2&€R(~T,T) (ch(w2(v2)) k()] [VIETI\Ly2€DI\R(=T.T)

We need the following.

Lemma 2.1. Lety € T1\I, z, ¢ € H such that for vz € R(—T,T), v¢ € B(yz,7).
Then ~¢ & R(=T +2n,T — 2n).

Proof. Let w: H — ¢ be the orthogonal projection on ¢. As 7 is 1-Lipschitzian, we
have for the hyperbolic distance d(mvyz, my() < d(yz,7¢) <n. If zo(vy2) > T,

T < d(yz,myz) < d(v2,7C) + d(v(, 7YC) + d(myz, ™) -

Then
T —2n < d(v¢, 7).
([l
Then
- 1 o1 dzdy
D I D VT A
~ETI\Tv2¢R(—T,T) " €T \TyzgR(~T,T) * B(yz:m) Yy
= Ay Jre(—rianm—2n) y?
where R¢(—T + 2n,T — 2n) is the complement in Dy of R(—T + 2n,T — 2n). Note
: B
hat if —T,T), th < —
that if vz € R(—T,T), then y(vyz) < o7 5
5
o B h(T=2m) o—
> vz < y tdy
Ay Jo

YETI\L,v2¢R(~T,T)

< 5( 8 )
~ Ao \ch(T —27)

From this, there follows the uniform convergence of (s, z) on compact subsets of
H, uniformly on compact subsets of the half-plane Re s > 0.

We next show that Q(s, z) is bounded on D. For this we use a very useful funda-
mental lemma (see [I5], p. 178, [12], pp. 27, 214 note 30):

Proposition 2.2. Suppose that ¢ > 1. For any Fuchsian group T', there exists a
C(q,T) such that for all z € H,

y(r2)?
2 fir s =0T

The constant C(q,T") depends only on q and T.
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Proof. Let z € H. Then there exists a system of representatives S of I'1\I' (de-
pending on z) such that for all v € S, |yz|] < 8. In effect, let (d1,...,0n,...) be
a system of representatives of I'1\I', then for all n there exists p,, € Z such that
Wrén(z) € Dy.

Then
> y(r2) 3 y(r2)""!
2(oc+1 — 2(c+1)
S (L4 B)et o (=)
o+1
< Z (1 $(|’7?|)2(6+1)
T Y
< C(oc+1,T)

and the result follows.
O

Remark 2.1. The constant C(q,T) depends solely on q and D where D is a tiny
circular disk such that:
DUID C H and T(D)ND =0 for allT €T —{I}.

The fact that (s, z) is dual to ¢ follows straightforwardly from the construction
of Kudla and Millson. O

3. SPECTRAL DECOMPOSITION AND ANALYTIC CONTINUATION.

The aim is to realize the injection H! — H!, where H! is the first de Rham
cohomology group with compact support of M and H! is the space of L? harmonic
1-forms of M. Recall that in our context, dim H! = co (see [2], p. 27).

We are going to prove, as in [20], that the hyperbolic Eisenstein series have an
analytic continuation. The essential difference from the finite volume case is the
spectral decomposition of L?(M).

3.1. Spectral theory. For any non-compact geometrically finite hyperbolic sur-
face M, the essential spectrum of the (positive) Laplacian A,; defined by the hy-
perbolic metric on M (the Laplacian on functions) is [1/4, co) and this is absolutely
continuous. The discrete spectrum consists of finitely many eigenvalues in the range
(0,1/4). In the finite-volume case, one may also have embedded eigenvalues in the
continuous spectrum, but these do not occur for infinite volume surfaces. Then if
M has infinite volume, the discrete spectrum of A/ is finite (possibly empty). The
exponent of convergence ¢ of a Fuchsian group I' is defined to be the abscissa of
convergence of the Dirichlet series

d =inf{s >0, Z e sd=Tw) < o0}
Ter

for some z,w € H, where d(z,w) again denotes the hyperbolic distance from z € H
tow e H.

Let T be a Fuchsian group of the second kind and L(T') be its limit set. Then
0 <6 <1 with § > 1/2if T has parabolic elements. Patterson and Sullivan showed
that ¢ is the Hausdorff dimension of the limit set when I' is geometrically finite.
Furthermore, if § > 1/2, then (1 — ¢) is the lowest eigenvalue of the Laplacian
Ajs. The connection with spectral theory was later extended to the case § < 1/2
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by Patterson. In this case, the discrete spectrum of Aj; is empty and § is the
location of the first resonance. For a detailed account of the spectral theory of
infinite area surfaces, we refer the reader to [I].

3.2. Tensors and automorphic forms. This section introduces the notations
used in the following subsection [3.3] and Section[5] Let M be a geometrically finite
hyperbolic surface. Let z be a local conformal coordinate and ds?> = p|dz|? the
Poincaré metric. Let wy; = T*M be the holomorphic cotangent bundle of M and
for any integers n and m, let £7°(M,w}; ® wh;) be the vector space of smooth
differential forms of type (r,s) on M with values in the line bundle w}; ® @yh;. For
an integer ¢, a g—form (or g—differential) is an element of 77 = £%%(M,w?,), the
space of tensors of type ¢ on M, written locally as f(z)(dz)9. M may be realized
as I'\H, where H is the upper half-plane and I" a discrete subgroup of PSL(2,R).
The hyperbolic metric on M induces the natural scalar product on T:

<¢m@-—[*wawMzw%2@ﬂy.

Let $? be the L?—closure of T7 with respect to this scalar product.

We recall now the link between ¢—forms and automorphic forms of Weighﬂ 2q,
also called g—automorphic forms for the following reason. As before, we make use
of the uniformization theorem.

Using the notations of [11] and [7], set

) (cz+d)?  cz+d vz \ " a b
= = = - F.
.]’Y(Z) |CZ+d|2 cz+d "V/Z| Y c d S
Let F, be the space of all functions f : H — C with
fyz) =3,(2)f(2), v €T,
and if D = I'\H is a fundamental domain for I', define the Hilbert space H, =

{f e Fo.{f. ) = [p|f(2)]? du(z) < oo} with areal measure du(z) = dﬂy“jy and the
inner product

(8) ()= [ FEaTn).

An element in H, is called an automorphic form of weight 2q. #, is isometric to
$H9 through the correspondence

(9) I:99> f(d2)?— yif € H,.

