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1 Introduction

Assuming that the space-time dimensionality is restricted to the number of currently known 4

dimensions, the Einstein tensor appearing in the equation of motion of the standard theory of

gravity is the most general rank 2, divergence-free symmetric tensor depending on the metric and

its first and second derivatives only, while being linear in the latter. As for the presently testable,

gravity-related phenomena, all experiments seem to show no discrepancies between the General

Relativity and observations1. Nevertheless, a beyond the Standard Model theory is commonly

pronounced necessary, with string theories amongst the most serious candidates. As compared

to the standard Einstein theory of gravity, the effective Lagrangians obtained within the string

theories framework contain corrections with higher powers of the Riemann tensor [2]. Moreover,

the α′ expansion in string theories predicts corrections of the higher order in derivatives not only for

the metric tensor, but also for other fields, such as the dilaton. In this work we investigate models

with higher order corrections for both the metric and the dilaton, as well as mixed gravity-dilaton

interactions.

The order of the corrections is restricted by the dimensionality of the space-time. Specifically,

the N -th power of the Riemann tensor can be included into a dilaton gravity Lagrangian only if

the number of space-time dimensions, d, is sufficient, i.e. for d ≥ 2N . For example, the 2nd order

contribution quadratic in the Riemann tensor, known as the Gauss-Bonnet (GB) term [3], can be

taken into account in a dilaton gravity theory already in 4 dimensions. On the other hand, in

the classical, no-dilaton theories, the GB term is a full divergence in 4 dimensions. It becomes

dynamically relevant in an at least 5-dimensional space-time only. For pure gravity the GB term

was generalized to higher orders2 by Lovelock [6]. In a previous paper by the present authors [7], the

Einstein-Lovelock theory of gravity was generalized by coupling it to the dilaton. The appropriate

action and equations of motion were constructed up to arbitrary order in derivatives of both the

metric tensor and the dilaton.

The main motivation for the dilaton gravity theory constructed in [7] comes from string theories,

which are considered to be the most promising attempt to quantize gravity and unify it with all

other known interactions. The gravitational sectors of the effective field theories derived from

string theories coincide with the Einstein theory of gravity only in the lowest order. Beyond such

approximation they involve higher powers of the Riemann tensor as well as interactions with other

fields with more than two derivatives. The dilaton gravity model considered in the present paper

1However, there are claims that some alternative models could provide better explanation for the late-time cosmic
acceleration and/or for the phenomena attributed usually to the existence of the Cold Dark Matter. (see e.g. [1]
and references therein).

2Explicit formulae for the 3rd and 4th orders expressions are given in [4] and [5], respectively.
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is closely connected to string theories - its interactions with up to four derivatives are exactly as

those present in the effective theory derived from string theories and restricted to the gravity and

the dilaton field (see e.g. [11]). Such correspondence has not been proven for interactions with six

or more derivatives. However, there are considerable indications (see the discussion of the O(d, d)

symmetry in [7]) that our model may be a part of the effective string dilaton gravity action also at

the level of more than four derivatives.

Dating back to the M-theory based work by Hořava and Witten [8], the idea of localizing

the Standard Model on a brane embedded in a higher-dimensional space-time [9] gained quite a

lot of attention. Corrections to the gravity interactions at the brane due to the bulk fields were

investigated by many authors [10]. It seems interesting and important to consider what gravity

would be induced at the brane, if the bulk action was given by a higher order dilaton gravity theory.

Hence, the purpose of this work is to derive effective gravitational equations at the brane for the

models of arbitrary higher order in derivatives, constructed in [7]. In order to keep full generality,

the procedure will be carried out in the covariant approach. Starting from the d-dimensional (d > 4)

higher order dilaton gravity theory, equations of motion in the effective (d− 1)-dimensional theory,

i.e. for a co-dimension 1 brane, will be derived.

