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Abstract

In the present paper we provide new examples of marginally trapped surfaces and
tubes in FLRW spacetimes by using a basic relation between these objects and CMC
surfaces in 3-manifolds. We also provide a new method to construct marginally trapped
surfaces in closed FLRW spacetimes, which is based on the classical Hopf map. The utility
of this method is illustrated by providing marginally trapped surfaces crossing expanding
and collapsing regions of a closed FLRW spacetime. The approach introduced in this
paper is also extended to twisted spaces.
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1 Introduction

The notion of trapped surface was firstly introduced by Penrose [25] in order to study singular-
ities in General Relativity. These surfaces, and their various relatives, have been extensively
studied in recent years (just to mention a few, see e.g. [3, 5, 12, 19]), since they are central
not only for singularity theorems, but also to understand the evolution of black holes, the
cosmic censorship hypothesis, the Penrose inequality...

Trapped surfaces have the physical property that the two null congruences normal to
the surface are both converging. From the mathematical point of view, the null converging
condition means that the mean curvature vector, which measures the tension of the surface
coming from the surrounding space, is a timelike vector everywhere on the surface. If, in
addition, the mean curvature vector is future- or past-pointing all over the surface, the trapped
surface is accordingly called future- or past-trapped.
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In this paper, a closed surface is a compact surface without boundary, embedded in
some other semi-Riemannian manifold. The existence of closed trapped surfaces has been
investigated in several types of spacetimes. For example, the formation of these surfaces in
several cosmological spacetimes have been studied in [13, 20].

A spacelike surface in a 4-dimensional Lorentzian manifold is called marginally trapped1 if
its mean curvature vector is null. When its mean curvature vector is zero all over the surface
it is called extremal.

In order to gain some idea of the properties of marginally trapped surfaces in particular
spacetimes, classification results were obtained for the case of having positive relative nullity
in Lorentzian space forms [10] and in Robertson-Walker spaces [11]. In [14, 15, 16] marginally
trapped surfaces invariant under symmetries of 4-dimensional Minkowski space were stud-
ied. A complete classification of spacelike surfaces in a 4-dimensional Lorentzian spacetime,
containing the above cases, was recently given in [31].

Some results concerning the non-existence of closed marginally trapped surfaces can be
also found in the literature. Among the classical ones, a result due to R. Penrose [25] implies
the non-existence of closed marginally trapped surfaces in the Minkowski spacetime when it
bounds a compact domain. In [21] the non-existence of closed marginally trapped surfaces
is shown for strictly stationary spacetimes. Finally, in [8] the authors have shown the non-
existence of marginally trapped surfaces bounding a domain and entering a region of a static
spacetime where the Killing vector field is timelike, and with the additional assumptions of
dominant energy condition and an outer untrapped barrier.

The main aim of this paper is to provide new examples of marginally trapped surfaces
and tubes in warped spacetimes.

1. In Section 2, we establish some existence/non-existence results on trapped and marginally
trapped surfaces in FLRW spacetimes (Corollaries 2.2, 2.4) by using a simple, but fun-
damental, relation between these surfaces and constant mean curvature surfaces in 3-
manifolds (Theorem 2.1). In particular, we show the existence of closed marginally
trapped surfaces with any genus in closed FLRW spacetimes.

2. In Section 3, we develop a method to construct marginally trapped surfaces in closed
FLRW spacetimes, which is based on an extension of the classical Hopf map to a sub-
mersion between closed FLRW spacetimes of dimension 4 and 3. We illustrate it with
a simple example in Subsection 3.4. In order to show the utility of this constructive
method, in Subsection 3.5 we apply it to provide marginally trapped surfaces crossing
expanding and collapsing regions of a closed FLRW spacetime.

3. Section 4 is devoted to studying marginally trapped tubes. They are defined as smooth
hypersurfaces foliated by marginally trapped surfaces. Then, we give some existence/non-
existence results for these objects in closed FLRW spacetimes (Corollaries 4.2, 4.3), and
provide examples of them with any type of causal behavior, Subsection 4.1. Finally, in
Section 5 we extend the approach introduced in this paper to twisted spaces (Theorem
5.1).

1This definition may appear slightly modified in the bibliography.
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2 Marginally trapped surfaces in t-slices of warped spacetimes

In general, given an immersion x : Σ̄n → Σm of a n-dimensional semi-Riemannian manifold
into another m-dimensional semi-Riemannian manifold, the second fundamental form and the
mean curvature vector will be denoted by hx and ~Hx = trace(hx)/n, respectively.

Let f : I ⊂ R → (0,∞) be a smooth function (t ∈ I), (M3, g3) a 3-dimensional Riemannian
manifold and S a surface. Denote by M4

1 = I×fM3 the Lorentzian warped product manifold
given by the product manifold I×M3 endowed with metric g4 = −dt2+f2g3. Let ϕ : S →M3

be an immersion of S in M3, ψ : M3 → I ×f M3 the embedding of M3 in I ×f M3 and
φ : S → I×fM3 the corresponding immersion of S in the warped product, both in the t slice
(t-slice for short). According to a well-known result (see [9, p. 79]), the following relation
holds between the corresponding second fundamental forms:

hφ(X,Y ) = hϕ(X,Y ) + hψ(X,Y ), whereby X,Y ∈ X(S). (2.1)

The expression of hψ is also known (see e.g. [23, p. 344]):

hψ(X,Y ) = −g4(X,Y )
gradg4f

f
= g4(X,Y )

f ′

f
∂t, where we have used gradg4f = −f ′∂t.

Hence, we obtain hφ(X,Y ) = hϕ(X,Y ) + g4(X,Y )f
′

f ∂t. Taking one half of the trace of the
above expression, using an orthonormal frame {∂t, {Ei}3i=1} w.r.t. the metric g4, i.e. Ei = ei

f

whereby {ei}3i=1 is the corresponding orthonormal frame w.r.t. the metric g3 on M3 (and S),
one obtains

~Hφ =
~Hϕ

f2
+
f ′

f
∂t, (2.2)

where ~Hφ and ~Hϕ stand for the mean curvature vectors associated with hφ and hϕ, respec-
tively.

Recall that a surface S is called of constant mean curvature, CMC for short, if the length
of its mean curvature vector is a constant function.

Theorem 2.1 A surface S contained in a t0-slice of M4
1 = I ×f M3 is trapped (respectively,

marginally trapped) iff it is a CMC surface in M3 with

‖ ~Hϕ‖ < |f ′(t0)| (respectively, ‖ ~Hϕ‖ = |f ′(t0)|).