Maass introduced the differential operators

L,= (Z—z)%—q tFy = Fy-t
Ky= (2-2)5;+q Fg— Fgu

We also have

Ly

9 .
—2iy' oy = Koy,

K, = 2iy'1—

2Some authors refer to them as weight g or —2¢



We write
—Lg1Ky = —Dog+ q(q+1),
—Kg1Lg = —Ag+q(g—1)
with
0? 0? 0
Ao, = 12— + —) — 2igy— .
2¢q =Y (3x2 + 8y2) qua$

These second order differential operators are self-adjoint on H,,.
Now, the metric and complex structure determine a covariant derivative

V=VigeV,: "M, wi) — (M, wi,) @ " (M, wi,)
on the line bundle w,. With the identifications E1:0(M,wi,) = T and £%1 (M, wi,) =
T9~1 we have
V?:T9— TV, : T — T 1
Under the correspondence Iy, Iy, : $* > f(d2)* — y*f € Hp, k=q—1,¢,q+ 1
the operators V4, V? go over to the Maass operators according to the commutative
diagram

gt Troge B et

3 \ 1
Lq Kq

qul — Hq — Hq+1

and so are given locally by

V=1 K, =2ipl0p~* and V=1, Lyl = =2ip 0,

where 0 = 8% and 0 = %.
The Laplacians A;r and A; on T are defined by A;r = -V Vi = fI(;qu_s_quHIq__s_lquIq =

I =Ly Kg)ly, A, = =V9'V, = 171 (—K4-1Lg)I, and then the isometry I

conjugates A} with —Ag, +q(g+1) and A, with —Agg+q(g—1). Thus Ay = Aoi

is the Laplacian on functions. The Ajﬁ are non-negative self-adjoint operators.
We are first interested in the case ¢ = 1. Let Ap;g be the (positive) Laplacian

on 1-forms on a geometrically finite hyperbolic surface, Apig = dd + dd, § = — * dx

with * the Hodge operator. In the following, we write Apig = A. If w is a 1-form

in the holomorphic cotangent bundle, w = f(z) dz, then we define its image by the

isometry I to be I(w) = I(fdz) = yf(z) = f(z). We have yA(f dz) = —(Asf)dz,

in other words, in the preceding notation, A = A7 .

3.3. Generalized eigenfunctions. We are going to give the spectral expansion
in eigenforms of A; we use [7], [24], [I]. With the notation of Section 1, for a
finitely generated group of the second kind, for each cusp and for each funnel of
the quotient there is a corresponding Eisenstein series, which is what we are going
to develop now.

We will denote R4 the resolvent operator defined for Res > 1/2, s ¢ [1/2,1]
by Rsq = (Azq +s(1—5))7L.

Proposition 3.1. For an integer q, for Res > §, Gs(z,w,q), the kernel of the
resolvent R 4, for the self-adjoint operator Aqg, acting on the Hilbert space Hy of



10

automorphic forms of weight 2q, is given by the convergent series

J(zw,q) =Y jy(w)igs(z,qw,q)

yel’
with
w—2\"T(s+q)I'(s—q) 9
| - h2 NF —g,2s; cosh™
gr(evaa) = = (222 ) FEEAE D o) 2) 0,50, o

and F being Gauss’s hypergeometric function.

We collect some properties we can find for example in [24], vol I, p. 100, with [IJ,
Chapters 6 and 7. The resolvent kernel G4(z,w, ¢) has a meromorphic continuation
to all of C. Following these references, we define generalized eigenfunctions.

For the funnel case, we identify 2’ with the standard coordinates (p',t') (see ()

in the funnel Fj, and, with 2/ = et we denote

(10) a:’sEj}iq(s, z,2') = (1—2s) pl/igo P Gy(2,7,q),

for j =1,...,ny. In the cusp C;, with standard coordinates 2’ = (p',t’), we set
(11) ES (s,2) = (1 —2s) pl/igo P G2, 7 q)

forj=1,...,n

We will call them respectively (standard) funnel Eisenstein series and cuspidal
FEisenstein series. The Poisson kernel is

P(z,¢) =Im(2)/]z - ¢
where z € H and ¢ € R. For b € O(T') = RU {o0} — L(I'), define the Eisenstein
series ([24] [3])

bz, k) =D 5(7,2)" P(3(2),0)* (7(2), b)*,
yel
where j(v,2) =+'(2)/|7 (2)] and (2,b) = (Z—b)/(z —b). It converges uniformly on
compact subsets of H if Res > 4.

Proposition 3.2. The series Ep(z,s,k) can be continued to the whole complex
plane as a meromorphic function in s.

One verifies that —Aq, Fy(z, s, k) = s(1 — s)Ep(z, s, k).

Remark 3.1. Thus, if § < 1/2, then Ey(z,s,k) is analytic in a neighbourhood of
Res=1/2.

For the standard funnel F; which corresponds to the region Re z > 0 in the model
C, =T \H, we have (see [7], p. 200)

Elfq(s,z,ac') = (1-2s) lim (Imz2')"*Gs(z,7,q)
’ 2=’
4 T(s+q)T(s —q)
= (1-25) TPV p (5 s.q).
In the case of 1-forms we write,
El (s,z,a'
Ep (s, z,2') = 7“( ) dz.
Y

Now we point out the link between cuspidal and classical Eisenstein series.

*(d(z,w)/2))
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Remark 3.2. Recall the definition of the classical Fisenstein series. We will as-
similate the standard cusp of a parabolic point with the latter. The stabilizer of a
cusp a is an infinite cyclic group generated by a parabolic motion,

Fo={yel:ya=a}=(y4) ,

say. There exists a o4 € SLy(R), called a scaling matriz of the cusp a, such that
11
0 1
translation from the right. The Eisenstein series for the cusp a is then defined by

Ey(s,2) = Z y(ogtv2)*

To\I

0,00 = a, 0,5 Y40, = 0q 1S determined up to composition with a

where s is a complex variable with Res > 6.

Definition 3.1. In a similar way we define the Fisenstein series of weight 2q
associated to a cusp a as the automorphic form of weight 2q, for Res > §:

E _ —1 E —q __ —1 s (0;17)12 !
na($:2) = Y Y072, ()7 = D ylog'v2) ()
€T \D YET\T [(7a7)'4|

We call a horocyclic Fisenstein series the 1-form corresponding to the Eisenstein
series of weight 2 associated to a cusp a, Eq 1 and defined for Res > 1 by

E
12) &)= Y ylorne) T dlogtyn) = Dei g,
yEL A\ Yy
We now verify that this corresponds to the defining formula , that is Eg , =

a,q-
For the standard cusp, we write for Res > ¢,

- q
Go(2,7,0) = (cz+d) Gi=(vz,7',q),

ror cz+d

E

where GL>(z,2',q) is the resolvent kernel of the standard cusp for automorphic
forms of weight 2q. We use then [7], p. 155 (38), p. 177 for Im 2z’ > Im~z, p. 172
(see also [1, pp. 72, 102) to conclude that

. s— z+d\? (Imyz)* 1
lim y* ' Gy(z, 7, q) = « = Ea .
y’l—I}})oy Gelant4) FZ\F (CZ—I-d 1—2s 1-2s als:2)

In particular from the foregoing and the references cited, we have

Lemma 3.1. The funnel and cuspidal Fisenstein series, E]{q(s, z,t") and Eq 4(s, 2),
can be continued to the whole complex plane as a meromorphic function in s.

We recall the property (see for example [7], p. 196, [24], [1], p.94)

Remark 3.3. The possible poles of the resolvent Gs(z,2',q) in Res > 1/2 are
simple and at s1,q, ..., Sn,q € (3,1) corresponding to the eigenvalues A q 1 <k < N
of the Laplacian —Agq on 5.

Recall the decomposition (see Section 1) M = K U<, C; U?il F;, with the
preceding notation and formula(g]), we then have (see for example [7], [24])
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Proposition 3.3. For f € H,,
N Ne 400
> (Fan,(2) Z/ (f, ES (1/2+it, ) ES (1/2 + it, 2) dt +

e'J
/1 (f, B (1)2+it, . ,b))EI (1/2+it,z,b)db| dt;

where the first sum in the right member is the projection of f on the discrete spec-
trum.

