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HYPERBOLIC EISENSTEIN SERIES

FOR GEOMETRICALLY FINITE

HYPERBOLIC SURFACES OF INFINITE VOLUME.

THÉRÈSE FALLIERO

Abstract. Let M be a geometrically finite hyperbolic surface of infinite volume. After
writing down the spectral decomposition for the Laplacian on 1-forms of M , we generalize
the Kudla and Millson’s construction of hyperbolic Eisenstein series (Invent Math 54:199-
211, 1979) and other related results (see theorems 3.1, 4.2, 5.1).

Introduction.

The spectrum of the Laplace-Beltrami operator for a compact Riemann surface is discrete,
it is no more the case when M is not compact. For example when you withdraw one point
from M , it appears a continuous part in the spectrum whose spectral measure is described
by an Eisenstein series. The study of the limiting behavior of the spectrum of the Laplace-
Beltrami operator for a degenerating family of Riemann surfaces with finite area hyperbolic
metrics have been used to explain this apparition (see for example [22], [15], [13]) and one
of the motivation of this paper is the interest in a question of L.Ji in [15], p.308, concerning
the approximation of Eisenstein series by suitable eigenfunctions of a degenerating family of
hyperbolic Riemann surface. We hope to surround it via hyperbolic Eisenstein series (for
results on degenerating Eisenstein series see, for example [18], [19], [8], [9]). What we really
do here is to develop the suggestion in [17], to construct hyperbolic Eisenstein series and
harmonic dual form in the infinite volume case: in this context we verify the convergence of
hyperbolic Eisenstein series and the fact that it permits to realize a harmonic dual form to a
simple closed geodesic on a geometrically finite hyperbolic surface of infinite volume (theorem
3.1) and in a similar way of an infinite geodesic joining a pair of punctures (theorem 4.2).
We obtain a degeneration of hyperbolic Eisenstein series to horocyclic ones (theorem 5.1 and
corollary 5.2):

Theorem 0.1. Let (Sl)l a degenerating family of Riemann surfaces with infinite area hyper-
bolic metric and Ωcl = Ωl the hyperbolic Eisenstein series associated to the pinching geodesic
cl. For Re s > 0, the family of 1-forms 1

ls+1Ωl(s, πl(.)) converge uniformly on compact subsets

of S0 to
Γ(1+ s

2)
Γ( 1

2)Γ(
1
2
+ s

2)
Im E∞(s+ 1, .).

1. Preliminary definitions

Let us recall the standard analytic and geometric notations which will be used. In this
paper a surface is a connected orientable two-dimensional manifold, without boundary unless
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2 THÉRÈSE FALLIERO

otherwise specified. We denote by H the hyperbolic upper half-plane endowed with its
standard metric of constant gaussian curvature −1. A topologically finite surface is a surface
homeomorphic to a compact surface with finitely many points exised and a geometrically finite
hyperbolic surfaceM is a topologically finite, complete Riemann surface of constant curvature
-1. We will require that M is of infinite volume, then there exists a finitely generated, torsion
free, discrete subgroup, Γ, of PSL(2,R), unique up to conjugation, such that M is the
quotient of H by Γ acting as Möbius transformations, Γ is a fuchsian group of the second
kind and Γ has no elliptic elements different from the identity. The group Γ admits a finite
sided polygonal fundamental domain in H. We recall now the description of the fundamental
domain of M = Γ\H (see [1]). Let L(Γ) be the limit set of Γ and O(Γ) = R ∪ {∞} − L(Γ).
As L(Γ) is closed in R ∪ {∞}, O(Γ) is open and so can be written as a countable union of
O(Γ) = ∪α∈AOα where the Oα are disjoint open intervals in R ∪ {∞}. Then let Γα = {γ ∈
Γ, γ(Oα) = Oα}.
This is an elementary hyperbolic subgroup of Γ. The fixed points of Γα are exactly the end-
points of Oα. There is a finite subset {α(1), α(2), ..., α(nf )} ⊂ A so that, for α ∈ A, Oα is
conjugate to precisely one Oα(j) (1 ≤ j ≤ nf ). Let λα be the half-circle, lying in H, joining
the end-points of Oα. Let ∆α be the region in H bounded by Oα and λα. The ∆α (α ∈ A)
are mutually disjoint.
Let P be the set of parabolic vertices of Γ, and for p ∈ P let Γp be the parabolic subgroup
of Γ fixing p. There is a finite subset {p(1), p(2), ..., p(nc)} ⊂ P so that Γp is conjugate to
precisely one Γp(j) (1 ≤ j ≤ nc). A circle lying in H and tangent to ∂H at p is called a
horocycle at p. We can construct an open disc Cp determined by a horocycle at p ∈ P so
that:

(i) if p, q ∈ P, p 6= q, then Cp ∩ Cq = ∅,

(ii) g(Cp) = Cg(p) (g ∈ Γ),

(iii) Cp ∩∆α = ∅ (p ∈ P,α ∈ A).

If we consider the set H − (
⋃

p∈P Cp ∪
⋃

α∈A∆α), we see that it is invariant under Γ. We
can find a finite-sided fundamental domain D for the action of Γ on this set; D is relatively
compact in H.

Proposition 1.1. There is a fundamental domain D for Γ of the form

D = K∗ ∪ ∪
nf

j=1Dα(j) ∪
nc

k=1 D
∗
p(k)

where
1) K∗ is relatively compact in H.
2) Dα(j) is a standard fundamental domain of Γα(j) on ∆α(j)

3) D∗
p(k) is a standard fundamental domain for Γp(k) on Cp(k).

We should note that p 6= 0 if and only if Γ is of the second kind.
The Nielsen region of the group Γ is the set Ñ = H − (∪α∈A∆α), the truncated Nielsen

region of Γ is K̃ = Ñ − (∪p∈PCp), K = Γ\K̃ is called the compact core of M . So the surface
M = Γ\H can be decomposed into a finite area surface with geodesic boundary N , called
the Nielsen region, on which infinite area ends Fi are glued: the funnels. The Nielsen region
N is iteself decomposed into a compact surface K with geodesic and horocyclic boundary on
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which non compact, finite area ends Ci are glued: the cusps. We have M = K ∪ C ∪ F ,
where C = C1 ∪ ... ∪ Cnc and F = F1 ∪ ... ∪ Fnf

.
A hyperbolic transformation T ∈ PSL(2,R) generates a cyclic hyperbolic group 〈T 〉. The

quotient Cl = 〈T 〉\H is a hyperbolic cylinder of diameter l = l(T ). By conjugation, we can
identify the generator T with the map z 7→ elz, and we define Γl to be the corresponding
cyclic group. A natural fundamental domain for Γl would be the region Fl = {1 ≤ |z| ≤ el}.
The y−axis is the lift of the only simple closed geodesic on Cl, whose length is l. The standard
funnel of l > 0, Fl, is the half hyperbolic cylinder Γl\H, Fl = (R+)r× (R\Z)x with the metric
ds2 = dr2 + l2 cosh2(r)dx2.
We can always conjugate a parabolic cyclic group 〈T 〉 to the group Γ∞ generated by z 7→ z+1,
so the parabolic cylinder is unique up to isometry. A natural fundamental domain for Γ∞

is F∞ = {0 ≤ Re z ≤ 1} ⊂ H. The standard cusp C∞ is the half parabolic cylinder Γ∞\H,
C∞ = ([0,∞[)r × (R\Z)x with the metric ds2 = dr2 + e−2rdx2. The funnels Fi and the cusps
Ci are isometric to the preceding standard models. We define the function r as the distance
to the compact core K and the function ρ by

ρ(r) =

{

2e−r in F
e−r in C

.