Proof. We compute the length of the mean curvature ~Hφ, by making use of (2.2):

f(t0)2ḡ( ~Hφ, ~Hφ) = f(t0)2
∥∥∥∥∥ ~Hϕ

f(t0)2
+
f ′(t0)
f(t0)

∂t

∥∥∥∥∥
2

= ‖ ~Hϕ‖2 − f ′(t0)
2
.

This readily gives the results.
From this result one can deduce some simple consequences for FLRW spacetimes, i.e.

warped spacetimes with fiber M3 = R3, S3 or H3. When the fiber is M3 = S3, we will say
that our FLRW is closed.

First, recall that the so-called Clifford tori Cu in S3 are given by

Cu :=
{
(z1, z2) ∈ C2 : |z1| = cos(u), |z2| = sin(u)

}
, u ∈ (0, π/2).
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These are closed surfaces in S3 with constant mean curvature satisfying

‖ ~Hu‖ = |2 cot(2u)|. (2.3)

Of course, other CMC tori can be obtained by applying to them isometries of S3. In addition,
by making surgery on a finite number of Clifford tori, Butscher-Packard [6] obtained closed
surfaces in S3 that are also CMC with arbitrary genus. Moreover, as far as we know, these
are the only known surfaces in S3 which are closed, CMC, non-minimal and with arbitrary
genus.

Corollary 2.2 (Existence result). There exist closed trapped and closed marginally trapped
surfaces with arbitrary genus in closed FLRW spacetimes.

Proof. From Theorem 2.1, any surface in M3 with constant mean curvature ‖ ~Hϕ‖ = |f ′(t0)|
can be seen as a marginally trapped surface in the t0-slice of I ×f M3. Notice also that there
exist closed CMC surfaces in M3 = S3 with arbitrary genus (standard spheres; Clifford tori;
Butscher-Packard surfaces [6]). Therefore, there exist closed marginally trapped surfaces in
I ×f S3 with arbitrary genus. From Theorem 2.1, any minimal surface S in M3 can be seen
as a trapped surface in any t0-slice of I ×f M3 with f ′(t0) 6= 0. Notice also that there exist
closed minimal surfaces in M3 = S3 with arbitrary genus [18]. Therefore, there exist closed
trapped surfaces in I ×f S3 with arbitrary genus whenever f 6≡ cte.

Remark 2.3 Standard spheres and embedded CMC tori can be chosen with any constant
value of its mean curvature function, and so, there is no restriction for the warping function
f in Corollary 2.2. However, the mean curvature function of a Butscher-Packard’s surface
has to be sufficiently small, due to the gluing process. Thus, in this case Corollary 2.2 only
applies to warping functions of sufficiently small derivative. This observation must be also
taken into account in Corollary 4.2.

Corollary 2.4 (Non-existence result). Let M4
1 = I ×f M3 be a FLRW spacetime with fiber

M3 = H3. There are no closed marginally trapped surfaces contained in any t0-slice such that
|f ′(t0)| ≤ 1.

Proof. According to a result by do Carmo and Lawson [7], if S is a closed CMC surface in
H3, it must be a geodesic sphere with mean curvature satisfying ‖ ~Hϕ‖ > 1. Therefore, the
proof directly follows from Theorem 2.1.

Remark 2.5 Formula (2.2) implies that ~Hφ cannot be future-directed at t = t0 if f ′(t0) ≤ 0,
and so, the following result [29] is reobtained: there are no future trapped (resp. marginally
trapped) surfaces in any slice of collapsing (i.e. f ′(t) ≤ 0 for all t) warped spacetimes.
Analogously, ~Hφ cannot be past-directed at t = t0 if f ′(t0) ≥ 0, hence: there are no past
trapped (resp. marginally trapped) surfaces in any slice of expanding (i.e. f ′(t) ≥ 0 for all t)
warped spacetimes.

Remark 2.6 The stability result in [8] (which can be applied to more general surfaces
than the ones contained in a t-slice, assumed some additional conditions) suggests that the
marginally trapped surfaces found in this section should be unstable.
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3 Marginally Trapped surfaces in closed FLRW spacetimes:
A constructive method

In the present section we are going to construct marginally trapped surfaces, non-necessarily
contained in a t-slice of warped spacetimes, by using the classical Hopf map. The price to
pay is that we will need to restrict our ambient space to closed FLRW spacetimes.

Very roughly, the idea is as follows. We can see closed FLRW spacetimes I ×f S3 as a
semi-Riemannian submersion over I×f S2(1/2) such that the lift of any curve in I×f S2(1/2)
gives rise to a surface in I ×f S3 whose geometric properties depend on the base curve. Thus,
by choosing appropriate curves in the base, we can obtain embedded surfaces in I ×f S3 with
mean curvature vector as desired, i.e. spacelike, timelike or lightlike.

To develop our approach, first we need to recall some notions about semi-Riemannian
submersions and the Hopf map.

3.1 Semi-Riemannian submersions

Let π : (M, gM ) → (B, gB) be a surjective map between semi-Riemannian manifolds. Assume
that π has maximal rank. The fibers are π−1(b), with b ∈ B. A tangent vector to M is called
vertical (resp. horizontal) if it is tangent (resp. orthogonal) to the fibers. The vertical part of
π at a point m ∈ M is ker(dπ)m ⊂ TmM. If for each point m ∈ M, π∗ satisfies

gM (u, v) = gB(π∗u, π∗v), (3.1)

for any horizontal tangent vectors u, v at m ∈ M, then π is called a semi-Riemannian sub-
mersion. This lemma summarizes the basic properties of semi-Riemannian submersions, [22].

Lemma 3.1 Let π : (M, gM ) → (B, gB) be a semi-Riemannian submersion.

• Given X ∈ X(B), there exists a horizontal lift X̃ ∈ X(M) of X such that X̃ is horizontal
and π∗X̃ = X

• Given a curve γ : I → B, t0 ∈ I and a point m ∈ π−1(γ(t0)), there exists a unique
horizontal lift γ̃ : I → M of γ, i.e. it satisfies γ̃(t0) = m, π ◦ γ̃ = γ and γ̃′ is horizontal.
In particular, γ is unitary if, and only if, so is γ̃.

• If ∇M and ∇B are the Levi-Civita connections of M and B, resp., then for any X,Y, Z ∈
X(B), gM (∇M

X̃
Ỹ , Z̃) = gB(∇B

XY, Z).