Let’s formulate the spectral decomposition we needed in the case of 1-forms.

Proposition 3.4. For w = f(z) dz square integrable,

w(z) = Z( Z/ (w, &, (1/2+it,.)) &, (1/2 +it, z) dt +

1 <
i Z/m
Jj=1

where the first sum in the right member is the projection of w on the discrete
spectrum, E.; and Ef; are the Eisenstein series associated to the cusp C; and the
funnel F;, respectively.

w,Ey, +it, ., (1/2 +1it, 2, t;
&y (1/2 b)) &g (1/2 b)db| d
1

Remark 3.4. One can easily deduce the formula for an arbitrary square integrable
1-form, with the following notations,

Ec,(5,2) 1 =& (s,2) Er.(s,2,b)4 =&, (s,2,b)
Ee,(5,2)- =E&,(5,2) Ero(s,2,b)- =&, (5,2,b)

(z) = fdz+gdz=> (i, (2) +

i=1

Mi/ o (1241t )4 ) E, (1/2+it,2) 4 + (Q,E,(1/2+it,.) ) &, (1/2 +it,z)_dt
"f 400

+— / / (Q,&,(1/2+it,.,b)1) Ef,(1/2 + it, 2,b) 4 dbdt
"f +o00

+— / / (Q,&5,(1/2+it,.,b)_) E,(1/2 +it, z,b)_ dbdt

For simplicz'ty, we will write

+oo
13)  Q(z) = (Q),\i(z)—ki/ (2, &, (1/2+it, 1) E, (1/2 + it 2) 4 dt +

1 [t
=/

l

/ (Q,gfk(1/2+if,.,b)i)gfk(1/2+it7z,b)idb dt.
1
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3.4. Harmonic dual form. We are now going to see

Proposition 3.5. If ¢ is an oriented simple closed geodesic on M, then, for Res >
0, the hyperbolic Eisenstein series Q.(s,.) are square integrable.

Proof. We consider a fundamental domain D contained in {z,1 < |z| < €'} in which
the segment (i,ie!) represents the geodesic c. We write C\ = {z € D,d(z,¢c) = A}
and Fy = {z € D,d(z,¢) > A}. Without loss of generality we may assume that
there is only one funnel on M and no cusps. Let V) be the volume of F\ — Fi41.
Then there exists a constant ¢; such that V,\ > ¢1(sinh(X\ 4+ 1) — sinh())). For
Res = 0 > 0, ||Q%(s,2)|| = [|90s,2)|| < 1oy Zrnr @ommgayer Let n(2) =

Zrl\r W We know from Section 2 that there exists a constant K > 0

such that Vz € H, n(z) < K.
We have

/ 19005, 2)|Pdu(z) <
D

k(s)[?

/,
1 1
/ (2) ——————— cosh za dx1 dzo

N

0 (2)du(2)

IA

n
1E(8)|? Ji<as<el —ococas<too (coshza(z))ot?
K 1

k($)1? Ji<ai<et —socaactoo (COShE2(2))7H

cosh o dxq dos .

ol —

1
%(e — 1) and the result follows. U

As in [20], we verify that
A(Q(s,2)) +s(s+1)Q(s,2) = s(s+ 1)Qs + 2, 2).
This formula has the consequence that for fixed s with Res > 0, the function
AF(Q(s, 2)) is again square integrable for any k > 0.
Set Res > 0. Then with the notation of Remark in particular in the last

equality , we decompose the first sum of the right member as Q(z) the harmonic
part of Q(s, z) plus the projection on the non zero discrete spectrum. More precisely

L[,
Q(s,z) = Qo(2) + ai(s)pi(z) + — / h{(s,8)E(1/2 +it, z)x dt

dm J_

The last integral is

+oo
(14) +% V HI(s5,,0)E¢(1/2 4 it, 2,b)+ db| dt,

where, {¢;} is a complete orthonormal basis of eigenforms of A with corresponding
positive eigenvalues, a;(s) = (s, .), ;), h% (s,t) = (Q(s,.), &, (1/2+1it,.)+) and
H{*(s,,b) = (Q(s,.), & (1/2 + it, ., b) 1),
We obtain with H corresponding to any Hi’“
(1/4+t* +s(s+ 1)) H(s,t,b) = s(s + 1)H(s + 2,,b).

From this we get a continuation of H to the region Res > —1/2 and we note that
for all ¢ and all b we have H(0,t,b) = 0.

Moreover, for Res > —1/2, Re(s +2) > 0 and we may substitute in (14]) to
obtain a continuation of (s, z) to Res > —1/2. In particular s = 0 is a regular
value. Substituting s = 0 into AQ(s, z) + s(s + 1)Q(s,2) = s(s + 1)Q(s + 2,2)
we obtain AQ(0,z) = 0. Moreover for any closed oriented cycle ¢/, for Res > 0,
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/.. Q(s,.) = e.c and by analytic continuation, for Res > —1/2, in particular for
s = 0. Thus we have proved the following theorem:

Theorem 3.1. Q(s, z) has a meromorphic continuation to Res > —1/2 with s =0
a regular point and (0, z) is a harmonic form which is dual to c.

Remark 3.5. 1) Another way to see this is:

write Q(s,z) = (A + s(s + 1)) (s(s + 1)Q(s + 2, 2)) and use the meromorphic
continuation of the resolvent (see for example [1], [25]).

2) Using methods analogous to those of [20] (see also [18]), we can obtain a complete
description of the singularities of the hyperbolic Eisenstein series.

4. THE CASE OF AN INFINITE GEODESIC JOINING TWO POINTS.

Without loss of generality, we suppose that the two cusps p and ¢ are 0 and co
and, as the lift of the geodesic, we take the imaginary axis. Let n be the infinite
geodesic |p, ¢[. Can we carry out the same construction as Kudla and Millson? As
in the finite volume case, the problem reduces to studying the following series for
Res > 1:

~S _ 1 Y . —1 _ s
(15) n(z)—k(s_l);w[(d) Tz dz>]—1m<9 (=) .

where

and the notation

_ P(A/2)T'(s/2)
Mo =)= Taa1s/2)

2zk: Z” l(u)d] o Wl)d

4.1. Some useful estimates. As usual, we can suppose 'y, = (z — 2z + 1) to be
the stabilizer of co in I and the stabilizer of 0, 'y, is then generated by z —

m(6°(z)) =

7ngz+1
(for some non-zero constant cg).
First of all we note that, unlike in the finite volume case (see Proposition and

(1L1)):
Lemma 4.1. The series ). cp_\pIm(y2) is convergent.
Another way to see this is ‘by hand’: We know that for Res > 0, > o e~ sd(i.T%2)

converges; moreover there exists a constant C' > 0 such that 3°_ . \p Im™e*(yz2) <

CY rere” Resd(i,T2) a5 in our case § < 1, we have the result.

As X ero\r ’Im (’yz)ﬁjiﬁ’ = D er\l Im™°%(~z), we also deduce the conver-

gence of the series representing Fo, 1(1, 2) (3.2).