We will adopt (ρ, t) ∈ (0, 2]×R/ljZ as the standard coordinates for the funnel Fj , where t is
arc length around the central geodesic at ρ = 2.
For the cusp our standard coordinates (ρ, t) ∈ (0, 1] × R/Z are based on the model defined
by the cyclic group Γ∞. The cusp boundary is y = 1, so that y = er and ρ = 1/y. We set
t = x( mod Z).

2. Hyperbolic Eisenstein series on a geometrically finite hyperbolic surface
of infinite volume.

2.1. Return to Kudla and Millson hyperbolic Eisenstein series’ definition. In the
following, M will denote an arbitrary Riemann surface and L2(M), the Hilbert space of
square integrable 1-forms with inner product

(w1, w2) =
1

2

∫

M
w1 ∧ ∗w2 ,

and correspondig norm ||.||.
Let c be a simple closed curve on M . We may associate with c a real smooth closed differential
nc with compact support such that

∫

c
ω =

∫

M
ω ∧ nc ,

for all closed differentials ω. Since every cycle c on M is a finite sum of cycles corresponding
to simple closed curves, we conclude that to each such c, we can associated a real closed
differential nc with compact support such that (2.1) holds.
Let a and b be two cycles on the Riemann surface M . We define the intersection number of
a and b by

a.b =

∫

M
na ∧ nb .
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In [17], Kudla and Millson construct the harmonic 1-form dual to a simple closed geodesic
on a hyperbolic surface of finite volume M in terms of Eisenstein series. Let us recall the
definition:

Definition 2.1. Let η be a simple closed geodesic or an infinite geodesic joining p and q. An
1-form α is dual to η if for any closed 1-form with compact support, ω

∫

M
ω ∧ α =

∫

η
ω .

Or equivalently: for any closed oriented cycle c′, we have

(1)

∫

c′
α = η . c′.

Kudla and Millson construct a meromorphic family of forms on M , called hyperbolic
Eisenstein series associated to an oriented simple closed geodesic c. Let c̃ be a component of
the inverse image of c in the covering H →M and Γ1 the stabilizer of c̃ in Γ. The hyperbolic
Eisenstein series are expressed in Fermi coordinates in the following way for Re s > 0:

(2) Ωc(s, z) = Ω(s, z) =
1

k(s)

∑

Γ1\Γ

γ∗
dx2

(cosh x2)s+1
, .

with

k(s) =

Γ

(

1

2

)

Γ

(

1

2
+

s

2

)

Γ
(

1 +
s

2

) .

By applying an element of SL(2,R) we may assume c̃ is the y− axis in H and that Γ1 is
generated by γ1 : z 7→ elz. The Fermi coordinates (x1, x2) associated to c̃ are related to
euclidean polar coordinates by

r = ex1

sin θ =
1

coshx2

At the end of their paper they do the remark that “it is also interesting to consider the infinite
volume case”.

2.2. The infinite volume case. We are going to verify that this definition retains a meaning
in the case of a geometrically finite hyperbolic surface of infinite volume, M = Γ\H.

Proposition 2.1. The hyperbolic Eisenstein series Ω(s, z) converges for Re s > 0, uniformly
on compact subsets of H, is bounded on M and represents a C∞ closed form which is dual
to c. Moreover it is an analytic function of s in Re s > 0.

The proof in the infinite volume case is as straightforward as in these in the finite volume
case ([17], [10]), but for the convenience of the reader we give some details.

Lemma 2.1. Let K a compact of the fundamental domain D of Γ, there exists η > 0 such
that for all z0 ∈ K, (B(γz, η))γ∈Γ1\Γ

are disjoints.



HYPERBOLIC EISENSTEIN SERIES FOR GEOMETRICALLY

Let choose for fundamental domain of Γ1, D1 = {z ∈ H : 1 ≤ |z| ≤ β}. After passing to
ordinary Euclidean polar coordinates (r, θ) we obtain with σ = Re s:

||Ω(s, z)|| ≤
1

|k(s)|

∑

Γ1\Γ

1

(ch x2(γz))σ+1

≤
1

|k(s)|

∑

Γ1\Γ

(y

r

)σ+1
(γz) ≤

1

|k(s)|

∑

[γ]∈Γ1\Γ,γz∈D1

yσ+1(γz)

Moreover for all z ∈ K:
∫

B(z,η) y
σ+1 dxdy

y2
= Ληy(z)

σ+1. We note as in [17]: R(T1, T2) = {P ∈

D1 : T1 < x2(P ) < T2}. So for T > 2η :

1

|k(s)|

∑

γ∈Γ1\Γ,γz 6∈R(−T,T )

1

(ch(x2(γz)))σ+1
≤

1

|k(s)|

∑

[γ]∈Γ1\Γ,γz∈D1−R(−T,T )

yσ+1(γz)

We need the following:

Lemma 2.2. Let γ ∈ Γ1\Γ, z, ζ ∈ H such that for γz 6∈ R(−T, T ), γζ ∈ B(γz, η) then
γζ 6∈ R(−T + 2η, T − 2η).

Proof. As orthogonal projection P is 1- lipschitzien, we have d(Pγz, Pγζ) ≤ d(γz, γζ) ≤ η .
If x2(γz) ≥ T :

T ≤ d(γz, Pγz) ≤ d(γz, γζ) + d(γζ, Pγζ) + d(Pγz, Pγζ) .

Then

T − 2η ≤ d(γζ, Pγζ) .

�

Then
∑

γ∈Γ1\Γ,γz 6∈R(−T,T )

yσ+1(γz) =
1

Λη

∑

γ∈Γ1\Γ,γz 6∈R(−T,T )

∫

B(γz,η)
yσ+1 dxdy

y2

≤
1

Λη

∫

Rc(−T+2η,T−2η)
yσ+1 dxdy

y2

where Rc(−T +2η, T − 2η) is the complementary in D1 of R(−T +2η, T − 2η). Note that

if γz 6∈ R(−T, T ) then y(γz) ≤
β

ch T
, so:

∑

γ∈Γ1\Γγz 6∈R(−T,T )

yσ+1(γz) ≤
β

Λη

∫
β

ch(T−2η)

0
yσ−1 dy

≤
β

Λησ

(

β

ch(T − 2η)

)σ

.