3.2 The Hopf map and closed FLRW spacetimes

Let C be the field of complex numbers, with i =
√
−1 the complex unit, |z| the modulus

of z ∈ C and z its complex conjugate. Firstly, the round 3-sphere in C2 can be seen as
S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}, with standard metric g3. Also, we can see the round
2-sphere of radius 1/2 as S2(1/2) = {(z, x) ∈ C× R : |z|2 + x2 = 1/4}, with standard metric
g2. We recall the classical Hopf map

π : S3 → S2(1/2), π(z, w) =
(
zw,

1
2
|z|2 − 1

2
|w|2

)
,
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where ω is the complex conjugate of ω. It is well-known that π is a Riemannian submersion
with totally geodesic fibers. In fact, this Riemannian submersion π is the quotient map of
the following isometry group action:

S1 × S3 → S3, (eiθ, (z, w)) 7→ (eiθz, eiθw). (3.2)

The fibers of π are the orbits of the action, i.e. given a point p = (z, w) ∈ S3, the orbit
is {eiθ · p = (eiθz, eiθw) : eiθ ∈ S1}, which is a big circle (geodesic) of S3. We also remark
that the vertical part of π at p = (z, w) ∈ S3 is spanned by ip = (iz, iw). In other words,
ker(dπ)p = Span{ip}.

Given f : I ⊂ R → (0,∞) a smooth function (t ∈ I), consider the closed FLRW spacetime
M

4
1 = I ×f S3. We also consider the toy model M3

1 = I ×f S2(1/2), i.e. the 3-dimensional
Lorentzian manifold formed by the product manifold I × S2(1/2) endowed with metric g3 =
−dt2 +f2g2. Let ∇, D, ∇ and ∇2 be the Levi-Civita connections of M4

1, S3, M3
1 and S2(1/2),

resp. Note that the natural projection map of M4
1 onto I is a semi-Riemannian submersion,

whose horizontal part is spanned by ∂t. Then, a vertical vector is orthogonal to ∂t. Given
a vector field X ∈ X(S3), there exists a vertical lift X̃ tangent to M

4
1 such that X̃ ⊥ ∂t.

Given Z a tangent vector to M
4
1, nor(Z) is the orthogonal projection onto the horizontal

part, whereas tan(Z) is the orthogonal projection onto the vertical part. Formally, there is a
similar situation for M3

1, so that we can use the same notation. Thus, we obtain [23]:

Lemma 3.2 Let X, Y be tangent vector fields to S3 (resp. S2(1/2)) and X̃, Ỹ be vertical
lifts to M4

1 (resp. M3
1):

1. nor(∇X̃ Ỹ ) = −g4(X̃,Ỹ )
f gradg4(f) (resp. nor(∇X̃ Ỹ ) = −g3(X̃,Ỹ )

f gradg3(f))

2. tan(∇X̃ Ỹ ) is the vertical lift of DXY (resp. tan(∇X̃ Ỹ ) is the vertical lift of ∇2
XY ).

3.3 Constructing the surface

From now on, we will make use of Lemma 3.1, sometimes without indicating it explicitly. We
define the projection π : M4

1 →M
3
1 as π(t, p) := (t, π(p)).

Lemma 3.3 The map π is a semi-Riemannian submersion with vertical part at (t, p) spanned
by (0, ip).

Proof. We denote by ∂t both, the vector field tangent to M4
1 and M3

1. Then,

π∗∂t |(t,p)=
d

ds
|s=0 π(t+ s, p) =

d

ds
|s=0 (t+ s, π(p)) = ∂t |(t,π(p)) .

Therefore,
g3(π∗∂t, π∗∂t) = −1 = g4(∂t, ∂t).

For any (t, p) ∈ M
4
1, consider the curve α(s) = (t, cos(s)p + sin(s)ip). Taking into account

that ker(dπ)p = Span(ip), we deduce:

π∗(0, ip) =
d

ds
|s=0 π(α(s)) = (0, π∗(ip)) = (0, 0).
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Finally, take (0, X) ∈ T(t,p)M
4
1 which is orthogonal to ip. Then, π∗(0, X) = (0, π∗X). Taking

into account that π is a semi-Riemannian submersion, we deduce

g3(π∗(0, X), π∗(0, X)) = g3((0, π∗X), (0, π∗X)) = f2g2(π∗X,π∗X)
= f2g3(X,X) = g4((0, X), (0, X)).

We recall that the Hopf map π is the quotient map of the isometry group action (3.2).
We call Γθ : S3 → S3, Γθ(z, w) = (eiθz, eiθw), which is an isometry of S3. We extend it to M4

1

as follows. For each eiθ ∈ S1, we define the map

Γθ : M4
1 →M

4
1, Γθ(t, p) = (t,Γθ(p)).

Given (t, p) ∈ M
4
1, consider TtI ≡ R and TpS3 ⊂ C2. Thus, it is possible to let Γθ act on

tangent vectors under these natural identifications.

Lemma 3.4 For each eiθ ∈ S1, the map Γθ is an isometry of M4
1 with (Γθ)∗ = Γθ under

previous identifications.

Proof. Firstly, we are going to show that (Γθ)∗ = Γθ. Observe that:

(Γθ)∗(∂t |(t,p)) =
d

ds
|s=0 Γθ(t+ s, p) =

d

ds
|s=0 (t+ s,Γθ(p)) = ∂t |(t,eiθp)= Γθ(∂t |(t,p)).

On the other hand, given a curve γ in S3 such that γ(0) = p, γ̇(0) = X, we have

(Γθ)∗(0, X) =
d

ds
|s=0 Γθ(0, γ(s)) =

d

ds
|s=0 (0, eiθγ(s)) = (0, eiθX) = Γθ(0, X).

Finally, in order to prove that Γθ is isometry, notice that

g4((Γθ)∗(0, X), (Γθ)∗(0, X)) = g4((0, eiθX), (0, eiθX)) = f2g3(eiθX, eiθX)
= f2g3(X,X) = g4((0, X), (0, X)).

Since S2(1/2) is an orientable manifold, M3
1 is also orientable. We choose the orientation

on M
3
1 in such a way that for any local positive tangent frame {X,Y } on S2(1/2), the set

{∂t, X, Y } is a local positive frame on M3
1.