For the standard lowest order gravity the effective equations of motion at the brane were derived

in the covariant approach in [12]. That analysis was extended to the GB gravity in [13]. The

effective equations at the brane for the lowest order dilaton gravity were derived in [14] (however,

not in a fully covariant way). The covariant approach was employed in [15] for cosmological

applications of dilaton gravity. Certain second order gravity models with branes, including either

first or second order corrections for the scalar field, were analyzed for specific metrics in e.g. [16]

and [17], respectively. Although brane models for arbitrary order Einstein-Lovelock gravity were

investigated in [18], neither the dilaton field was included, nor the covariant approach was adopted.

No comprehensive results for theories which simultaneously take into account interactions of the

higher order in the Riemann tensor and involve the dilaton have been presented so far.

The main goal of the present work is to obtain the effective brane equations of motion for

arbitrary order dilaton gravity models using the covariant approach. Due to the already pointed

out relation of the higher order dilaton gravity model [7] to string theories, the covariant derivation

of the effective brane equations in this setup will allow for studying in a more systematic way the

potentially observable effects of string theories e.g. on specific cosmological models.

The rest of this paper is organized as follows: In section 2 we define the d-dimensional dilaton

gravity models with corrections of the higher order in derivatives and with brane interactions whose

exact nature we choose not to specify. The bulk equations of motion for these models are derived

and rewritten in terms of quantities either projected on the brane, or perpendicular to it. Section
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3 is devoted to the analysis of the junction conditions at the brane. The effective equations of

motion at the brane for a general case with arbitrary order corrections are obtained in section

4. Construction of all possible brane equations is carefully discussed. The importance of the

bulk Z2 symmetry for the form and existence of the effective equations is analyzed. In section 5

explicit results for the lowest order dilaton gravity and for the theory with up to four derivatives

are presented. Some of the results for the latter, because of their complexity, are moved to the

appendix. Section 6 contains our conclusions.

2 Higher dimensional equations of motion

We consider the d-dimensional dilaton gravity theory described by the following Lagrangian:

L = e−φ

[
Nmax∑

N=1

αN

2
T
([

1
2
R∗∗

∗∗ ⊕ 2(∇∇)∗∗φ ⊕ (−1)(∂φ)2
]N)

− V (φ) + LB δB

]
. (1)

This is the Lagrangian (in the notation explained below) of the higher order dilaton gravity con-

structed in [7] and generalized by including a bulk scalar potential V (φ) and general brane inter-

actions given by LB. The position of the brane3 is described by the Dirac delta type distribution

δB. As was discussed in the Introduction, the main motivation for considering this dilaton gravity

model is its close relation to string theories. Investigation of its properties in a brane scenario is a

step towards studying e.g. the potentially observable cosmological effects of string theories.

The above Lagrangian is written in a very compact form using the following notation introduced

in [7]: T is a generalization of the ordinary trace. Acting on an arbitrary rank (m, m) tensor M it

returns a number given by

T (M) = δσ1σ2···σm
ρ1ρ2···ρm

Mρ1ρ2···ρm
σ1σ2···σm , (2)

where δ with m pairs of indices is the generalized Kronecker delta

δσ1σ2···σm
ρ1ρ2···ρm

= det




δσ1
ρ1

δσ1
ρ2

· · · δσ1
ρm

· · · · · ·
· · · · · ·

δσm
ρ1

δσm
ρ2

· · · δσm
ρm




. (3)

Asterisks are used as indices in the Lagrangian (1) to indicate ranks of tensors (e.g. to distinguish

the Riemann tensor from the Ricci tensor or the curvature scalar). Under the generalized trace T
there are powers of “sums” (denoted by ⊕) - i.e. of linear combinations of different ranks tensors.