From this follow the uniform convergence of Ω(s, z) on compact subsets of H, uniformly on
compact subsets of the half plane Re s > 0. We next show that Ω(s, z) is bounded on D.
For this we use a ”very useful (and well-worn) fundamental lemma”(sic), see [14], p. 178,
[12], p.27:
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Proposition 2.2. For any fuschian group Γ, there exists C(q,Γ), such that for all z ∈ H

∑

γ∈Γ

y(γz)q

[1 + |γz|]2q
≤ C(q,Γ)

The constant C(q,Γ) depending only of q and Γ.

Let z ∈ H, there exists a system of representant S of Γ1\Γ such that for all γ ∈ S, |γz| ≤ β.
Then:

∑

Γ1\Γ

yσ+1(γz)

(1 + β)2(σ+1)
≤

∑

Γ1\Γ

y(γz)σ+1

(1 + |γz|)2(σ+1)

≤
∑

Γ

y(γz)σ+1

(1 + |γz|)2(σ+1)

≤ C(σ + 1,Γ)

and the result.
The fact that Ω(s, z) is dual to c follows straightly from the construction of Kudla and

Millson.

3. Spectral decomposition and analytic continuation.

The aim is to realize the injection H1
c →H

1, where H1
c is the first de Rham’s cohomology

group with compact support of M and H1 is the space of L2 harmonic 1-forms of M . Recall
that in our context dimH1 =∞ (see [2], p. 27).
We are going to prove, as in [17], the analytic continuation of the hyperbolic Eisenstein series.
The essential difference with the finite volume case is the spectral decomposition of L2(M).

3.1. Spectral theory. For any non-compact geometrically finite hyperbolic surface M , the
essential spectrum of the (positive) Laplacian ∆M defined by the hyperbolic metric on M (the
Laplacian on functions) is [1/4,∞) and this is absolutely continuous. The discrete spectrum
consists of finitely many eigenvalues in the range (0, 1/4). In the finite-volume case one
may also have embedded eigenvalues in the continuous spectrum, but these do not occur for
infinite-volume surfaces. Then if M as infinite volume, the discrete spectrum of ∆M is finite
(possibly empty). The exponent of convergence δ of a fuchsian group Γ is defined to be the
abscissa of convergence of the Dirichlet series:

δ = inf{s > 0,
∑

T∈Γ

e−sd(z,Tw) <∞}

for some z, w ∈ Γ.
Let Γ be a fuchsian group of the second kind and L(Γ) be its limit set, then 0 < δ < 1 with

δ > 1/2 if Γ has parabolic elements. Patterson and Sullivan showed that δ is the Hausdorff
dimension of the limit set when Γ is geometrically finite. Furthermore, if δ > 1/2, then
δ(1− δ) is the lowest eigenvalue of the Laplacian ∆M . The connection to spectral theory was
later extended to the case δ ≤ 1/2 by Patterson. In this case, the discrete spectrum of ∆M

is empty and δ is the location of the first resonance. For a detailed account of the spectral
theory of infinite area surfaces, we refer the reader to [1].
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3.2. Tensors and automorphic forms. This section introduces the notations used in the
following subsection 3.3, section 5. Let M be a Riemann surface of finite Euler characteristic
and carrying a metric ds2 of constant curvature −1. let z be a local conformal variable and
ds2 = ρ|dz|2. Let T q denote the space of tensors f(z)(dz)q for q integer, on M . The covariant
derivative ∇ sends T q into T q⊗(T 1⊕T̄ 1) and can be decomposed accordingly as∇ = ∇q

z⊕∇z
q,

with ∇q
z : T q → TQ ⊗ T 1 ∼= T q+1, ∇q = ρq∂ρ−q, ∇q = ρ−1∂̄, ∇z

q : T q → TQ ⊗ T̄ 1 ∼= T q−1.

The Laplacians ∆+
q and ∆−1

q on T q are defined by ∆+
q = −∇q+1∇

q, ∆−
q = −∇q−1∇

q. Thus

∆0 = ∆±
0 is the Laplacian on functions. The operators ∆±

q are non-negative selfadjoint. We

recall now the link between q−forms and automorphic forms of weight 2q1. We make use of
the uniformization theorem. M may be realized as H\Γ, where H is the upper half plane

and γ a discrete subgroup of PSL(2,R). Let Γ̃ ⊂ SL(2,R) be the groupe covering Γ under
the projection SL(2,R)→ PSL(2,R). Using notably the notations in [11] and [7], let

Definition 3.1. Set

jγ(z) =
(cz + d)2

|cz + d|2
=

cz + d

cz̄ + d
=

(

γ′z

|γ′z|

)−1

γ =

(

a b
c d

)

∈ Γ.

Let Fq be the space of all functions f : H → C with

f(γz) = jγ(z)
qf(z), γ ∈ Γ ,

and if D = Γ\H is the fundamental domain of Γ, define the Hilbert space Hq = {f ∈

Fq, 〈f, f〉D =
∫

D |f(z)|
2 dµ(z) < ∞} with dµ(z) = dxdy

y2
and the inner product 〈f, g〉 =

∫

D f(z)g(z)dµ(z). Fq is isometric to T q through the correspondance I:

T q ∋ f → yqf .

Under this correspondence, the operators ∇z
q, ∇

q
z go over to the Maasz operators Lq : Fq →

Fq−1, Kq : Fq → Fq+1 according to the diagram

T q−1
∇z

q
← T q ∇q

z→ T q+1

↓ ↓ ↓

Fq−1
Lq
← Fq

Kq
→ Fq+1

where Lq = (z̄ − z) ∂
∂z̄ − q and Kq = (z − z̄) ∂

∂z + q. We have also:

Lq = −2iy1+q ∂

∂z̄
y−q = K−q

Kq = 2iy1−q ∂

∂z
yq = L−q.

We note

−Lq+1Kq = −∆2q + q(q + 1)

−Kq−1Lq = −∆2q + q(q − 1)

with

∆2q = y2(
∂2

∂x2 +
∂2

∂y2
)− 2iqy

∂

∂x
.

1Some authors called them of weight q or −2q
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These second order differential operators are self-adjoint on Fq. Furthermore the isometry I
conjugates ∆+

q with −∆2q + q(q + 1) and ∆−
q with −∆2q + q(q − 1).

We are first interested in the case q = 2. Let ∆Diff the (positive) Laplacian on 1-forms on a
geometrically finite hyperbolic surface, ∆Diff = dδ+δd, δ = −∗d∗ with ∗ the Hodge operator.
In the following we note ∆Diff = ∆. If ω is a 1-form in the holomorphic cotangent bundle,
ω = f(z) dz, then we define the image by the isometry I, I(w) = I(f dz) = yf(z) = f̃(z).