Let α : J ⊂ R →M
3
1 be a unit spacelike Frenet curve with frenet apparatus {T = α̇, N,B}

and κ > 0, τ . This means that the Frenet equations are

∇TT = ε2κN, ∇TN = κT + ε3τB, ∇TB = −ε2τN, (3.3)

where ε2 = g3(N,N), ε3 = g3(B,B), ε2 = −ε3 = ±1, and {T,N,B} is a positive basis along
α. Consider α(s) = (t(s), α2(s)), where t : J → I, α2 : J → S2(1/2). By Lemma 3.1, let
β : J ⊂ R →M

4
1 be a horizontal lift of α. Since β̇ is orthogonal to the vertical part of π, we

have
π ◦ β = α, β = (t, β2), π ◦ β2 = α2, β̇2 ⊥ iβ2.

Now, we are able to construct a spacelike surface in M4
1 with the help of Γθ and β. Define:

φ : S = J × S1 →M
4
1, φ(s, θ) = Γθ(β(s)) = (t(s), eiθβ2(s)). (3.4)
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It is clear that the derivatives of φ are

φs = (ṫ, eiθβ̇2), φθ = (0, ieiθβ2).

By using Lemma 3.3, the coefficients of the first fundamental form of φ∗g4 are the following:

E = g4(φs, φs) = g4((ṫ, eiθβ̇2), (ṫ, eiθβ̇2)) = −ṫ2 + f2g3(eiθβ̇2, e
iθβ̇2)

= −ṫ2 + f2g3(β̇2, β̇2) = g4(β̇, β̇) = 1,
F = g4(φs, φθ) = g4((ṫ, eiθβ̇2), (0, ieiθβ2)) = f2g3(eiθβ̇2, ie

iθβ2)
= f2g3(β̇2, iβ2) = 0,

G = g4(φθ, φθ) = g4((0, ieiθβ2), (0, ieiθβ2)) = f2g3(ieiθβ2, ie
iθβ2)

= f2g3(β2, β2) = f2.

Therefore, {U1 = φs, U2 = (1/f)φθ} is a globally defined orthonormal tangent frame to S in
M

4
1. We also need to construct an orthonormal normal frame. To do so, we use the isometries

Γθ and the vectors N , B along α. By Lemma 3.1, let Ñ and B̃ be horizontal lifts of N and
B, resp., along β. Define

ηN , ηB : S → TM
4
1, ηN = (Γθ)∗Ñ , ηB = (Γθ)∗B̃.

Lemma 3.5 The set {ηN , ηB} is a globally defined, orthonormal, normal frame to S.

Proof. We note that
φs = (Γθ)∗β̇, φθ = (Γθ)∗(0, iβ2).

Bearing in mind these two expressions, (3.1) and Lemma 3.4, we deduce

g4(ηN , φs) = g4((Γθ)∗Ñ , (Γθ)∗β̇) = g4(Ñ , β̇) = g3(N,T ) = 0,
g4(ηN , φθ) = g4((Γθ)∗Ñ , (Γθ)∗(0, iβ2)) = g4(Ñ , (0, iβ2)) = 0,

where the last equality holds because Ñ is horizontal and (0, iβ2) is vertical. On the other
hand,

g4(ηB, φs) = g4((Γθ)∗B̃, (Γθ)∗β̇) = g4(B̃, β̇) = g3(B, T ) = 0
g4(ηB, φθ) = g4((Γθ)∗B̃, (Γθ)∗(0, iβ2)) = g4(B̃, iβ̇) = 0
g4(ηN , ηN ) = g4((Γθ)∗Ñ , (Γθ)∗Ñ) = g4(Ñ , Ñ) = g3(N,N) = ε2.

Similarly, we deduce g4(ηN , ηB) = 0 and g4(ηB, ηB) = ε3.

Let hφ be the second fundamental form of the inmersion φ : S → M
4
1, and ~Hφ =

1
2trace g4hφ the corresponding mean curvature vector of S in M4

1. Then:

Lemma 3.6 The mean curvature of φ is given by

~Hφ(s, eiθ) =
ε2
2

(
κ(s) +

f ′(t(s))
f(t(s))

g3(∂t |α(s), N(s))
)
· ηN (s)

+
ε3
2

(
f ′(t(s))
f(t(s))

g3(∂t |α(s), B(s))
)
· ηB(s).

Proof. Since we already know U1, U2, ηN and ηB, we have

2 ~Hφ = Σ2
i=1{ε2g4(hφ(Ui, Ui), ηN )ηN + ε3g4(hφ(Ui, Ui), ηB)ηB}.
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We are going to compute all these four products. By Lemma 3.1 and (3.3)

g4(hφ(U1, U1), ηN ) = g4(∇U1U1, ηN ) = g4(∇φsφs, ηN )
= g4(∇(Γθ)∗β̇

(Γθ)∗β̇, (Γθ)∗Ñ) = g4(∇β̇β̇, Ñ)
= g3(∇α̇α̇, N) = g3(ε2κN,N) = κ.

Similarly, we have

g4(hφ(U1, U1), ηB) = g4(∇U1U1, ηB) = g4(∇β̇β̇, B̃) = g3(∇α̇α̇, B)
= g3(ε2κN,B) = 0.

For U2, we make use of Lemma 3.2. We consider the surface in S3 given by

ξ : J × S1 → S3, ξ(s, eiθ) = eiθβ2(s).

Since ξθ = ieiθβ2(s), it is clear that φθ = (0, ξθ). Also, note that U2 = 1
f φθ = 1

f (0, ξθ). Since
hφ(U2, U2) = 1

f2hφ(φθ, φθ), we compute

tan(∇φθ
φθ) = tan(∇(0,ξθ)(0, ξθ)) = (0, Dξθξθ). (3.5)

Thus, we have to compute Dξθξθ. To do so, we recall that the position vector χ : S3 → C2

is a unit normal vector field with second fundamental form hχ(X,Y ) = −g3(X,Y )χ for any
X,Y tangent to S3. Let D̄ be the Levi-Civita connection of C2. By the Gauss formula, and
by the fact that ξθ is unit,

Dξθξθ = D̄ξθξθ − hχ(ξθ, ξθ) = D̄ξθξθ + χ ◦ ξ.

Now, we consider the curve in J × S1 given by α(u) = (s, ei(θ+u)). Since α(0) = (s, eiθ) and
α′(0) = ∂θ|(s,eiθ), we obtain

D̄ξθξθ =
d

du

∣∣∣∣
u=0

ξθ(α(u)) =
d

du

∣∣∣∣
u=0

ξθ(s, ei(θ+u)) =
d

du

∣∣∣∣
u=0

i ei(θ+u)β2(s) = −ei(θ)β2(s).

Finally, we see
Dξθξθ = −eiθβ2(s) + (χ ◦ ξ)(s, eiθ) = 0.