3The theory can include more branes, but we choose to focus our considerations on the brane for which we will
be deriving the effective gravitational equations of motion.
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This should be understood as a compact notation for the following operation: First, we perform

the algebraic manipulations (sums and powers), treating all tensors as ordinary numbers. Then the

generalized trace (2) of the obtained linear combination of tensors products should be understood

as the corresponding linear combination of the generalized traces of tensor products. For example:

T
([

1
2
R∗∗

∗∗ ⊕ 2(∇∇)∗∗φ
]2)

= 1
4
T
(
R∗∗

∗∗R∗∗
∗∗
)

+ 2 T
(
R∗∗

∗∗(∇∇)∗∗φ
)

+ 4 T
(
(∇∇)∗∗φ(∇∇)∗∗φ

)

= 1
4
δσ1σ2σ3σ4
ρ1ρ2ρ3ρ4

Rρ1ρ2
σ1σ2 Rρ3ρ3

σ3σ4 + 2 δσ1σ2σ3
ρ1ρ2ρ3

Rρ1ρ2
σ1σ2 (∇ρ3∂σ3φ) + 4 δσ1σ2

ρ1ρ2
(∇ρ1∂σ1φ) (∇ρ2∂σ2φ) ,

where, due to the properties of the Riemann tensor and the second covariant derivative of a scalar,

we can unambiguously define: Rρσ
µν ≡ Rρσ

µν and (∇∇)ν
µφ ≡ ∇ν∂µφ.

With the above formulae it is easy to check that the number of higher order terms in the

Lagrangian (1) is not arbitrary. The term in (1) with the generalized trace (2) of the highest rank

tensor is proportional to

T
(
(R∗∗

∗∗)
Nmax

)
= δ

σ1σ2···σ(2Nmax−1)σ(2Nmax)
ρ1ρ2···ρ(2Nmax−1)ρ(2Nmax)

Rρ1ρ2
σ1σ2 . . .Rρ(2Nmax−1)ρ(2Nmax)

σ(2Nmax−1)σ(2Nmax)
. (4)

It is obvious from the definition (3) that, because of the antisymmetry in all indices of one type

(covariant and contravariant), the (2Nmax, 2Nmax) rank generalized Kronecker delta (3) in eq. (4)

is non-zero only if the number of space-time dimensions d is sufficiently large. Thus, there is an

upper limit on the order of the interaction terms present in our Lagrangian: Nmax ≤ (d/2).

Using the results of [7], bulk equations of motion can be derived from the Lagrangian (1). They

read

gµνV (φ) −
Nmax∑

N=1

αN

2
T µν

([
1
2
R∗∗

∗∗ ⊕ 2(∇∇)∗∗φ ⊕ (−1)(∂φ)2
]N)

− τµνδB = 0 , (5)

V (φ) − V ′(φ) −
Nmax∑

N=1

αN

2
T
([

1
2
R∗∗

∗∗ ⊕ 2(∇∇)∗∗φ ⊕ (−1)(∂φ)2
]N)

− τφδB = 0 , (6)

where the brane localized terms, τµν and τφ, are calculated from the brane Lagrangian LB, namely

τµν = hµν LB − 2
δLB

δhµν
, τφ = LB − δLB

δφ
. (7)

In the tensor equation of motion (5) we introduced another generalization of the standard trace

given by

T ν

µ (M) = δνσ1σ2···σm
µρ1ρ2···ρm

Mρ1ρ2···ρm
σ1σ2···σm . (8)

It maps arbitrary rank (m, m) tensors into rank (1, 1) ones4.

4For m = d the generalized Kronecker delta δνσ1σ2···σm
µρ1ρ2···ρm

should be replaced in (8) with the following combination:
δν
µδσ1σ2···σm

ρ1ρ2···ρm
− δσ1

µ δ ν σ2···σm
ρ1ρ2···ρm

− . . . − δσm
µ δσ1σ2··· ν

ρ1ρ2···ρm
.
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The main goal of the present work is to find the effective (d − 1)-dimensional equations of

motion at the brane located at the support of δB. The first step in this direction is to identify

parts “parallel” and “perpendicular” to the brane in all relevant tensors. In order to achieve this

in a covariant way, we start with introducing a vector field nµ normalized to 1 and perpendicular

to the brane at its position. The choice of nµ is not unique, due to the freedom in the bulk and

the sign ambiguity at the brane. However, as we will see later, the effective brane equations of

motion are unique. With any such a vector field nµ we define the metric hµν = gµν − nµnν . This

expression holds throughout the d-dimensional space-time but, restricted to the brane position, it

just yields the metric induced on the brane. Subsequently, we divide the d-dimensional tensors into

parts parallel and perpendicular to the vector field nµ as

Rνσ
µρ = Rνσ

µρ − 2 Kν
[µK

σ
ρ] − 4 n[νD[µK

σ]
ρ] − 4 n[µD

[νK
σ]
ρ] − 4 n[νn[µ£nK

σ]
ρ] + 4 n[νn[µ(KK)