We have the relation: if y∆(f dz) = −(∆2f̃)dz, in other words, with the preceding notations
∆ = ∆−

1 .

3.3. Generalized eigenfunctions. We are going to give the spectral expansion in eigen-
forms of ∆; we use [7], [20], [1]. For a finitely generated group of the second kind, for each
cusp and for each funnel of the quotient there is a corresponding Eisenstein series, this is
what we are going to develop now.

Proposition 3.1. For Re s > δ, the kernel of the resolvent Gs(z, w, 1) for the self-adjoint
operator ∆2 acting on the Hilbert space L2,2 of automorphic forms of weight 2, is given by
the convergent series

Gs(z, w, 1) =
∑

γ∈Γ

jγ(w)gs(z, γw, 1)

with gs(z, w, 1) = −
w − z̄

z − w̄

Γ(s+ 1)Γ(s − 1)

4πΓ(2s)
σ−sF (s + 1, s − 1, s;σ−1) and F is the Gauss

hypergeometric function.

For the funnel case, we identify z′ with the standard coordinates (ρ′, t′) in the funnel Fj ,
and define

(3) Ef
j,1(s, z, t

′) = lim
ρ′→0

ρ′
−s

Gs(z, z
′, 1) ,

for j = 1, ..., nf . In the cusp Cj , with standard coordinates z′ = (ρ′, t′), we set

(4) Ec
j,1(s, z) = lim

ρ′→0
ρ′

1−s
Gs(z, z

′, 1) ,

for j = 1, ..., nc.
Let

P (z, ζ) = Im(z)/|z − ζ|2

where z ∈ H and ζ ∈ R be the Poisson kernel. For b ∈ O(Γ) = R ∪ {∞} − L(Γ) define the
Eisenstein series ([20], [3])

Eb(z, s, k) =
∑

γ∈Γ

j(γ, z)kP (γ(z), b)s(γ(z), b)k ,

where j(γ, z) = γ′(z)/|γ′(z)| and (z, b) = (z̄ − b)/(z − b).
For the standard funnel Fl which corresponds to the region Re z ≥ 0 in the model Cl =

Γl\H, we have (see [7] p.200):

1

1− 2s
Ef

l,1(s, z, x
′) = lim

z′→x′

(Im z′)−sGs(z, z
′, 1)

= −
4s

4π

Γ(s+ 1)Γ(s − 1)

Γ(2s)
Ex′(z, s, 1).
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We note then

Efl(s, z, x
′) =

Ef
l,1(s, z, x

′)

y
dz.

Recall 3.1. Recall the definition of the classical Eisenstein series. The stability group of a
cusp a is an infinite cyclic group generated by a parabolic motion,

Γa = {γ ∈ Γ : γ a = a} = 〈γa〉 ,

say. There exists σa ∈ SL2(R) such that σa∞ = a, σ−1
a

γaσa =

(

1 1
0 1

)

. We call σa a

scaling matrix of the cusp a, it is determinated up to composition with a translation from the
right. The Eisenstein series for the cusp a is then defined by:

Ea(z, s) =
∑

Γa\Γ

y(σ−1
a

γz)s ,

where s is a complex variable, Re s > 1.

An Eisenstein series of weight 2 associated to a cusp a is the 1-form, defined for Re s > 1,
by:

Ea(s, z) =
∑

γ∈Γa\Γ

y(σ−1
a

γz)s−1 d(σ−1
a

γz) =
Ea,1(s, z)

y
dz ,

with

Ea,1(s, z) = y
∑

γ∈Γa\Γ

y(σ−1
a

γz)s−1 ((σ−1
a

γ)′z) .

We now verify that it corresponds to the defining formula (4).
For the standard cusp, we write

Gs(z, z
′, 1) =

∑

Γ∞\Γ

(

cz̄ + d

cz + d

)

GΓ∞

s (γz, z′, 1) ,

where GΓ∞

s (γz, z′, 1) is the resolvent kernel of the standard cusp for automorphic forms of
weight 2. We use then [7] p. 155 (38), p.177 for Im z′ > Im γz, p. 172 (see also [1] p.72,
p.102) to conclude that

lim
y′→∞

y′
s−1

Gs(z, z
′, 1) =

∑

Γ∞\Γ

(

cz̄ + d

cz + d

)

(Im γz)s

1− 2s
=

1

1− 2s
E∞,1(s, z) .

With the preceding notations we then have (see for example [7], [20]). For w = f(z) dz
square integrable, we have

w(z) =

m
∑

i=1

(w)λi
(z) +

1

4πi

nc
∑

j=1

∫ +∞

−∞
〈w, Ecj (1/2 + it, .)〉Ecj (1/2 + it, z) dt +

1

4πi

nf
∑

j=1

∫ +∞

−∞

[

∫ λ2
f

1
〈w, Efj (1/2 + it, ., b)〉Efj (1/2 + it, z, b) db

]

dt.



10 THÉRÈSE FALLIERO

Remark 3.1. One can easily deduce the formula for an arbitrary square integrable 1-form

Ω(z) = f dz + g dz̄ =
m
∑

i=1

(Ω)λi
(z) +

1

4πi

nc
∑

j=1

∫ +∞

−∞
〈Ω, Ecj (1/2 + it, .)〉Ecj (1/2 + it, z) + 〈Ω, Ecj (1/2 + it, .)−1〉Ecj (1/2 + it, z)−1 dt+

1

4πi

nf
∑

j=1

∫ +∞

−∞

∫ λ2
f

1
〈Ω, Efj (1/2 + it, ., b)〉Efj (1/2 + it, z, b) + 〈Ω, Efj (1/2 + it, ., b)−1〉Efj (1/2 + it, z, b)−1 db dt

where, with obvious notations, E−1 = E =
E

y
dz̄. To simplify we will write

Ω(z) = (Ω)λi
(z) +

1

4πi

∫ +∞

−∞
〈Ω, Ecj(1/2 + it, .)±〉Ecj (1/2 + it, z)± dt+

1

4πi

∫ +∞

−∞

[

∫ λ2
f

1
〈Ω, Efk(1/2 + it, ., b)±〉Efk(1/2 + it, z, b)± db

]

dt .

3.4. Harmonic dual form. We are now going to see

Proposition 3.2. The hyperbolic Eisenstein series Ωc are square integrable.