By (3.5), we see that tan(∇φθ
φθ) = 0. On the other hand, by Lemma 3.2

nor(∇φθ
φθ) = nor(∇(0,Z)(0, Z)) = −g4((0, Z), (0, Z))

f
gradg4(f) = fg3(Z,Z)f ′∂t = ff ′∂t.

Therefore, we obtain ∇φθ
φθ = ff ′∂t. As a consequence, we get

hφ(U2, U2) = ε2
f2 g4(∇φθ

φθ, ηN )ηN + ε3
f2 g4(∇φθ

φθ, ηB)ηB
= ε2f ′

f g3(∂t, N)ηN + ε3f ′

f g3(∂t, B)ηB.

Proposition 3.7 Given (s, eiθ) ∈ S, the mean curvature vector of the immersion φ is space-
like (resp. lightlike/zero, timelike) if, and only if,

ε2

(
κ+

f ′

f
g3(∂t, N)

)2

+ ε3

(
f ′

f
g3(∂t, B)

)2

> 0 (resp. = 0, < 0). (3.6)
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Remark 3.8 Let us assume that the curve α satisfies that for some s0 ∈ J , the point
t0 = t(s0) is such that f ′(t0) = 0. According to (3.6), the mean curvature vector of φ
is lightlike/zero (respectively, timelike or spacelike) iff ε2κ

2(s0) = 0 (resp. < 0 or > 0).
Moreover, in case the equality holds, the curvature at s0 must vanish, i.e. κ(s0) = 0, and so
our procedure is no longer valid at this point (recall that we assumed a Frenet basis with the
assumption κ > 0). As we will see later, sometimes we can overcome this difficulty by using
a continuity argument.

Finally, we point out that given a curve α2 : J ⊂ R → S2(1/2), the lift of α2 to S3 via
the Hopf projection π is classically called a Hopf tube. If, in addition, J = R, α2 is periodic
and α2 has no self-intersection points (in other words, the image of α2 is homeomorphic to
a circle), the Hopf tube is an (embedded) Clifford torus in S3. This clearly extends to our
curves α and immersions φ; that is, if the image of α : R →M

3
1 is homeomorphic to a circle,

the associated lift φ is a torus without boundary embedded in M4
1.

3.4 A simple example

Let γ : J̃ ⊂ R → S2(1/2) be a Frenet unit curve. Let ∇2 be the Levi-Civita connection of
S2(1/2). The Frenet apparatus of γ is {dγ/ds̃,n} with geodesic curvature c. In other words,

∇2
dγ/ds̃dγ/ds̃ = cn, ∇2

dγ/ds̃n = −c · dγ/ds̃,

and {dγ/ds̃,n} is a positive basis for the usual orientation on S2(1/2). Given t0 ∈ I, let
us define α2 : J ⊂ R → S2(1/2), α2(s) = γ(s/f(t0)), and the curve α : J → M

3
1, α(s) =

(t0, α2(s)). Simple computations give α̇ = (0, α̇2) =
(
0, 1

f
dγ
ds̃

)
. We call v = 1

f
dγ
ds̃ . Note that

(0,v) is unit for ḡ3, and therefore, α is a spacelike unit curve in M3
1. Then, we easily obtain

∇2
vv =

c

f2
n, ∇2

vn = −cv.

We put T = α̇ = (0,v). From Lemma 3.2, we have ∇TT = ∇(0,v)(0,v) = tan
(
∇(0,v)(0,v)

)
+

nor
(
∇(0,v)(0,v)

)
=
(
0,∇2

vv
)
− ḡ3((0,v),(0,v))

f gradg3f =
(
f ′

f ,
c
f2 n
)
. The square g3-norm of

∇TT is ḡ3(∇TT,∇TT ) = − (f ′)2

f2 + f2g2

(
c
f2 n, c

f2 n
)

= c2−(f ′)2

f2 . In order to obtain a Frenet

curve, we must assume c2 − (f ′)2 6= 0 everywhere. We define

∆ := c2 − (f ′)2, δ := sign(∆) = ±1, κ :=

√
δ∆
f

. (3.7)

According to previous computations and notation, we have

∇TT = δ

√
δ∆
f

( f ′δ√
δ∆

,
δcn

f
√
δ∆

)
.

Therefore, we can choose

N =
( f ′δ√

δ∆
,
δcn

f
√
δ∆

)
, B =

( c√
δ∆

,
f ′n

f
√
δ∆

)
.
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In fact, it is easy to check that {T,N,B} is an orthormal basis along α, with ε2 = δ = −ε3.
Let us check that it is also positive. We recall that we should compare it with {∂t, γ′,n},
bearing in mind (3.7); that is to say, we compute

det(T,N,B) =

∣∣∣∣∣∣∣
0 f ′δ√

δ∆
c√
δ∆

1/f 0 0
0 δc

f
√
δ∆

f ′

f
√
δ∆

∣∣∣∣∣∣∣ =
−1
f2∆

∣∣∣∣ f ′ c
c f ′

∣∣∣∣ = 1
f2

> 0.

With this curve α, we construct an immersion φ as in (3.4). By (3.6), we can study the causal
character of the mean curvature vector ~Hφ of φ. Thus, we have

ε2

(
κ+

f ′

f
g3

(
∂t, N

))2

+ ε3

(
f ′

f
g3

(
∂t, B

))2

= δ

(√
δ∆
f

− δ(f ′)2

f
√
δ∆

)2

− δ
(f ′)2

f2

(
c√
δ∆

)2

=

= δ
(c2 − 2(f ′)2)2 − (f ′)2c2

δf2∆
.

This means that ~Hφ is spacelike (resp. lightlike/zero, timelike) if, and only if,

S := δ
(
(c2 − 2f ′(t0)2)2 − f ′(t0)2c2

)
> 0 (resp. = 0, < 0).

For instance, if the chosen level t0 gives rise to a critical slide f ′(t0) = 0, the mean curvature
~Hφ is always spacelike.

Proposition 3.9 There exist infinitely many embedded tori φ : S1 × S1 → M
4
1 which are

trapped, marginally trapped or untrapped (whenever f is not constant everywhere).

Proof. We resort to previous example. Pick a point t0 such that, say, f ′(t0) > 0, and consider
a curve γ with constant geodesic curvature c (i.e., the curve γ is a small circle of S2(1/2)).
If c = 2f ′(t0) holds, simple computations show δ = 1 and S = 0. This means that the
embedding φ is a marginally trapped surface. On the other hand, if c > 2f ′(t0), we have
S > 0, which is the spacelike case. Finally, if we take f ′(t0) < c < 2f ′(t0), then the mean
curvature vector of φ is timelike.