σ]
ρ] , (9)

∇ν∇µφ = DνDµφ + Kν
µ£nφ + nνDµ£nφ + nµ Dν£nφ − nνKσ

µDσφ − nµ Kν
σDσφ

+ nνnµ

(
£n

2φ − aλ∇λφ
)
, (10)

(∂φ)2 = (Dφ)2 + (£nφ)2 , (11)

where Kµν = 1
2
£nhµν is the extrinsic curvature of hypersurfaces orthogonal to nµ, £n is the Lie

derivative5 along nµ, and aλ ≡ nρ∇ρn
λ. It is important to distinguish between the d-dimensional

tensors associated with the full metric gµν , namely the Riemann tensor Rµν
ρσ and the covariant

derivative ∇µ, and the (d− 1)-dimensional tensors associated with the metric hµν restricted to the

brane position, i.e. Rµν
ρσ and Dµ.

The right hand sides of eqs. (9)-(11) are expressed almost entirely in terms of the vector field

nµ, Lie derivatives along nµ and brane quantities orthogonal to nµ, i.e. Rµν
ρσ , Kµν and Dµ. The term

aλ∇λφ = nρ(∇ρn
λ)(∇λφ), containing the d-dimensional covariant derivatives, is the only exception.

However, as we will see later, the derivation procedure for the effective gravitational equations at

the brane will be constructed in such a way, that aλ∇λφ will not appear in our final results.

The Riemann tensor Rρσ
µν and the tensor of the second covariant derivative of the dilaton ∇ν∇µφ

appear in the bulk equations of motion (5) and (6) exclusively under the generalized traces (2) and

(8), which involve full anti-symmetrization in all covariant and contravariant indices. Hence, the

projection equations (9) and (10) can be simplified when used under those traces, namely

R∗∗
∗∗ → R∗∗

∗∗ − 2K∗
∗K

∗
∗ − 4(nn)∗∗

(
£nK∗

∗ − (KK)∗∗
)
− 8(nD)∗∗K

∗
∗ , (12)

(∇∇)∗∗φ →
[
(DD)∗∗φ + K∗

∗£nφ
]
+ (nn)∗∗

(
£n

2φ − aλ∇λφ
)

+ 2
[
(nD)∗∗£nφ − (nKD)∗∗φ

]
, (13)

5For a given tensor Mρ1ρ2···ρm
σ1σ2···σl

and arbitrary direction vµ, the Lie derivative along vµ is defined as follows:
£v Mρ1ρ2···ρm

σ1σ2···σl = vλ∇λMρ1ρ2···ρm
σ1σ2···σl −

∑m
i=1 Mρ1ρ2···λ···ρm

σ1σ2········σl ∇λvρi +
∑l

j=1 Mρ1ρ2········ρm

σ1σ2···λ···σl
∇σj v

λ, thus e.g. £nφ = nλ∇λφ.
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where in order to make the formulae more compact we introduced the following notation: (nn)∗∗ ≡
n∗n

∗, (∇∇)∗∗ ≡ ∇∗∇∗, (DD)∗∗ ≡ D∗D
∗, (KK)∗∗ ≡ K∗

λK
λ
∗ , (nD)∗∗ ≡ 1

2
(n∗D

∗ + n∗D∗) and (nKD)∗∗ ≡
1
2

(
n∗K

∗
λDλ + n∗Kλ

∗ Dλ

)
.