Lemma 4.2. We have the following asymptotic behaviour for Res > §:
1) in a funnel, for all cusps a, Eq(s,z) is square integrable;

2) at a = 00, Ex(s,2) —y° = O(y'~*) and Eo(s, z) = O(y'~*);
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3) mear a = 0, Eo(s,z) — y*/(cj|2*)* = O(y'~*/(c§|[*)*"") and Ewo(s,z) =
O(y' == /(c§l=*)~1).

Proof. With the notations of 3.1 and taking p to be the standard coordinate for
the cusp a, we re-write the results of [I](p. 110) in the following way:

(16) Eq(s,.) = p~*(1 = xo(p)) + 0(p5p5 "),

where we define xo € C§5°(M) such that, r being the distance to the the compact
core for a point in cusp a,

- 1, r<0
Xo(p) = xo(e )2{0 r>1;

and py (resp. p.) is the standard coordinate in the funnels (resp. cusps). Now
I' contains parabolic elements then § > 1/2. The area form in standard funnel
coordinates is dA = pfdpfdt + O(1), so p}/Q is the threshold for L? asymptotic
behavior in a funnel. Then for Res > § > 1/2 we have 1). The cusp area form is
dA = dp.dt, so borderline L? behavior is pc_l/Q. For 2) and 3) we can use , see
also [5] proposition 3.1. O

4.2. Convergence of the hyperbolic Eisenstein series and its analytic con-
tinuation. The computations to prove the convergence of are easily adapted
from the finite volume case. For the convenience of the reader, we recall the essen-
tial points.

s—1
We have || 30, cpv* (%) Im(z1dz)|| < > er ( ) (vz) , where 0 =Res > 1
and if we put S = Z y)
yel |Z|

1
S= > ya(vz)zmz&—k&,
neZ

YET o\

(vz), we have

with

S = v (72) and Sy = Z Y7 (v2) Z !

o o’
YET o \I' |’YZ| YET o \T' nez* ,yz+n|

Let S, be a system of representatives of I'oo\I' such that | Re~yz| < 1/2. Then

ISl <842 07093 75

YES:
‘We have
Y D N
T Z1 Do\(Too\T) Iv I" < | —ncg 72+1|"
(72) 1
= > + D Z ; :
o o _ o/2
e T |VZ| YETO\(Too\T") Ivl = | x(y2) — 1/nc§)? 4 y*(72)]

For K a compact set in H there exists m in H such that

Vz € K, ¥y € To\I'uo\I', |72 > |m| and Im~z > Imm.
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So

s < T y"(’yj)+ 3 y"(v:*) 3 261 _
Im| Im| ncg|” (Tmm)

’YGFO\(FDO\F) 'YGFO\( oc\F) nez*
1 1
< Y7 (vz) +2 y7(v2) ;
|m|® Fg\:r n%\; (nc ) [m|7 (Imm)? Fg\:r
and lastly, for all z in K
1 1
IISI] < ——= Y7 (vz) +2 Y7 (v2)+
|m|® ;F n%; (nc ) Im|7 (Imm) ;F
22 v Z:: - 1/2

Lo \I

with uniform convergence on all compact subsets of H and all compact subsets of
Res > 1.

From this last inequality we conclude that 6° is square integrable in the funnels
as the Eisenstein series £,,. Moreover using the notation in formula (4] ) we can
write n°(2) = >_ e V" ps, Where ¢, = ﬁ(cong) satisfies Aps + s(s — 1)ps =
s(s — 1)pst2. To conclude, we have the following theorem:

Theorem 4.1. For Res > 1, the Eisenstein series associated to the geodesic n =
(p, q) converges uniformly on all compact sets. It represents a C* closed form which
is dual to . For Res > 1 it satisfies the differential functional equation:

A = s(1 = ) — 7"

Now we want to prove that 7° has an analytic continuation to Res > 1/2 and
s = 1 is a regular value. For this, first of all, we are going to show that 6°(z) —
1/i(Exo(1,2) — E0(1, 2)) is square integrable. As we have shown that 6° is square
integrable in the funnels, what we have to do is to investigate the Fourier expansion
of 6° at each inequivalent cusp, i.e. at 0 and oo, and to show that ||6%|| is bounded
at the cusps. As in the finite volume case, we have ([5]):

Proposition 4.1. At co

0°(:) = (5 + 0(1/y)) dz
and at 0

0°(2) = (=g + O fy) d2

(&1
By Proposition [£.1] and Lemma we conclude:

Proposition 4.2. The I-forms 0°(z)—1/i(Ex(1, 2)—Eo(1, 2)) and 71*(z)+Re(Ex (1, 2)—
&o(1,2)) are square integrable.

Proof. Let’s, for example, treat the case at co. Recall that

s (5 [(8) 4]+ [(8) ¢

n°(z) =
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can be deduced from the

s—1
The asymptotic behavior of ﬁ Z’yEF % [(g) %

[ E—

preceding study. For example at oo it behaves like —(+ 4+ O(1/y)) dz. We conclude
that n°(z) = —3(dz + dz) + O(1/y dz) and the result.
]

Lastly, as in [5]:

Theorem 4.2. The 1-form 7}® has a meromorphic continuation to Res > 1/2, with
s =1 a regular point and 1 is a harmonic form which is dual to 7.

5. DEGENERATIONS.

5.1. Background material and the main results. A family of degenerating
geometrically finite hyperbolic surfaces consists of a surface M and a smooth family
(91)1>0 of Riemannian metrics that meet the following assumptions:

(1) The Riemannian manifold M; = (M, g;) is a geometrically finite hyperbolic
surface for each .

(2) There are finitely many disjoint open subsets C;; C M that are diffeomor-
phic to cylinders R/Z x J; where J; C R is a connected neighborhood of 0
with the metric (z,a) — (I;(1)? +a?)dz? + ((1;(1)* + a®)~1da® and I;(I) — 0
as [ — 0. The curve ¢; = R/Z x {0} is a closed geodesic of length I;({).

(3) The complement of (Cy U...UCy,) U (Fy U...UF,,)U; C;; where we may
have some F; C C;; is relatively compact.

(4) On My := M\ U; ¢;, the metrics ¢g; converge smoothly to a hyperbolic
metric gg as I — 0. My is a possibly non connected hyperbolic surface that
contains a pair of cusps for each 1.

First of all, we recall some material and results. The following lemma can be
found, for example, in [I], p. 252-253. The neighbourhood of points within a
distance a of a geodesic v, where d(z,7) is the hyperbolic distance from z to 7,

Ga = {Z € K7d(zv’7) S a’}a
is isometric for small a to a half-collar [0,a] x S*, ds* = dr? + I? cosh? r d6?.