Remark 3.10 Previous proposition can be directly obtained from Theorem 2.1, just by
considering suitable CMC tori in M3 = S3.

3.5 Marginally trapped surfaces crossing expanding and collapsing regions

Consider the toy model M3
1 = I ×f S2(1/2) associated to a closed FLRW spacetime M4

1 =
I ×f S3. Let α : J ⊂ R →M

3
1, s 7→ (t(s), α2(s)) be a curve with ṫ = h(t); in particular,

ẗ(s) = h′(t)ṫ(s) = h′(t)h(t).

If we impose the vector field α̇ = T = h(t)∂t + α̇2 to be unitary, i.e.

g3(α̇, α̇) = −h(t)2 + f(t)2g2(α̇2, α̇2) = 1,
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we deduce,

g2(α̇2, α̇2) =
1 + h(t)2

f(t)2
.

Consider the unitary reparametrization α̃2 of α2, i.e.

α̇2 = ρ ˙̃α2, ρ =

√
1 + h(t)2

f(t)
, g2( ˙̃α2, ˙̃α2) = 1

(
⇒ g( ˙̃α2, ˙̃α2) = f(t)2

)
Then, T can be rewritten as

T = h(t)∂t + ρ ˙̃α2.

Moreover

∇ ˙̃α2
˙̃α2 = ∇2

˙̃α2

˙̃α2 −
g3( ˙̃α2, ˙̃α2)
f(t)

gradg3(f) = ∇2
˙̃α2

˙̃α2 + f(t)f ′(t)∂t

∇ ˙̃α2
∂t = ∇∂t

˙̃α2 =
f ′(t)
f(t)

˙̃α2, ∇∂t∂t = 0.

Therefore, we deduce:

DT (s)
ds

=
D

ds

(
ṫ(s)∂t + ρ ˙̃α2

)
= ẗ(s)∂t + ṫ(s)

D∂t
ds

+ ρ̇ ˙̃α2 + ρ
D ˙̃α2

ds

= ẗ(s)∂t + ṫ(s)2∇∂t∂t + ṫ(s)∇α̇2∂t + ρ̇ ˙̃α2 + ρ
(
ṫ(s)∇∂t

˙̃α2 +∇ ˙̃α2
˙̃α2

)
= h′(t)h(t)∂t + h(t)ρ∇ ˙̃α2

∂t + ρ̇ ˙̃α2 + h(t)ρ∇∂t
˙̃α2 + ρ2∇ ˙̃α2

˙̃α2

= h′(t)h(t)∂t + 2h(t)ρf
′(t)
f(t)

˙̃α2 + ρ̇ ˙̃α2 + ρ2∇ ˙̃α2
˙̃α2

= h′(t)h(t)∂t +
(
2h(t)ρf

′(t)
f(t) + ρ̇

)
˙̃α2 + ρ2

(
∇2

˙̃α2

˙̃α2 + f(t)f ′(t)∂t
)

=
(
h′(t)h(t) + ρ2f(t)f ′(t)

)
∂t +

(
2h(t)ρf

′(t)
f(t) + ρ̇

)
˙̃α2 + ρ2∇2

˙̃α2

˙̃α2,

where the partner function of ˙̃α2 becomes

2h(t)ρf
′(t)
f(t) + ρ̇ = 2h(t)ρ

f ′(t)
f(t)

− h(t)
(1 + h(t)2)f ′(t)− f(t)h(t)h′(t)

f(t)2√1 + h(t)2

=
(
h(t)h′(t) + (1 + h(t)2)

f ′(t)
f(t)

)
h(t)

f(t)
√

1 + h(t)2
.

Next, let { ˙̃α2,N} be some orthonormal basis of TS2(1/2) along α̃2. Assume that α̃2 is a
circle (non-necessarily maximum) in S2(1/2). Then,

∇2
˙̃α2

˙̃α2 = kN .

In conclusion, we deduce

∇TT =
(
hh′ + (1 + h2)

f ′

f

)(
∂t +

h√
1 + h2f

˙̃α2

)
+

(1 + h2)
f2

kN .
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In particular, if we recall that ∇TT = ε2κN , we have

g3(∇TT,∇TT ) =
(
hh′ + (1 + h2)f

′

f

)2 ( −1
1+h2

)
+ (1 + h2)2 k

2

f2

= ε2κ
2.

Therefore, from the last equality in this expression:

κ2 = ε2

(
(1+h2)2k2

f2 − 1
1+h2

(
hh′ + (1 + h2)f

′

f

)2
)

= ε2(1 + h2)
(

(1+h2)k2

f2 −
(
(ln
√

1 + h2)′ + (ln f)′
)2
)
.

(3.8)

Next, we are going to compute the vector field B. To this aim, we write it as:

B = A∂t +B ˙̃α2 + CN

By imposing g3(T,B) = −hA+B
√

1 + h2f = 0 we deduce

B =
h√

1 + h2f
A. (3.9)

On the other hand, by imposing g3(N,B) = 0 we have g3(∇TT,B) = 0, and so,(
hh′ + (1 + h2)

f ′

f

)(
−A+

hf√
1 + h2

B

)
+ (1 + h2)kC = 0. (3.10)

Taking into account (3.9) in (3.10) we deduce:

0 = −
(

hh′

1 + h2
+
f ′

f

)
A+ (1 + h2)kC.

Therefore, if k 6= 0 we have

C =
1

(1 + h2)2k

(
hh′ + (1 + h2)

f ′

f

)
A. (3.11)

Next, we impose g3(B,B) = −A2 + f2(B2 + C
2) = ε3. Taking into account (3.8), (3.9) and

(3.11) in this expression, one deduces:

A
2 = ε3

− 1
1+h2 + f2

(1+h2)4k2

(
hh′+(1+h2) f ′

f

)2 = − ε3k2(1+h2)2

f2
(

(1+h2)k2

f2 −((ln
√

1+h2)′+(ln f)′)2
)

= k2(1+h2)3

f2κ2 .