Employing the dimensional reduction formulae (12), (13) and (11), the bulk equations of motion

(5) and (6) can be rewritten as

gµνV (φ) −
Nmax∑

N=1

αN

2
T µν

([(
1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
)
⊕ (−1)

(
K∗

∗ ⊕ (−1)£nφ
)2

⊕ 2 (nn)∗∗
(
(KK)∗∗ − £nK∗

∗
)
⊕ 2 (nn)∗∗

(
£n

2φ − aλ∇λφ
)

⊕ (−4)(nD)∗∗K
∗
∗ ⊕ 4

[
(nD)∗∗£nφ − (nKD)∗∗φ

]]N)
− τµν δB = 0 , (14)

V (φ) − V ′(φ) −
Nmax∑

N=1

αN

2
T
([(

1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
)
⊕ (−1)

(
K∗

∗ ⊕ (−1)£nφ
)2

⊕ 2 (nn)∗∗
(
(KK)∗∗ − £nK∗

∗
)
⊕ 2 (nn)∗∗

(
£n

2φ − aλ∇λφ
)

⊕ (−4)(nD)∗∗K
∗
∗ ⊕ 4

[
(nD)∗∗£nφ − (nKD)∗∗φ

]]N)
− τφ δB = 0 . (15)

These equations remain defined and valid throughout the full d-dimensional space-time. They are

smooth in the bulk, but contain discontinuous and singular (distribution-like) terms localized at

the brane. The effective brane equations of motion can be obtained if the information from both

smooth and singular parts of (14) and (15) is properly taken into account at the position of the

brane.

3 Junction conditions

In order to find the junction conditions which have to be fulfilled at the brane, we shall define

a 1-dimensional integration in the direction perpendicular to the brane. In order to achieve this,

we will employ a special family of integral curves associated with the vector field nµ. Specifically,

let us define the curves γµ(λ) by requiring the vector field nµ to be at each point tangent to γµ:

(dγµ/dλ)(λ) = nµ(γν(λ)). We choose the parameterization of these curves in such a way that each

of them crosses the brane at the point γµ(0). For a scalar field f(xµ), at each point xµ, we consider

the following integral: ∫

Γµ
x(λ1,λ2)

f(xµ) =

∫ λ2

λ1

f
(
γµ

x (λ)
)
dλ , (16)
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where Γµ
x(λ1, λ2) = {γµ

x(λ)|λ ∈ [λ1, λ2]} is a part of the curve γµ
x (λ) crossing the brane at the point

xµ. This integration is “inverse” to the Lie derivative6 in the following sense:
∫

Γµ
x(λ1,λ2)

£nf(xµ) = f
(
γµ

x (λ2)
)
− f

(
γµ

x (λ1)
)
. (17)

This integral can be generalized to the case of arbitrary tensor integrands by applying appropriate

pullback and pushforward operations along the family of curves γµ(λ).

Junction conditions for a given point xµ
0 on the brane are obtained by integrating the d-

dimensional equations of motion along (an infinitesimal part of) the curve γµ
x0

(λ) going through

xµ
0 : ∫

⊥B

F (xµ
0 ) ≡ lim

ε→0

∫

Γµ
x0

(−ε,+ε)

F (xµ
0 ) , (18)

where F (xµ) is the scalar or the tensor given by the left hand sides of the bulk equations of motion

(14) and (15), respectively7.

Only certain terms in the d-dimensional equations of motions will not yield zero during the

above infinitesimal across-the-brane integration, namely the brane contributions involving τµν and

τφ, explicitly proportional to δB, and the terms containing Lie derivatives (i.e. £n
2φ and £nKµν)

of quantities which can be discontinuous at the brane (£nφ and Kµν , respectively). Hence, the

relevant parts of the bulk equations of motions (14) and (15) yield

Nmax∑

N=1

αNN

∫

⊥B

T µν

(
(nn)∗∗ £n

(
K∗

∗ ⊕ (−1)£nφ
)

·
[(

1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
)
⊕ (−1)

(
K∗

∗ ⊕ (−1)£nφ
)2]N−1

)
= τµν , (19)

Nmax∑

N=1

αNN

∫

⊥B

T
(

£n

(
K∗

∗ ⊕ (−1)£nφ
)

·
[(

1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
)
⊕ (−1)

(
K∗

∗ ⊕ (−1)£nφ
)2]N−1

)
= τφ . (20)

The integration of the terms containing the brane localized sources τµν and τφ was easy due to the

obvious (defining) properties of the Dirac delta distribution δB. The remaining integrations require

a more careful treatment. The integrands involve products of the distribution-like objects, £nKµν

or £n
2φ, and the potentially discontinuous objects, Kµν or £nφ. Strictly speaking, such integrals

6From now on whenever we refer to a Lie derivative, it should be understood as the Lie derivative along the
vector field nµ.