Lemma 5.1. Suppose that 7y is a simple closed geodesic of length l(7y) on a geomet-
rically finite hyperbolic surface M. Then ~ has a collar neighbourhood of half-width
d, such that

1
sinh(d) = —————.
@)= S /2)
As a consequence, if n is any other closed geodesic intersecting v transversally (still
assuming vy is simple), then the lengths of the two geodesics satisfy the inequality

1
inh(l 2)> —.
SO 2 Ghae)72)
Lemma 5.2. Let v be a simple closed geodesic of length I on a complete hyperbolic
surface M. If « is a simple closed geodesic that does not intersect 7y, then, putting
d(v,a) to be the hyperbolic distance of v to «,

coshd(~, @) > coth(1/2) .
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A standard collar for a geodesic of length [ is a cylinder isometric to (z — e!2)\C
with C = {z = re?, 1 < r < el <0 < m—1} C H with the restriction of the
hyperbolic metric, and (z + e!z) the cyclic group generated by the transformation
z +> elz. There is a constant ko (the short geodesic constant) such that each closed
geodesic on M; of length at most kg has a neighbourhood isometric to the standard
collar and each cusp for M; has a neighbourhood isometric to the standard cusp;
furthermore, the collars for short geodesics and the cusp regions are all mutually
disjoint.

Here we consider a family of surfaces S; = I\ H degenerating to the surface S
with only one geodesic ¢; being pinched, T'; containing the transformation o;(z) =
elz corresponding to ¢;. Let K; be S; minus C; the standard collar for ¢;. There exist
homeomorphisms f; from S;\¢; to S, with f; tending to isometries C2-uniformly on
the compact core K; C Sj; define m; = fl_l. Suppose that p is one of the two cusps
of S arising from pinching ¢;. Let So = I'\H be the component of S containing
p and conjugate I' to represent the cusp by the translation w — w + 1. In the
following, p = co.

Let, for Res > 1, au(s,2) = > o 7 * [(ﬂ)
1

the hyperbolic Eisenstein series ., = §); is related by (s, z) = mal(s +1,2).
Without loss of generality we suppose S; has only one funnel ;. With the notation
of the beginning of the paper, S; = KU(C1U...UC,, )UF; and ¢ is the one geodesic
of the boundary of the compact core K. We consider the specific case of p, the limit
of the right side of the ¢;-collar, contained in S;\F;. With the misuse of notation

already mentioned

1
Im(zldz)} be such that

Theorem 5.1. Let Res > 1. Then the family of 1-forms l%al(s,m(.)) converges
uniformly on compact subsets of Sy to ImEqo (s, .).

This is a particular case of Theorem [5.2] below.

The sketch of the proof of this theorem follows those of the finite volume case
(], [27], see also [§]). To study the right side of the ¢;-collar, let w = } log z, with
the principal branch z € H, and conjugate I'; by the map w to obtain T'; acting

2
on §; = {w,0 < Imw < 7/l}. The hyperbolic metric on S, is ds? = (ml(lldliwmlm) )

|dw|
Im w

2 .
which tends uniformly on compact subsets to ( ) . I'; is a (non-Mdbius) group

of deck transformations acting on &;; the quotient f‘l\Sl is 5.

In the following if a group G acts on a domain D, we will denote by G4 the
stabilizer in G of a subset A C D.

Let fl be the restriction of f; to the component SZ(T) of Sj\¢; containing the right
half-collar for ¢;. Let Fj be a lift of fl to the universal covers A; and H, where A,
is the simply connected component of H \ﬂfl (c1) which contains the standard right
collar {z =re 1 <r <ell<0<m/2} Sl(r) = (') 4,\‘Ai. More precisely [4], p.
350, [27]:

Lemma 5.3. The simply connected component A; contains {z = re? 1 <r <
el le(l) < 0 < m/2} where c(l) — 0,1 — 0.
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Start with the standard T' fundamental domain F = {w € H,0 < Rew <
1,Imw > Im A(w),VA € T}. Set D; = Fl_l(]-"), then D is a fundamental do-
main of Sl(r). Divide the cosets of (o7)\(I'; — {(07)) into two classes D = {[A], A €
I'y,inf Re A(D;) > 0} and G = {[A4], A € I';,supRe A(D;) < 0}.

Then f; has a lift f;, a homeomorphism from a subdomain of & to H: f, =
Fow™ :w(A) — H. The homeomorphism fi induces a group homomorphism
p T =T, A fflAfl, A e T. Now by our normalizations for T'; and T, the
translation w — w + 1 corresponds to itself and induces an isomorphism from I" to
(fl)w(Al)~ We call p;(A) € T the element corresponding to A € T. If we specify
the further normalization f;(i) = 4, then the lifts f; are uniquely determined and
then we have (see, e.g. [27], p. 107)

Lemma 5.4. The fl tend uniformly on compact subsets to the identity, and thus
for A € T, the corresponding elements p;(A) tend uniformly on compact subsets to

A.

For ¢ € N, we associate to the pinching geodesic ¢;, the g—form defined for

Res > 1 by
/ q
Apq(s, z) = Z (7 (z)) sin®~90(yz) dz9.
oo, N TE)

Remark 5.1. As suggested by the referee, it would be interesting to have a geomet-
ric meaning of Ay 4(s, z). As far as I know, in the case of functions, they have been
study in particular in [8], [I8], [19]. In the case of 1-forms, the analytic continuation
of the hyperbolic Fisenstein series gives a harmonic dual form to the corresponding
geodesic and the construction of an explicit geometric basis for the space of holo-
morphic 1-forms (|20]). In the case of 2-forms (quadratic differentials), they permit
to define vector fields on Teichmiiller space ([21], Chapter 2). For q—forms (q > 2)
I could maybe find some answer in [21].

Divide the cosets (z — z + 1)\(I'; — (z = z + 1)) into two classes, the left and
the right: for 7} = f; ' (F), L = wGw™" = {[A], A € T, inf Im A(F;) > 7/2l} and
R=wDw™' = {[A], A € T;,supIm A(F;) < 7/2l} (the line {Imw = 7/2} is a lift
of ¢;, and we write [A] for the (z — z + 1) coset of A). In particular the cosets
(z = 24+ 1)\(I' = (z — z + 1)) correspond to the right cosets of T;: {[p/(A)], A €
I',(w— w+ 1)} C R. Then we can write, where x4 is the characteristic function
of {Rez > 0} and x_ that of {Rez < 0},

")\ . o
Apg(s,z) = Z 7 sin®"10(vz) dz?
(o (7(2) >

and the g-form on Sl(r):

Af (s,2) = y(2)* ¢
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(17) = lq(sinlhnw)s*q(x—&—Z(i'w)qw’wffq)dwq,
R

with w = }log z and x the characteristic function of w({Rez > 0}).

Theorem 5.2. Let S; = T\ H be a family of geometrically finite hyperbolic surfaces
degenerating to the surface S with only one geodesic ¢; being pinched and with S
having only one funnel Fy; Ty contains the transformation o;(z) = e'z corresponding
to ¢; and the right half-collar for ¢; is in S]\Fy. Let Sy = T'\H be the component of
S containing p, the cusp arising from the right half-collar for ¢;, p = oco. Let w =
1logz and write again with a little misuse of notation Ay q(s,w) = aiq(s,w) dw?
and the corresponding q-automorphic form (for I'1) a;4(s, w) = Im(w)%a; q(s, w).
Denote by dﬁq the right half of a;.q. Then the family (l%&ﬁq(s,m(.)))l converges
uniformly on compact subsets of Sy and on compact subsets of Res > 1 to the
FEisenstein series for weight 2q:

Pralssw) = 3 (o) (2

oo \T

Remark 5.2. We have the analogous result: if we denote by &fq the left half of a;.q,
then lisdfq(s,m(.)) converges to (—1)1Eq 4(s,.), where Eq 4(s,.) is the Eisenstein
series of weight 2q (see Deﬁnition associated to a, the other cusp arising from
the left half-collar for c;.