Next, we impose that the surface S generated by the curve α is marginally trapped (3.6):(
κ+ f ′

f g3(∂t, N)
)2

=
(
f ′

f g3(∂t, B)
)2(

κ+ f ′

fε2κ
g3(∂t,∇TT )

)2
= (f ′/f)2A2(

ε2κ
2 − (ln f)′

(
hh′ + (1 + h2)(ln f)′

))2 = ((ln f)′)2κ2A
2
.
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If we develop both members of the equation, we deduce:

2((ln f)′)2 +

(
3(ln

√
1 + h2)′ + ε

√
1 + h2k

f

)
(ln f)′ + ((ln

√
1 + h2)′)2 − (1 + h2)k2

f2
= 0,

which is a second order equation for (ln f)′. The discriminant of this equation is:

D =

(
(ln
√

1 + h2)′ +
3ε
√

1 + h2k

f

)2

.

Therefore, the solutions are

(ln f)′± =
−3(ln

√
1 + h2)′ − ε

√
1+h2k
f ±

(
(ln
√

1 + h2)′ + 3ε
√

1+h2k
f

)
4

,

that is, {
f ′+ = −1

2(ln
√

1 + h2)′f+ + ε
2

√
1 + h2k

f ′− = −(ln
√

1 + h2)′f− − ε
√

1 + h2k.

The solution (ln f)′− implies κ = 0 (recall (3.8)). So, take the solution (ln f)′+ with ε = +1.
Take also t(s) = sin(s), and thus, h(t) = ±

√
1− t2. In this case, the warping function f must

satisfy the differential equation

f ′(t) =
t

2(2− t2)
f(t) +

√
2− t2

2
k, f(0) = f0 > 0. (3.12)

So, according to previous construction, we will obtain a marginally trapped surface crossing
expanding and collapsing regions along a closed FLRW spacetime with, say, I = (−1.3, 1.3),
if, in addition, the following two properties hold for f0 big enough:

(i) f(t) > 0 for all t ∈ [−1.3, 1.3], and

(ii) f ′(t) changes its sign along (−1, 1).

For (i), first we are going to prove that f(t) > 0 on [0, 1.3]. By contradiction, we assume
there exists t1 ∈ [0, 1.3] such that f(t1) ≤ 0. Since f ′(0) = k > 0, f has to start to decrease
at a certain point, and therefore there exists t0 ∈ (0, t1) such that f ′(t0) = 0, f(t0) > 0. This
is in contradiction to the fact that

f ′(t0) =
t0

2(2− t20)
f(t0) +

√
2− t20
2

k > 0.

Next, we focus on [−1.3, 0]. Let g(t) be the solution of the problem:

g′(t) =
√

2− t2

2
k, g(0) = f0.

It is straightforward to check that

g(t) =
1
4
kt
√

2− t2 +
k

2
arcsin(t/

√
2) + f0 on [−1.3, 0].
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In particular, we notice that g(t) > 0 on [−1.3, 0] whenever f0 is big enough. We are going
to show that, under these conditions, g(t) ≤ f(t) on [−1.3, 0]. To this aim, define

Γ = {t ∈ [−1.3, 0] : g(t) ≤ f(t)}.

Since g(0) = f0 = f(0), it is 0 ∈ Γ 6= ∅. Moreover, Γ = (g−f)−1((−∞, 0]) is closed in [−1.3, 0].
In order to show that Γ = [−1.3, 0], it suffices to prove that Γ is open, or, equivalently, if
[t, 0] ⊂ Γ then [t− ε, 0] ⊂ Γ for some ε > 0. So, assume that [t, 0] ⊂ Γ. Then, f(t) ≥ g(t), and
thus,

f ′(t)− g′(t) =
t

2(2− t
2)
f(t) < 0, for all t ∈ [t, 0].

Therefore, ∫ 0

t
f ′(t)dt <

∫ 0

t
g′(t)dt, and thus, f(t) > g(t).

By continuity, there exists ε > 0 such that f(t) ≥ g(t) for all t ∈ [t−ε, 0], and so, [t−ε, 0] ⊂ Γ.
Summarizing, we have proved that property (i) above holds whenever f0 is big enough.

For property (ii), observe that f ′(0) > 0. Moreover, f(−1) ≥ g(−1) ↗ ∞ if f0 ↗ ∞.
Therefore,

f ′(−1) = −f(−1)
2

+
k

2
< 0 if f0 is big enough.

Hence, property (ii) also holds whenever f0 is big enough.
In conclusion, we have proved the existence of a closed FLRW spacetime admitting a

marginally trapped surface crossing expanding and collapsing regions.

Remark 3.11 Two important subtleties have been omitted in previous development:

1. Notice that our approach breaks down at the points where function h becomes zero,
i.e. for t(s) = ±1; and so, we cannot ensure, a priori, that our surface is marginally
trapped at the corresponding points. This difficulty is overcome just by noting that the
continuity of the length of the mean curvature vector, joined to the fact that this length
is zero at the rest of the points, ensures that it is also zero here.

2. A similar argument shows that our surface is marginally trapped at the points where f ′

vanishes (which must exist by property (ii)). From (3.12) it is straightforward to check
that these points are isolated in I, and so, again a continuity argument on the length
of the mean curvature vector ensures that the surface is also marginally trapped there.

4 Marginally trapped tubes in FLRW spacetimes

In the present paper we propose the following definition of marginally trapped tube (compare
with the definition of MOTT in [1]):

Definition 4.1 A smooth manifold G which admits a foliation {Sλ :∈ λ ∈ Λ}, is a marginally
trapped tube in a spacetime M if there is a smooth immersion of codimension 1, Φ : G →M,
such that:

(A) Each Φ(Sλ) (λ ∈ Λ) is a marginally trapped surface in M, and
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(B) Φ(Sλ) ∩ Φ(Sµ) = ∅ for any µ, λ ∈ Λ, µ 6= λ.

The second condition is required in order to avoid self-intersections in the direction of prop-
agation of the tube.

With this definition in mind, we are going to apply our approach to obtain some informa-
tion about marginally trapped tubes in FLRW spacetimes. We begin with the following direct
consequences of the corresponding existence/non-existence results for marginally trapped sur-
faces in Section 2 (Cor. 2.2, 2.4):

Corollary 4.2 (Existence result). There exist marginally trapped tubes whose t-sections are
formed by closed marginally trapped surfaces of any genus in closed (M3 = S3) FLRW space-
times.

Corollary 4.3 (Non-existence result). Let M4
1 = I ×f M3 be a FLRW spacetime with fiber

M3 = H3. There are no marginally trapped tubes, with t-sections formed by closed marginally
trapped surfaces, crossing t0-slices with |f ′(t0)| ≤ 1.

Next, we are going to give examples of marginally trapped tubes with any type of causality
in closed FLRW spacetimes.