Proof. We consider a fundamental domain D contained in {z, 1 ≤ |z| ≤ el} in which the
segment (i, iel) represents the geodesic c. We note Cλ = {z ∈ D, d(z, c) = λ} and Fλ =
{z ∈ D, d(z, c) ≥ λ}. Without loss of generality we can suppose that there is only one funnel
on M and no cusps. Let Vλ the volume of Fλ − Fλ+1 there exists a constant c1 such that
Vλ ≥ c1(sh(λ+ 1)− sh(λ)). For Re s = σ > 0,

||Ωc(s, z)|| = ||Ω(s, z)|| ≤
1

|k(s)|

∑

Γ1\Γ

1

(cosh x2(γz))σ+1

Let η(z) =
∑

Γ1\Γ
1

(cosh x2(γz))σ+1 , we have

∫

D
||Ωc(s, z)||

2dµ(z) ≤
1

|k(s)|2

∫

D
η2(z)dµ(z)

≤
1

|k(s)|2

∫

1≤x1≤el ,−∞<x2<+∞
η(z)

1

(cosh x2(z))σ+1
coshx2 dx1 dx2

≤
M

|k(s)|2

∫

1≤x1≤el ,−∞<x2<+∞

1

(cosh x2(z))σ+1
coshx2 dx1 dx2

where M > 0 is such that ∀z ∈ H, η(z) ≤M .

The last integral is
Γ( 1

2)Γ(
σ
2 )

Γ( 1
2
+σ

2 )
(el − 1) and the result. �

As before we have:

∆(Ω(s, z)) + s(s+ 1)Ω(s, z) = s(s+ 1)Ω(s + 2, z) .
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This formula has a consequence that, for fixed s with Re s > 0, the function ∆k(Ω(s, z)) is
again square integrable for any k > 0.
Set Re s > 0, with our convention of notations

Ω(s, z) = Ω0(z) + ai(s)ϕi(z) +
1

4πi

∫ +∞

−∞
hc±(s, t)Ec(1/2 + it, z)± dt

(5) +
1

4πi

∫ +∞

−∞

[

∫ λ2
f

1
Hf

±(s, t, b)Ef (1/2 + it, z, b)± db

]

dt .

We obtain
H(s, t, b)[1/4 + t2 + s(s+ 1)] = s(s+ 1)H(s + 2, t, b) ,

where H corresponds to any H±
f . From this we get a continuation of H to the region

Re s > −1/2 and we note that we have for all t and all b H(0, t, b) = 0.
Moreover for Re s > −1/2, Re(s+2) > 0 and we may substitute in (5) to obtain a continuation
of Ω(s, z) to Re s > −1/2. Thus we have proved the following theorem

Theorem 3.1. Ω(s, z) has a meromorphic continuation to Re s > −1/2 with s = 0 a regular
point and Ω(0, z) is a harmonic form which is dual to c.

Remark 3.2. 1) Another way to see this:
write Ω(s, z) = (∆ + s(s+ 1))−1(s(s + 1)Ω(s + 2, z)) and use the meromorphic continuation
of the resolvent (see for example [1], [21]).
2) With an analogue study of [17] (see also [16]) we can obtain a total description of the
singularities of the hyperbolic Eisenstein series.

4. The case of an infinite geodesic joining two points.

Without loss of generality we suppose the two cusps p and q to be 0 and ∞ respectively
and, as the lift of the geodesic, we take the imaginary axis. Let η be the infinite geodesic
]p, q[, can we do the same construction as Kudla and Millson? As in the finite volume case,
the problem reduces to study the following series for Re s > 1:

(6) η̂s(z) =
1

k(s− 1)

∑

γ∈Γ

γ ∗

[

(

y

|z|

)s−1

Im(z−1dz)

]

= Im(θs(z)) ,

where

θs(z) =
1

k(s − 1)

∑

γ∈Γ

γ ∗

[

(

y

|z|

)s−1 dz

z

]

,

and k(s− 1) =
Γ(1/2)Γ(s/2)

Γ(1/2 + s/2)
.

4.1. Some useful estimations. As usual we can suppose Γ∞ = 〈z 7→ z + 1〉 to be the
stabilizer of ∞ in Γ and the stabilizer of 0, Γ0 is then generated by z 7→ z

−c20z+1
(for some

non zero constant c0).
First of all we note that, contrary to the finite volume case, we have

∑

γ∈Γ∞\Γ Im(γz) con-

vergent (see proposition 3.1 and formula 4). Another way to see this “by hand”:
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Remark 4.1. We know that for Re s > δ,
∑

T∈Γ e
−sd(i,T z) converges, moreover there exists

a constant C > 0 such that
∑

γ∈Γ∞\Γ Im
s(γz) ≤ C

∑

T∈Γ e
−sd(i,T z), as in our case δ < 1, we

have the result.
As

∑

γ∈Γ∞\Γ

∣

∣

∣
Ims(γz) cz̄+d

cz+d

∣

∣

∣
=

∑

γ∈Γ∞\Γ Im
Re s(γz) we also deduce the convergence of E∞,1(1, z).

With the notations of recall 3.1 and ρ the standard coordinate for the cusp a, we write
the results of [1](p.110): Ea(s, .) = ρ−s(1−χ0(ρ)) + 0(ρsfρ

s−1
c ), ρ is decomposed as ρfρc with

ρf = ρ in the funnels and ρc = ρ in the cusps and we define χ0 ∈ C
∞
0 (X) such that

χ0 =

{

1, r ≤ 0
0, r ≥ 1

.

Lemma 4.1. We have the following asymptotic behaviors for Re s > δ:
1) in a funnel for all cusp a, Ea(s, z) is square integrable;
2) at a =∞, E∞(s, z)− ys = O(y1−s) and E0(s, z) = O(y1−s);
3) near a = 0, E0(s, z)−y

s/(c20|z|
2)s = O(y1−s/(c20|z|

2)s−1) and E∞(s, z) = O(y1−s/(c20|z|
2)s−1).

4.2. Convergence of the Hyperbolic Eisenstein series and analytic continuation.

The calculus and results to prove the convergence of (6) adapt easily from the finite volume
case. For the convenience of the lecture we recall the essential points.

We have ||
∑

γ∈Γ γ ∗
(

y
|z|

)s−1
Im(z−1dz)|| ≤

∑

γ∈Γ

(

y
|z|

)σ
(γz) , where σ = Re s > 1 and if we

denote by S =
∑

γ∈Γ

(

y

|z|

)σ

(γz), we have

S =
∑

γ∈Γ∞\Γ

yσ(γz)
∑

n∈Z

1

|γz + n|σ
.

Let Sz a system of representatives of Γ∞\Γ such that |Re γz| ≤ 1/2, then

||S|| ≤
∑

γ∈Sz

yσ(γz)

|γz|σ
+ 2

∑

γ∈Sz

yσ(γz)

∞
∑

n=1

1

(n− 1/2)σ
.

We have
∑

γ∈Sz

yσ(γz)

|γz|σ
=

∑

Γ\Sz

yσ(γz)

|γz|σ

∑

n∈Z

1

|neγz + 1|σ

=
∑

γ∈Γ\Sz

yσ(γz)

|γz|σ
+

∑

γ∈Γ\Sz

yσ(γz)

|γz|σ

∑

n∈Z∗

1

|ne|σ[(x(γz) + 1/ne)2 + y2(γz)]σ/2
.

and for K a compact set in H there exists m in H such that

∀z ∈ K, ∀γ ∈ Γ0\Sz, |γz| ≥ |m| and Im γz ≥ Imm.