Before proving this theorem we give some complements and its corollaries.

For Res > 1 let b,(s) = e™/? Jo (sinu)*~2e7"" du. Note that by(s) = k(s —
1). The function b, has the following properties (see e.g. [I8]): by(s +2) =
-1
88(28—612)1)(1(8)7 b, admits a meromorphic continuation to all s € C, more precisely
I(s—1)

D50 (57)

by(s) = w2752 .
In order to be consistent with the definition of Kudla and Millson’s hyperbolic
Eisenstein series, we may use the normalized g—automorphic forms

1

18 Za(s,2) = ——A; (s, 2).

( ) lyq( ) bq(S) lyq( ) )
We have indeed Z;1(s,2) = ©(s — 1, z) defined in (7)) Section 2.1.
We recall that the series converges absolutely and locally uniformly for any
z € H and s € C with Res > 1, and that it is invariant with respect to I'.

Let @ 4(s,z) (respectively, fi4(s,2)) be the g—automorphic form associated to
A 4(s,z) (respectively, Z; 4(s,2)) via the correspondence @ More precisely and
with the notation of Theorem [5.2]
Al q(S;Z) = al,q(872) qu
; Y
— &lv(I(S?w) du)q7

w9

flﬂ(sa Z)

= — q f — A
Eiq(s,2) 0 dz1, fr.q(s,w) bq(s)ahq(s,w).
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A straightforward computation shows that these series satisfy the functional differ-
ential equations

Noglyg(s,2) + s(1 = s)aq(s,2) = (s +q)(qg — 8)arq(s +2,2),
and
(19) Aqul,q(sv z) +s(1— S)th(s, z)=s(1— S)fl,q(s +2,2);
and so, the series A4; 4(s, 2) satisfies the functional differential equation
Ainl’q(s, 2)—(stq)(1—stqAi4(s,2) =(s+q)(s— @)A1 4(s+2,2),
and the series (|18))
AqiElvq(s, 2) = (sEq)(1—s£q)=14(s,2) =s(s —1)Z 4(s +2,2).

Proposition 5.1. The series A; 4(s, z) (as well as Z; 4(s, z)) admits a meromorphic
continuation to all of C.

Proof. There are different ways to prove this: one is to use the functional differential
equation and to apply the method developed in [20] (see also [I8]). More
precisely, from we have

fl’q(s, 2) =s(1—s) GL(z, 7, q)fl,q(s +2,2 ) du(z'),
D

where D is a fundamental domain of S; and G (2, 2/, q) has been defined in propo-
sition Another way is to use [7]. We make precise another calculation which

we will develop further. We can rewrite a; (s, z) as

- cz+d\? (vz a/2 Imyz\°’
wien= 3 (552) (2) (5

o)\

1
and using the Fourier development of G(z, 2’, ¢) and the expansion of fle Gs(z,iy',q) dIny’
we obtain the result (see [7] corollary 4.2, p. 188). O

We recall from Section [B.3] that

Remark 5.3. The possible poles of the resolvent GL(2,2',q) in Res > 1/2 are sim-

ple, in finite number and at 5117(1, ...,sﬁlhq € (%, 1) corresponding to the eigenvalues

/\ﬁw, 1 <k <ny of the Laplacian —Aqq on Sj.
In particular, fi (s, z) is holomorphic in ¥; = {Res > 1/23\{s} s sh, o}

T TngL,g

We can then refine Theorem [5.2] to the following.

Theorem 5.3. Let )\z, 1 < k < n, be the eigenvalues of the Laplacian —Asg,
on Sy such that 0 < A] < X\ < ... < A < 1/4 < M., and the corresponding

st =14 /2= A withRes] >1/2 and let ¥ = {Res > 1/2}\{s{, ..., s1}.
(1) In the case where the geodesic c; is not separating, without loss of generality
we can suppose that the two limiting cusps are represented by co and 0, the
Jamily (3 f1,4(s,m(.))); converges uniformly on compact subsets of Sy and

1 (=17
on compact subsets of ¥ to ——FEo ¢(s,.) + ——+Ep4(s,.).
by(s) i by(s) !
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(2) In the case where ¢; is the geodesic boundary of a funnel, thelfamily (l%th (s,m()))h
—F ).
by(s) wals:-)

Remark 5.4. In the case ¢; is separating and different from the geodesic boundary
of a funnel as m Theorem@ and Remark[5.3, we can define the right and left half
of + s fl q= ls a; q+ s fl 4 cach series in the right member converges to the Eisenstein
series of the corresponding cusp.

converges uniformly on compact subsets of Sy and % to

Remark 5.5. We remark that as oy is the geodesic in the funnel, it follows that
D = {o)\(T; — {0y)) and G = 0.

We have seen that in the infinite volume case, s = 1 is a regular value for
E (s, 2) for every ¢ € N. In the finite volume case, we know that s = 1 is a
simple pole for E (s, z), which is no longer the case for ¢ > 1:

Remark 5.6. For g € N*, s =1 is a regular value of Ex 4(s, 2).

Proof. This comes from the Fourier development of Eo 4(s,z): we have ([7], p.
175)

Foog(5,2) = ¥° +¢a()y" 7+ Y am(y,$)4e™™™"
m#0
, I(s) i
with o, (s) = Tls —oT(sta® ™
RN
s =1 (with residue Vol(Sy)/7) and 1/T'(s — ¢) has a zero at s = 1. O

©o(s). The function ¢ has a simple pole at

We now give the poles of by(s):

Lemma 5.5. For an even ¢, the poles of by(s) are simple and at the numbers
s=1-—2k, ke N.
For an odd q, the poles of by(s) are simple and at the numbers s = —2k, k € N.

From the preceding results and Theorem (5.3) we deduce

Corollary 5.1. With the preceding notation,
(1) Suppose q is odd. If the geodesic c; is not separating (respectively, the
geodesic boundary of a funnel) the family (ai,q(s,m/(.))); converges uni-
formly on compact subsets of Sy and on compact subsets of ¥ to Ex 4(s,.)+

(—1)9Ey 4(s,.) (respectively, Ex 4(s,.)).
(2) Suppose q is even, we have the same results as the preceding, on replacing

Y by X\{1}.
Remark 5.7. For g =1 we obtain the result announced in the Introduction.

5.2. Proofs of the main theorems and final remarks.
Proof of Theorem[5.3

It is enough to demonstrate the convergence for S a relatively compact set in
the fundamental domain F. Given € > 0, denote by G the set of cosets and repre-
sentatives for (z — z + D)\I" such that sup Im A(F) < € for [A] € G and let R; be

the corresponding cosets of (z — z 4+ 1)\I'; with the corresponding representatives.