4.1 Examples of marginally trapped tubes with different causality

Given a closed FLRW spacetime M4
1 = I ×f S3, first we are going to construct a marginally

trapped tube foliated by Clifford tori (see Section 2) and defined for any time.
We define the smooth function

h : I → (0, π/2), h(t) =
1
2
arccot

(
f ′(t)

2

)
=
π

4
− 1

2
arctan

(
f ′(t)

2

)
,

whose derivative is

h′(t) =
−f ′′(t)

4 + f ′(t)2
.

Next, we define the embedding

φ : I × S1 × S1 →M
4
1,

φ(t, eiθ, eiν) =
(
t, eiθ cos(h(t)), eiν sin(h(t))

)
.

We notice that for each t ∈ I, the surface φ(t,−,−) : S1 × S1 → M
4
1, is a Clifford torus

embedded in the t-slice. By comparing with the expression of the Clifford torus, we see that
the length of the mean curvature of the torus (see (2.3)) at t is ‖ ~Hu‖, with u = h(t). A
straightforward computation shows

‖ ~Hu‖u=h(t) = |2 cot(2u) |u=h(t) | = |f ′(t)|.

By Theorem 2.1, for each t, the torus is a marginally trapped surface.
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Next, we pay attention to the causal character of the embedding φ. In this sense, we are
going to compute the first fundamental form induced by ḡ4 on our surface. To this aim, first
we compute the derivatives

φt =
(
1,−eiθ sin(h(t))h′(t), eiν cos(h(t))h′(t)

)
,

φθ =
(
0, ieiθ cos(h(t)), 0

)
,

φν =
(
0, 0, ieiν sin(h(t))

)
.

A straightforward computation shows

φ∗ḡ4 ≡

 (f(t)h′(t))2 − 1 0 0
0 (f(t) cos(h(t)))2 0
0 0 (f(t) sin(h(t)))2

 .

Since 0 < h(t) < π/2 for any t ∈ I, the derivatives φθ and φν are always spacelike. Thus,
everything depends on the derivative φt. By recalling the expressions of φt and h′(t), we
obtain

z(t) := ḡ4(φt, φt) = −1 +
(
f(t)f ′′(t)
4 + f ′(t)2

)2

. (4.1)

This expression can take any value, positive, negative or zero, depending only on the warping
function f . We show a list of particular cases:

1. We choose non-negative real constants a and b such that a2 = 4 + b2. In particular,
a > b, which makes the function f : I = R → (0,∞), f(t) = a cosh(t) + b sinh(t) well-
defined. A simple computation shows z(t) = 0. Therefore, φt is everywhere lightlike,
and so is the corresponding marginally trapped tube.

2. We choose real constants c1, c2 > 0. Then, the function f : R → (0,∞), f(t) =
4+c21
4c2

t2 +c1t+c2 is well-defined. A simple computation shows z(t) = −3/4. This implies
that φt is everywhere timelike, and so is the corresponding marginally trapped tube.

3. We define the function f : (−1, 1) → (0,∞), f(t) = 2
1−t2 . Now, we see

z(t) + 1 =
(
f(t)f ′′(t)
4 + f ′(t)2

)2

=
6t2 + 2

t8 − 4t6 + 6t4 + 1
.

If we show that z(t) ≥ 1, then we obtain that φt is always spacelike, and thus, the
marginally trapped tube is also spacelike. By simple computations, we have that for
any t ∈ (−1, 1), z(t) + 1 ≥ 2 ⇐⇒ 0 ≥ t2(t6 − 4t4 + 6t2 − 3). Standard computations
give that the only real roots of the equality are t = 0,±1. This readily proves z(t) ≥ 1
for any t ∈ (−1, 1).

4. We define the function f : R → (0,∞), f(t) = 3 + cos(2t). A straightforward computa-
tion gives

z(t) = −1 +
(
f(t)f ′′(t)
4 + f ′(t)2

)2

= −1 +
4 cos2(2t)(3 + cos(2t))2

(3− cos(4t))2
.

It is easy to check z(0) = 15 and z(π/4) = −1. Therefore, the marginally trapped tube
changes its causal character with time.
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5 Marginally trapped surfaces in t-slices of twisted spaces

Assume that the warping function f also depends on the fiber M3, i.e. f : I ×M3 → (0,∞).
Denote again by M

4
1 = I ×f M3 the Lorentzian twisted manifold given by the product

manifold I ×M3 endowed with metric g4 = −dt2 + f2g3. As in Section 2, let ϕ : S → M3

be an immersion of S in M3, ψ : M3 → I ×f M3 the embedding of M3 in I ×f M3 and
φ : S → I ×f M3 the corresponding immersion of S in the twisted product, both in a t-
slice. Again from [9, p. 79], we have the following relation between the corresponding second
fundamental forms:

hφ(X,Y ) = hϕ(X,Y ) + hψ(X,Y ), whereby X,Y ∈ X(S).

From [26, Prop. 2], the second fundamental form hψ is

hψ(X,Y ) = −g4(X,Y )
gradg4f

f
= g4(X,Y )

(
∂tf

f
∂t −

1
f3

gradg3f
)
,

where we have used that

gradg4f

=
∑
ij

gij4
∂f

∂xi
∂

∂xj

 = −∂tf∂t +
1
f2

gradg3f.

Hence,

hφ(X,Y ) = hϕ(X,Y ) + g4(X,Y )
(
∂tf

f
∂t −

1
f3

gradg3f
)
.

Taking one half of the trace of the above expression, using an orthonormal frame {∂t, {Ei}3i=1}
w.r.t. the metric g4, i.e. Ei = ei

f whereby {ei}3i=1 is the corresponding orthonormal frame
w.r.t. the metric g3 on M3 (and S), one obtains

~Hφ =
1
f2

(
~Hϕ −

1
f

gradg3f
)

+
∂tf

f
∂t, (5.1)

where ~Hφ and ~Hϕ stand for the mean curvature associated to hφ and hϕ, respectively.

Theorem 5.1 A surface S contained in a t0-slice of twisted M
4
1 = I ×f M3 is marginally

trapped iff its mean curvature vector satisfies:∥∥∥∥ ~Hϕ(·)− 1
f(t0, ·)

gradg3f(t0, ·)
∥∥∥∥ = |∂tf(t0, ·)|.

On the other hand, S is trapped iff∥∥∥∥ ~Hϕ(·)− 1
f(t0, ·)

gradg3f(t0, ·)
∥∥∥∥ < |∂tf(t0, ·)|.
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