7Integral (18) is well defined for any point of the space-time. However, away from the brane the integrands are
smooth and the integral vanishes in the ε → 0 limit. Non-trivial results are obtained only on the brane, where there
are localized sources τµν and τφ.
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have no mathematically unambiguous meaning, as distributions are defined by their integrals with

smooth functions. Therefore, we need some kind of regularization to deal with such terms. Fortu-

nately, there is an obvious way to regularize and calculate the integrals in eqs. (19) and (20). Let

us first consider terms of the form sfk£nf , where s is smooth, whereas f may be discontinuous at

the brane. Employing the formula (17) and the Leibniz rule for the Lie derivative we get
∫

⊥B

sfk£nf = 1
k+1

∫

⊥B

s£n

(
fk+1

)
= 1

k+1

∫

⊥B

£n

(
sfk+1

)
= 1

k+1
[sfk+1]± . (21)

The second equality follows from the fact that the integral of (£ns)fk+1 vanishes in the ε → 0

limit. The square bracket with the ± subscript was introduced to denote a jump in the value of

some quantity when crossing the brane:

[f(xµ
0)]± = [f(xµ

0 )]+ − [f(xµ
0 )]− , (22)

while the square brackets with the subscripts + and − denote the limits of a given bulk quantity

when approaching the brane from the “+” and the “−” sides, respectively:

[f(xµ
0 )]+(−) = lim

ε→0+(−)
f
(
γµ

x0
(ε)
)
. (23)

We intend to apply the regularization (21) to the integrals in eqs. (19) and (20). It is instructive

to start from considering a simple example of such a calculation:∫

⊥B

T
([

K∗
∗ ⊕ (−1)£nφ

]
£n

[
K∗

∗ ⊕ (−1)£nφ
])

=

∫

⊥B

[
δνσ
µρKµ

ν £nKρ
σ − δν

µ

(
£nKµ

ν £nφ + Kµ
ν £n

2φ
)

+ £n
2φ£nφ

]

= 1
2
δνσ
µρ

∫

⊥B

£n (Kµ
ν Kρ

σ) − δν
µ

∫

⊥B

£n (Kµ
ν £nφ) + 1

2

∫

⊥B

£n (£nφ)2

= 1
2
δνσ
µρ [Kµ

ν Kρ
σ]± − δν

µ [Kµ
ν £nφ]± + 1

2

[
(£nφ)2

]
± =

[
T
(

1
2
{K∗

∗ ⊕ (−1)£nφ}2
)]

±
.

The same result is obtained if the regularization (21) is used when treating the formal sums of

tensors of different ranks, under the generalized traces T and T µν, as ordinary functions. Performing

similar calculations for all terms present in (19) and (20), we obtain the junction conditions as

Nmax∑

N=1

αNN

N−1∑

k=0

(−1)k(N − 1)!

(2k + 1)k!(N − 1 − k)!

·
[
T µν

(
(nn)∗∗

[
1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
]N−1−k(

K∗
∗ ⊕ (−1)£nφ

)2k+1
)]

±
= τµν , (24)

Nmax∑

N=1

αNN

N−1∑

k=0

(−1)k(N − 1)!

(2k + 1)k!(N − 1 − k)!

·
[
T
([

1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2
]N−1−k(

K∗
∗ ⊕ (−1)£nφ

)2k+1
)]

±
= τφ . (25)
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These formulae can be rewritten in a slightly (but qualitatively) different form in the case of theories

with the bulk Z2 symmetry and the brane located at the Z2 symmetry fixed point. Then, for any

Z2-odd quantity f , [f ]− = −[f ]+ and [f ]± can be replaced with 2 [f ]+.