Lemma 5.6. The set G, is finite.
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Proof. We have to show that the number of representatives for (z — z + 1)\I" such
that supIm A(F) > e is finite. Take a real a such that the cusp for the parabolic
point 0o, {0 < Rez < 1,Imz > a} C F. As for all g € G, different from the
identity, g(F) and F are disjoints, we have sup Im g(F) > € and sup Im g(F) < a.
Let S a system of representatives of (z — z + 1)\I' such that the disjoints sets
{[A](F),[4] € S8} recover B = {0 < Rez < 1}. The disjoints sets {g(F),g € G}
recovering the compact set {0 < Rez < 1,¢ <Imz < a} of B, the cardinal of G,
must be finite. O

The cosets G, of T' satisfy (modulo the action of (z — z + 1)) {0 < Rew <
1,Imw > €} C Uageq, A(F); thus for [ sufficiently small the cosets R; satisfy (mod-
ulo the action of (z — z+ 1)) {0 < Rew < 1,2¢ < Imw < 7/2l} C Uaer, A(F1)
(this is a consequence of the convergence on compact subsets of the f; and of the fact
that F; contains the right half-collar for ¢;, {0 < Rew < 1,¢(l) < Imw < 7/21},
see Lemma [5.3] Now for a right coset [A] € R — R;, we have that A(F;) lies below
the ¢; geodesic {Imw = 7/2l} and is disjoint modulo the action (z — z + 1)
from {0 < Rew < 1,2¢ < Imw < 7/2l}, since the latter is covered by the
R; cosets. Thus for [A] € R — R;, modulo the action of (z — z + 1), we have
A(F) {0 <Rew < 1,Imw < 2¢}. For w € 3, using , we write

1 1

Sl (o) = o (mw)(sin Tmw)* U+ D0 (5 w) 5 0l
R

1
= (Imw)?(sinl Imw)*~9(x + Z('?'w)q|7y’w|s_q)
R,

(Im w)(sin 1 Tm w)*~9( > (§'w)!|7'w[*~7).
R—R;

1

+ e

Now on f for [ sufficiently small, x is identically unity and because of Lemma
the coset representatives for R; approximate the coset representatives for Ge.
Thus for l%dﬁq(s, .), in the last equality, the first sum is uniformly close to the
corresponding terms for E 4(s,.).

The principal problem lies in estimating the second sum: it remains to show that

: ~/ o
}%R;l 7'w|” =0,

where 0 = Res.
~ ! o ’y/zl o o / o
S Y Wiy Y Wl
R—-R; w—(R—R;)w 7= w1 (R—R;)w
where w = }1log z; and vF; C w ' ({0 < Rew < 1,Imw < 2¢} N B). We deduce
1
Yw|” < ——— Im” .
Z wl” < sin? ({ Im w) Z m?(y21)
R—Rl w—l(R—Rl)w

Let €y €]0,sinh™" 1[ such that for all [ sufficiently small and all w € 3, B(z;, ) C
Fi, then Usep-1(r—r)wB(v21,€0) C {2,0 < argz < 2¢l,1 < |z| < e'}. Moreover
there exists a A, independent of zp € H such that

dxd
/ 5 Y A y(z0)
B(zo,€0)

y2



24

this is a particular case of the following Proposition [5.2} needed further in a more
general case. Hence

1 dzd

S (Imyzn)T = 3 oty

A Y2
w1 (R—Ri)w €0 w-1(R—Ry)w ’ B(121:60)

Now (see, e.g. [27], p. 102):

Lemma 5.7. The multiplicity of the projection map H — T\H restricted to
B(z0,m) with 2n < co is at most Mp~2(z), where M is a constant and p(zo)
the injectivity radius at zg.

For the convenience of the reader, we give a detailed proof.

Proof. It B(z9,n) N B(yz0,n) # 0, v € T, then d(29,7v20) < 217 < ¢ and 2z is in a
cusp region or the collar for a short geodesic. Let ¢ = ¢¢/2. Then p(zp) < ¢. Denote
by m(n) the multiplicity of the projection restricted to B(zo,n). As 2n+ p(z0) < 3¢
and the B(vzo, p(20)) are disjoint, we have

m(m)u(B(zo, p(20)) < p(Blz0,30))

Hence m(n) < % < 2(cosh3c — 1)p(z9) 2. O

Now we have

1
Z (Imfy’zl)g S A m(Go)/ y072dl'dy
yew~(R—R;)w €0 U—yewfl(Rle)wB('Yzlyﬁo)
A
S (Co)piz(zl)/ y072d1'dy,
Aeo {z,0<arg z<2el,1<|z|<e'}
Then
Alco) _p, €7 —1(2el)7*
20 L\ < @t
(20) 12 (Imyz)” < AEOP (z1) . ]
w~ 1 (R—R;)w

Moreover, as B(z;,€9) C JFi, p(z1) > € and the conclusion follows.

Proof of Theorem[5.3.

The main point of the proof is to use Vitali’s theorem, as in the finite volume
case, we follow [4], Proof of Theorem 4.2. More precisely, first we will recall a
definition.

Definition 5.1. A family (f,) of meromorphic functions on a domain O in C is
called bounded in O if

(1) 3(zm)m a discrete subset in O,

(2) VK compact set of O\{zmm}, In(K), Vn > n(K), fn has no pole in K,

(3) Mk = Sup,>p (k) (SUP.ck | fn(2)]) < +o0.

As before, 8 will der}ote a relatively compact set in the fundamental domain F

of So. The family (& fi,4(s,m(w)));, where fq(s,w) = ﬁdhq(s,w), is a family
of meromorphic functions on ¥ = {Res > 1/2}\{s{,...,s¢}. Now, by Theorem

(5.2)), for every compact C' C {Res > 1} this family converges uniformly (a fortiori
simply) on C' x 8 C {Res > 1} x F to
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(1) bql(s) (Esoq(s,.) + (=1)7E4(s,.)) in case (1) of Theorem (5.2),

(2) ﬁEm,q(&.) in case 1)

We will show that for every compact set K in ¥, there exists {(K) such that for all [
less than I(K), s +— l%th(s, 7(.)) has no pole on K and My = suplgl(K)(supseK | l%fl,q(s, T()|oo,8) <
+o0o—and then we can conclude the result.

The outline of the proof being independent of ¢, we will omit writing ¢ and only
indicate the changes needed in the case of general ¢ if necessary. In particular in
this paragraph we can write A instead of Ay,.

As in the finite volume case, we start from the equality

his.2) =50 - 8) [ Gule ) uls +2,2) /10 du(2)
Dy

where, to simplify notation, we omit writing ¢ = 0; but we can write G.(z,2’) to
insist on the dependence in . The definition and properties of G.(z, z’) are given
in Section We start from Remark (5.3)), the poles of GL(z,2’) in Res > 1/2 are
simple, in finite number and in (3, 1), they correspond to the small eigenvalues (<
1/4) of the Laplacian on S;. As tends to zero, these poles tend to the corresponding
poles of the resolvent of the limit surface; in other words the small eigenvalues tend
to the small eigenvalues (see [26],[7]). Now take K a compact of ¥, there exists
I(K) such that for [ < [(K), all the finite number of poles of G(z,2’) are in the
open set ¥\ K, from the same Remark , 5 l%fl,q(& 7(.)) has no pole on K.
We will suppose C'is a compact subset of Sp, Y C Sp is such that m;(Y) is a standard
collar, and m(Y) Nm(C) = 0, X = Sp\Y, K’ a compact subset of ¥’ = 3\{1}.
Decompose the preceding integral and write

llsfl(s,m(w)) =L+Ji,

where

I = / Go(m(w), 2") fi(s+2,2") /15 du(2'),  J, = / Go(m(w), 2') fi(s+2, 2') /1% du(2') .
m(Y) m(X)