So
∑

γ∈Sz

yσ(γz)

|γz|σ
≤

∑

γ∈Γ0\Sz

yσ(γz)

|m|σ
+

∑

γ∈Γ0\Sz

yσ(γz)

|m|σ

∑

n∈Z∗

1

|ne|σ(Imm)σ

≤
1

|m|σ

∑

Γ∞\Γ

yσ(γz) + 2
∑

n∈N∗

1

(ne)σ
1

|m|σ(Imm)σ

∑

Γ∞\Γ

yσ(γz) ;
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and finally

||S|| ≤
1

|m|σ

∑

Γ∞\Γ

yσ(γz) + 2
∑

n∈N∗

1

(ne)σ
1

|m|σ(Imm)σ

∑

Γ∞\Γ

yσ(γz)+

2
∑

Γ∞\Γ

yσ(γz)

∞
∑

n=1

1

(n− 1/2)σ
,

the uniform convergence on all compact of H and all compact of Re s > 1.
From this ultimate inequality we conclude that θs is square integrable in the funnels as

the Eisenstein series E∞. To conclude, we have the following theorem:

Theorem 4.1. For Re s > 1, the Eisenstein series associated to the geodesic η = (p, q)
converge uniformly on all compact sets. It represents a C∞ closed form which is dual to η.
For Re s > 1 it satisfies the differential functional equation:

∆η̂s = s(1− s)[η̂s − η̂s+2].

Now we want to prove the analytic continuation of η̂s at s = 1. For this, first of all, we
are going to show that θs(z)− 1/i(E∞(1, z)−E0(1, z)) is square integrable. What we have to
do is to investigate the Fourier expansion of θs, at each inequivalent cusp : 0 and ∞, and to
show that y|θs(z)| is bounded.We have the following proposition whose proof is identical in
the finite volume (see [5]):

Proposition 4.1. At ∞

θs(z) = (
1

i
+O(1/y)) dz ,

and at 0

θs(z) = (−
1

ic20z
2
+O(1/y)) dz .

By proposition 4.1 and lemma 4.1, we conclude:

Proposition 4.2. The 1-forms θs(z)− 1/i(E∞(1, z) − E0(1, z)) and
η̂s(z) + Re(E∞(1, z) − E0(1, z)) are square integrable.

Finally as in [5]:

Theorem 4.2. The 1-form η̂s has a meromorphic continuation to Re s > 1/2, with s = 1 a
regular point and η̂ is the harmonic dual form to η.

5. A case of degeneration.

A family of degenerating hyperbolic surfaces consists of a manifold M and a family (gl)l>0

of Riemannian metrics on M that meet the following assumptions: M is an oriented surface
of negative Euler characteristic, and the metrics gl are hyperbolic, chosen in such a way that
there are finitely many closed curves ci, geodesic with respect to all metrics, with the length li
of each curve converging to 0 as l decreases. On the complement of the distinguished curves,
the sequence of metrics is required to converge to a hyperbolic metric. More precisely there
are finitely many disjoint open subsets Ci ⊂ M that are diffeomorphic to cylinders Fi × Ji
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where Ji ⊂ R is a neighborhood of 0. The complement of
⋃

i Ci is relatively compact. The
restriction of each metric gl to Ci = Fi × Ji is a product metric

(x, a) 7−→ (l2i + a2)dx2 + (l2i + a2)−1da2

and li → 0 as l→ 0 (the curves Fi×{0} ⊂ Ci are closed geodesics of length li with respect to
gl). Let Ml denote the surface M equipped with the metric gl if l > 0, and let M0 = M\

⋃

i ci
carry the limit metric liml→0 gl. Note that M0 is a complete hyperbolic surface by definition,
which contains a pair of cusps for each i. Here consider a family of surfaces Sl = Γl\H
degenerating to the surface S with only one geodesic cl being pinched, Γl containing the
transformation σl(z) = elz corresponding to cl. Let Kl be Sl minus Cl the standard collar
for cl. There exist homeomorphisms fl from Sl\cl to S0, with fl tending to isometries C2-
uniformly on the compact core Kl ⊂ Sl, define πl = f−1

l . Suppose that p is one of the two
cusps of S arising from pinching cl. Let S0 = Γ\H be the component of S containing p and
conjugate Γ to represent the cusp by the translation w 7→ w + 1, in the following p =∞.

Let for Re s > 1 αl(s, z) =
∑

γ∈〈σl〉\Γl
γ ∗

[

(

y
|z|

)s−1
Im(z−1dz)

]

such that the hyperbolic

Eisenstein series Ωcl = Ωl is related by Ωl(s, z) =
1

k(s)αl(s + 1, z). Without loss of generality

we suppose Sl having only one funnel F1. With the notations of the beginning, Sl = K ∪
(C1 ∪ ... ∪ Cnc) ∪ F1 and cl is the one geodesic of the boundary of the compact core K, we
consider the specific case of p the limit of the right side of the cl-collar contained in Sl\F1 .

Theorem 5.1. Let Re s > 1, the family of 1-forms 1
lsαl(s, πl(.)) converge uniformly on

compact subsets of S0 to Im E∞(s, .).

It is a particular case of the theorem 5.2 bellow.

The sketch of the proof of this theorem is the same as in the finite volume case ([4], [22],
see also [8]), but for the convenience of the reader we recall some material and results.

The following lemma can be found for example in [1]. The neighborhood of points within
distance a of a geodesic γ,

Ga = {z ∈ K, d(z, γ) ≤ a} ,

is isometric for small a to a half-collar [0, a] × S1, ds2 = dr2 + l2 cosh2 r dθ2.

Lemma 5.1. Suppose that γ is a simple closed geodesic of length l(γ) on a geometrically
finite hyperbolic surface M . Then γ has a collar neighborhood of half-width d, such that

sinh(d) =
1

sinh(l(γ)/2)
.

As a consequence, if η is any other closed geodesic intersecting γ transversally (still assuming
γ is simple), then the lengths of the two geodesics satisfy the inequality

sinh(l(η)/2) ≥
1

sinh(l(γ)/2)
.

Lemma 5.2. Let γ be a simple closed geodesic of length l on a complete hyperbolic surface
M . If α is a simple closed geodesic that does not intersect γ, then

cosh d(γ, α) ≥ coth(l/2) .
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A standard collar for a length l geodesic is a cylinder isometric to C\〈z 7→ elz〉 with
C = {z = reiθ, 1 ≤ r ≤ el, l < θ < π − l} ⊂ H with the restriction of the hyperbolic metric,
and 〈z 7→ elz〉 the cyclic group generated by the transformation z 7→ elz. There is a constant
c0 (the short geodesic constant) such that each closed geodesic on S of length at most c0
has a neighborhood isometric to the standard collar and each cusp for S has a neighborhood
isometric to the standard cusp; furthermore, the collars for short geodesics and the cusp
regions are all mutually disjoint.

Now to study the right side of the cl-collar let w = 1
l log z, z ∈ H, and conjugate Γl by

the map w to obtain Γ̃l acting on Sl = {w, 0 < Imw < π/l}. The hyperbolic metric on Sl

is ds2l =
(

l|dw|
sin(l Imw)

)2
, which tends uniformly on compact subsets to

(

|dw|
Imw

)2
. Γ̃l is a (non

Möbius) group of deck transformations acting on Sl; the quotient Γ̃l\Sl is Sl. Let f̂l be the

restriction of fl to the component S
(r)
l of Sl\cl containing the right half-collar for cl. Let Fl

be a lift of f̂l to the universel covers Al and H, where Al is the simply connected component
of H\π−1(cl) which contained the standard right collar {z = reiθ, 1 ≤ r ≤ el, l < θ < π/2}.
More precisely [4](p.350), [22]:

Lemma 5.3. The simply connected component Al contains {z = reiθ, 1 ≤ r ≤ el, lc(l) < θ <
π/2} where c(l)→ 0, l→ 0.

Start with the standard Γ fundamental domain F = {w, 0 ≤ Rew < 1, Imw ≥ ImA(w),∀A ∈
Γ}. Set Dl = F−1

l (F), then Dl is a fundamental domain of Sl. Divide the cosets of
〈σl〉\(Γl − 〈σl〉) into two classes D = {[A], A ∈ Γl, inf ReA(Dl) > 0} and G = {[A], A ∈
Γl, supReA(Dl) < 0}.

Then f̂l has a lift f̃l, a homeomorphism from a sub domain of Sl to H: f̃l = Fl ◦ w
−1 :

w(Al) → H.f̂l induces a group homomorphism ρl : Γ→ Γ̃l by the rule A 7→ f̃−1
l Af̃l, A ∈ Γ.

We call ρl(A) ∈ Γ̃l the element corresponding to A ∈ Γ. Now by our normalizations for Γ̃l

and Γ the translation w 7→ w+1 corresponds to itself. If we specify the further normalization
f̃l(i) = i then the lifts f̃l are uniquely determined and then we have [22]

Lemma 5.4. The f̃l tend uniformly on compact subsets to the identity, and thus for A ∈ Γ,
the corresponding elements ρl(A) tend uniformly on compact subsets to A.

Divide the cosets 〈z + 1〉\(Γ̃l − 〈z + 1〉) into two classes, the left and the right: for Fl =

f̃−1
l (F), L = wGw−1 = {[A], A ∈ Γ̃l, inf ImA(Fl) > π/2l} and R = wDw−1 = {[A], A ∈

Γ̃l, sup ImA(Fl) < π/2l} (the line {Imw = π/2l} is a lift of cl, and we write [A] for the
〈z+1〉 coset of A). In particular the cosets 〈z+1〉\(Γ−〈z+1〉) correspond to the right cosets

of Γ̃l: {[ρl(A)], A ∈ Γ, 〈w 7→ w+1〉} ⊂ R . Then we can write, where χ+ is the characteristic
function of {Re z > 0} and χ− the one of {Re z ≤ 0},

Al,q(s, z) =
∑

〈σl〉\Γl

(

γ′(z)

γ(z)

)q

sins−q θ(γz) dzq

= y(z)s−q(χ+ +
∑

D

γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q
)dzq + y(z)s−q(χ− +

∑

G

γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q
)dzq

and the q-form on S
(r)
l : aRl,q(s, z) = y(z)s−q(χ++

∑

D
γ′(z)q

γ(z)q
|γ′(z)|s−q

|γ(z)|s−q )dz
q = lq(sin l Imw)s−q(χ+

∑

R(γ̃
′w)q|γ̃′w|s−q)dwq where χ is the characteristic function of w({Re z > 0}) .
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Theorem 5.2. Let Sl = Γl\H a family of geometrically finite hyperbolic surfaces degenerating
to the surface S with only one geodesic cl being pinched and Sl having only one funnel F1; Γl

contains the transformation σl(z) = elz corresponding to cl and the right half-collar for σl is
in Sl\F1. Let S0 be as above. For q ∈ N, we associate to the pinching geodesic cl, the q-form
defined for Re s > 1 by:

Al,q(s, z) =
∑

〈σl〉\Γl

(

γ′(z)

γ(z)

)q

sins−q θ(γz) dzq .

Let w = 1
l log z and write again with a little misuse of notation Al,q(s,w) = al,q(s,w) dw

q

and the corresponding q-automorphic form (for Γ̃l) ãl,q(s,w) = Im(w)qal,q(s,w). Note ãRl,q
the right half of ãl,q. Then we have 1

ls ã
R
l,q(s, πl(.)) converge uniformly on compact subsets of

S0 and on compact subsets of Re s > 1 to the Eisenstein series for weight q:

E∞,q(s, z) =
∑

Γ∞\Γ

(Im γz)s
(

cz̄ + d

cz + d

)q

.

Before proving this theorem we give some complements and its corollaries.
Let for Re s > 1, bq(s) = eiπq/2

∫ π
0 sins−2 ue−iqu du. Note that b1(s) = k(s − 1). The func-

tion bq has the following properties (see e.g. [16]): bq(s + 2) =
s(s− 1)

s2 − q2
bq(s), bq admits a

meromorphic continuation to all s ∈ C, more precisely

bq(s) = π2−s+2 Γ(s+ 1)

Γ(s+q
2 + 1)Γ(s−q

2 + 1)
.

In order to be consistent with the definition of Kudla and Millson’s hyperbolic Eisenstein
series, we may use the normalized q−automorphic forms

(7) Ξl,q(s, z) =
1

bq(s)
Al,q(s, z).

We recall that the series (7) converges absolutely and locally uniformly for any z ∈ H and
s ∈ C with Re s > 1, and that it is invariant with respect to Γ. A straightforward computation
shows that the series Al,q(s, z) satisfies the differential functional equation:

∆±
q Al,q(s, z)− s(1− s)Al,q(s, z) = (s+ q)(s − q)Al,q(s + 2, z),

and the series (7)

∆±
q Ξl,q(s, z) − s(1− s)Ξl,q(s, z) = s(s− 1)Ξl,q(s+ 2, z).

Proposition 5.1. The series Al,q(s, z)(resp. Ξl,q(s, z)) admits a meromorphic continuation
to all of C.

There are different ways to prove this; one is to use the differential functional equation (7)

and to apply the method developped in [17] (see also [16]). More precisely let Ãl,q(s, z) (resp.