Now the main step is to estimate G4(z, z’,q). We apply [7] Corollary 1.3, p. 151:

Proposition 5.2. If Ay, f = s(s — 1) f in some non-Euclidean disc B, of radius r
about zg € H, then f has the mean value property:

f(z0) = ;/ f(z) (z — Zg>qdu(z) where mgy(r,s) = 2w /T shrP, ,(r) ~mr? as r—0;
B, 1

mg(r, s) 20— Z

P, (r)=(1- tanh? 5 F(s—q,5+4q,1; tanh? 5) and F is the Gauss’s hypergeo-
metric function.

to conclude that
(21) Ywe C,V2' e m(Y),Vs € K',|Gs(m(w), 2, q)] < O)||Gs(m(w),.,q)||L,

(see also [4] Lemme 4.4).
The next point is to show that

(22) V(w,s) €C x Klv ||GS(7T1(’LU), "Q)HL2 = O(l)a

the constants in question depend only on the compact sets. We can use [26], theorem
15(1), but we give here another presentation using the spectral decomposition.
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In effect, we have, using the notation in Section [3.3] in particular Proposition
, where {p,} is a complete orthonormal basis of eigenfunctions of A with
corresponding eigenvalues {\,} and where we don’t note the dependence on I of
the eigenfunctions, cuspidal and funnel Eisenstein series:

Lemma 5.8. Fora >1

(), ) = () 9+ X | g5 ~ ) T

;Z/_m [s 1—s 711 1+2) a(l—a 71 1/4 + 2 }Eﬂq(éﬂt’m(w))Eﬂg(;Ht’z)dH
— oo Ls(1=35)=(1/ ) a(l—a)—(1/ )

1 oo 1 1 S I 1 .
mzk:/m L(l—s)—(l/4+t2)_a(1—a)_(1/4+t2)}/1 By (5+it,m(w), BB (5 +it,z b) b,

all the sums are finite.

Proof. We can use and follow the method in for example [13] (and the references
therein), [1I], p. 103, to prove it, but not to be too long we can also remark as in
[16], p. 87-88, [1], Theorem 6.2, p. 82, that, with E, corresponding to any E¥, E,f

1 1
AEQ(5 +it,) + (1/4+ t?)Ea(5 +it,) =0,

and E, (% +it,.) € p~1/2L%(S)).
So for u, Reu >1 (Reu —1/2 > 1/2)
R,(A+u(l—uw)E, = E,.

We deduce that,

—_ 1 1 1
L E t E.(= +it
(L1, Buls +it)) = s == gy ol + it mw)
and in a similar way as ¢,, € L(5)),
1
n b=/ G , du(z).
Applying Proposition [3.3| to G%(m(w),) — G (m;(w),) by complex conjugation we
obtain the lemma for Res > 1 and by analytic continuation, to Res > 1/2. O
From this we now deduce, writing A, = u(1 — u),
Lemma 5.9.
! l 2 _ 2 | (m (w)]?
||Gs(7rl(w)7')—Ga(ﬂl(w)")HLz - ‘ Z ‘)\ -\, ‘ |)\ —\, |2+

|>\a dt+

1 [t |ES(1/2 + it, m(w))[?
’ |27/ [As = (/44 12)]2[Aq — (1/4 + £2)[?

Ik
) 1 /+oo 1 /e f ) )
a—As| — E{(1/2 , , .
AP | T AT At e ), B/t mw), b dbdt
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So there exists a constant M, depending only on the compact set K’ of ¥/, such
that

2
P28 ). . D2
The fact that we have for a > 1, ||G4(m(w),.,q)||L, = O(1), the constants in
question depend only on the compact sets, is an adaptation of [13] or [I4].

Now we are going to prove that I; = O(1) and J; = O(I?).

With the same proof as [4] Lemma 4.3, we have fm(Y) |fi(s + 2,2)|du(z) =
O(1)IRe* true for Res > 1/2.

Recall that S; = RUC,U...UC,, UF; where here, we denote by R the compact
core. Jy = [ yynp Gs(2,2) fu(s+2,2") /1° d/‘(zl)"'fm(X)n(clu...ucnchl) Gs(z,2") fu(s+
2,2 /15 du(z’) .

By Theorem H and , Jovxyni Ga(z: 2 fils +2,2) /19 du(2') = O().

For 2/ € C; U...UC,, U F, we have the same estimates as in . Now let’s
verify that we have also fRﬂ(Clu...UCnchl) fils +2,2)/1°du(2') = O(1).

We have

[|Gs(mi(w), ., 1) — Go(m(w), .,l)||%2 <

- 2 drdf
fi(s+2,2)du(z) < 7/ sin §)Res ——
/Rm(clu...uCnCuFl) ( )i k(s + 1) 1§r§e'r'( r
2
l % lReerl
k(s +1)|

This allows concluding that I, = O(1) and J; = O(I?). This ends like in [5].

Remark 5.8. 1) We refer also to the result of Fay [0], final remark, p. 201-202.
2) It is possible to establish a link between hyperbolic Eisenstein series and general-
ized eigenfunctions (I thank F. Naud for this suggestion) as presented in Borthwick
(M, p. 68)

Let Ey, (s, z,t) correspond to the funnel with pinching boundary geodesic. We use
the first point of this remark and its notations to write Ey, (s, z,t) = b*Ef (s, 2,b) =
Y onez Fno(z, )07, where b= e* and i = 2inn/l; and conclude that as | — 0,

1
7/0 E¢ (s, 2z,t)dt = Ex(s, 2).

Application. One of the applications we can think about is in studying the
degeneration of the residues of the hyperbolic Eisenstein series. Let us give an ex-
ample: we look at the case of a degenerating family of compact Riemann surfaces,
a non-separating geodesic being pinched, with the family of scalar-valued hyper-
bolic Eisenstein series degenerating. Remember that we obtained that the series
#A(s, z) converges uniformly on compact subsets of S t0 Fua(s,2)+ Eo(s, z). The
last sum of Eisenstein series has no poles on [1/2, 1] except at s = 1 and a finite

number of s, = % + ,/% — A\x where the Ay correspond to the residual spectrum.

In other words, if (Agx(l)) converges to i, where A is a small cuspidal eigenvalue,
then Res(A;(s,z)) — 0, otherwise Res(A(s,z)) = Res(Ex(s,z) + Eo(s, 2)).
There are many obstacles to carrying this calculation further. First of all, we are
only dealing with small eigenvalues and so here there is no hope to characterize
the embedded eigenvalues through degeneration. Moreover, we need to take into
account the multiplicity of an eigenvalue Ag(l). So the easiest result we can ob-
tain is a characterization of the residual spectrum (recall that an eigenvalue in the
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residual spectrum is simple) with oy (1) = fcl ¥11(2) dp(z) where the eigenfunction
Yy is associated to the eigenvalue A, (1); if Ai is a pole of E (s, 2) + Eo(s, z), then

a(l) = O(Y*+V1/A=2D) “and otherwise ay (1) = o(I'/2TV /4= W),
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