Ξ̃l,q(s, z)) the q−automorphic form associated to Al,q(s, z) (resp. Ξl,q(s, z)). We have

∆2qÃl,q(s, z) + s(1− s)Ãl,q(s, z) = (s+ q)(q − s)Ãl,q(s+ 2, z),

and

(8) ∆2qΞl,q(s, z) + s(1− s)Ξ̃l,q(s, z) = s(1− s)Ξ̃l,q(s+ 2, z);
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in other words

Ξ̃l,q = s(1− s)

∫

D
Gs(z, z

′, q)Ξ̃l,q(s+ 2, z′) dµ(z′) .

We precise another calculation we will develop further. We can rewrite Ãl,q(s, z) as

Ãl,q(s, z) =
∑

Γl\Γ

(

cz̄ + d

cz + d

)q (γz

γz

)q/2 ( Im γz

|γz|

)s

and using the Fourier development of Gs(z, z
′, q) and the expansion of

∫ el

1 Gs(z, iy
′, q) d ln y′

we obtain the result (see [7] corollary 4.2 p.188).

Theorem 5.3. Let λk, 1 ≤ k ≤ n the eigenvalues of the Laplace-Beltrami operator on S0

such that 0 < λ1 < λ2 < ... < λn < 1/4 ≤ λn+1 and the corresponding sk = 1
2 +

√

1
4 − λk

with Re s ≥ 1/2. The family ( 1
ls ã

R
l,q(s, πl(.)))l converge uniformly on compact subsets of S0

and on compact subsets of Ω = {Re s > 1/2}\{s1, ..., sn} to E∞,q(., s).

Corollary 5.1. In the case the geodesic cl is not separating ( 1
ls ãl,q(s, πl(.)))l converge uni-

formly on compact subsets of S0 and Ω to E∞,q −E0,q.

Corollary 5.2. In the case cl is the geodesic boundary of a funnel ( 1
ls ãl,q(s, πl(.)))l converge

uniformly on compact subsets of S0 and Ω to E∞,q.

Remark 5.1. We refer also to the result of J.Fay [6] final remark p.201-202.

Proof. (theorem 5.2)
We have 1

ls ã
R
l,q(s,w) =

1
ls−q (Imw)q(sin l Imw)s−q(χ+

∑

R(γ̃
′w)q|γ̃′w|s−q) =

1
ls−q (Imw)q(sin l Imw)s−q(χ+

∑

Gl
(γ̃′w)q|γ̃′w|s−q)+ 1

ls−q (Imw)q(sin l Imw)s−q(
∑

R−Gl
(γ̃′w)q|γ̃′w|s−q).

Because of lemma 5.4, the principal problem lies in estimating the second sum: it remains
to show that

lim
l→0

∑

R−Gl

|γ̃′w|σ = 0 ,

where σ = Re s. It is enough to demonstrate the convergence for β a relatively compact set
in the fundamental domain F . Given ǫ > 0 denote G the set of cosets and representatives
for 〈z + 1〉\Γ such that sup ImA(F) < ǫ for [A] 6∈ G and let Gl be the corresponding cosets

of 〈z + 1〉\Γ̃l with corresponding representatives. The set G is finite.
The cosets G of Γ satisfy (modulo the 〈z+1〉 action) {0 ≤ Rew < 1, Imw > ǫ} ⊂ ∪A∈GA(F);
thus for l sufficiently small the cosets Gl satisfy (modulo the 〈z + 1〉 action) {0 ≤ Rew <
1, 2ǫ < Imw < π/2l} ⊂ ∪A∈Gl

A(Fl) (a consequence of the convergence on compact subsets of

the f̃l and that Fl contains the right-half-collar for cl , {0 ≤ Rew < 1, c(l) ≤ Imw < π/2l}).
Now for a right coset [A] ∈ R − Gl then A(Fl) lies below the cl geodesic {Imw = π/2l}
and is disjoint modulo the 〈z + 1〉 action from {0 ≤ Rew < 1, 2ǫ < Imw < π/2l}, since the
latter is covered by the Gl cosets. Thus for [A] ∈ R − Gl, modulo the 〈z + 1〉 action, then
A(Fl) ⊂ {0 ≤ Rew < 1, Imw < 2ǫ}. For w ∈ β we write

∑

R−Gl

|γ̃′w|σ =
∑

w−1(R−Gl)w

|zl
γ′zl
γzl
|σ ≤ |zl|

σ
∑

w−1(R−Gl)w

|γ′zl|
σ ,



18 THÉRÈSE FALLIERO

where w = 1
l log zl and γFl ⊂ w−1({0 ≤ Rew < 1, Imw < 2ǫ}). We deduce

∑

R−Gl

|γ̃′w|σ ≤
1

sinσ(l Imw)

∑

w−1(R−Gl)w

Imσ(γzl) .

Let ǫ0 ∈]0, sinh
−1 1[ such that for l ≤ l0(ǫ) and w ∈ β, B(zl, ǫ0) ⊂ Fl. Now ys is an

eigenfunction of all the invariant integral operators on H. Let k(z, z′) be the point-pair
invariant defined by k(z, z′) = 1 or 0 according as the distance between z and z′ is smaller
than ǫ0. Then there exists Λǫ0 independent of z0 so that

∫

B(z0,ǫ)
yσ

dxdy

y2
=

∫

H
k(z0, z)y

σ dxdy

y2

and
∫

B(z0,ǫ)
yσ

dxdy

y2
= Λǫ0y(z0)

σ .

So
∑

w−1(R−Gl)w

Imσ(γzl)
σ =

1

Λǫ0

∑

w−1(R−Gl)w

∫

B(γzl,ǫ0)
yσ

dxdy

y2
.

Now [22]:

Lemma 5.5. The multiplicity of the projection map H → H\Γ restricted to B(z0, η) with
2η < c0 is at most Mρ−2(z0) where M a constant and ρ(z0) the injectivity radius at z0.

Proof. If B(z0, η) ∩ B(γz0, η) 6= ∅, γ ∈ Γ, then d(z0, γz0) < 2η < c0 and z0 is in a cusp
region or the collar for a short geodesic. Let c = c0/2, then we have ρ(z0) < c. Set m(η) the
multiplicity of the projection restricted to B(z0, η). As 2η+ ρ(z0) < 3c and the B(γz0, ρ(z0))
are disjoints we have

m(η)µ(B(z0, ρ(z0)) ≤ µ(B(z0, 3c)) .

So m(η) ≤ cosh 3c−1
cosh ρ(z0)−1 ≤ 2(cosh 3c− 1)ρ(z0)

−2. �

Then we have
∑

w−1(R−Gl)w

Imσ(γzl)
σ ≤

A(c0)

Λǫ0

ρ−2(zl)
elσ − 1

σ

(2ǫl)σ−1

σ − 1
.

Moreover as B(zl, ǫ0) ⊂ Fl, ρ(zl) ≥ ǫ0 and the conclusion.
�

Proof. (corollary 5.2) We remark that σl being the geodesic in the funnel, thenD = 〈σl〉\(Γl− <
σl〉) and G = ∅.

�
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