A comment on distinguishing both sides of the brane is in order here. We started our construc-

tion with the vector field nµ, which at the brane is normal to it. The vector field −nµ has the same

property. Replacing nµ with −nµ (which corresponds to interchanging the “+” and the “−” sides

of the brane) we have to change the sign of λ in the family of curves γµ
x(λ) used in (18) to define

the integral
∫
⊥B

. From (22) it follows that this in turn changes the sign of [· · · ]± . The vector

field nµ enters linearly also the definitions of the Lie derivative £n and the extrinsic curvature Kµν.

Hence, the combination (K∗
∗ ⊕ (−1)£nφ) changes sign together with nµ. Observe that only odd

powers of this combination appear in the junction conditions (24) and (25). Thus, the change of

sign in the definition (22) of [· · · ]± is compensated by the change of sign of £nφ and Kµν. The left

hand sides of (24) and (25) do not depend on the sign of nµ - as it should be, as the brane localized

interactions (7) appearing on the right hand sides of these equations do not depend on which side

of the brane is called the “+” one.

The junction conditions (24) and (25) determine the jumps in the values of the extrinsic curva-

ture, Kµν, and the Lie derivative of the scalar field, £nφ, caused by the brane localized interactions

described by τµν and τφ. Unfortunately, the solutions for [Kµν ]± and [£nφ]± (or [Kµν]+ and [£nφ]+

in the case of Z2-symmetric models) can be found explicitly only in some simple cases, for example

when Nmax = 1 or when we are considering solutions which are highly symmetric.

4 Effective brane equations of motion

4.1 Definitions

In the previous section we found the junction conditions (24) and (25) which have to be fulfilled at

the brane. Presently we would like to obtain (d− 1)-dimensional equations which we could call the

“effective brane equations of motion”. First of all, a precise definition of such effective equations

of motion at the brane has to be given. There are two obvious properties of these equations: First,

they must follow from the full d-dimensional equations of motion (14) and (15). Second, they should

describe the behavior of the quantities defined exactly on the brane, or infinitesimally close to it.

We can obtain such equations in a very similar way to that employed in the junction conditions

derivation. Specifically, for each point xµ
0 on the brane, we integrate the full d-dimensional equations

of motion (14) and (15) over some infinitesimal interval “perpendicular” to the brane. However, the

integration (16) has to be generalized in order to obtain something different than just the junction

conditions (24) and (25). An obvious way to generalize the integral (16) is to use a weight function

10



w(λ): ∫ λ2

λ1

f
(
γµ

x (λ)
)
w(λ) dλ , (26)

where γµ
x0

(λ) is again the integral curve of the vector field nµ intersecting the brane at the point

xµ
0 . In fact, we need a family of weight functions wε(λ) such that the support of wε(λ) is included

in the interval (−ε, +ε). Any such a smooth function can be written as the following sum:

wε(λ) = w(0)
ε + w(−)

ε (λ) + w(+)
ε (λ) , (27)

where w
(0)
ε is a constant (finite in the ε → 0 limit), w

(−)
ε (λ) has the support in (−ε, 0) and w

(+)
ε (λ)

has the support in (0, +ε). The brane equations of motion are then obtained by integrating the

d-dimensional equations of motion (14), (15) like in (26) and taking the limit of ε → 0, namely

lim
ε→0

∫

Γµ
x0

(−ε,+ε)

F
(
γµ

x0
(λ)
)
wε(λ) dλ = c0

∫

⊥B

F (xµ
0)+c− lim

ε→0−
F (xµ

0 +ε nµ)+c+ lim
ε→0+

F (xµ
0 +ε nµ) , (28)

where the coefficients c depend on the chosen wε:

c0 = lim
ε→0

w(0)
ε , c− = lim

ε→0

∫ 0

−ε

w(−)
ε (λ)dλ , c+ = lim

ε→0

∫ +ε

0

w(+)
ε (λ)dλ . (29)

By adopting different wε we obtain three independent (d − 1)-dimensional equations. The first

term on the r.h.s. of (28) is proportional to the corresponding junction condition discussed already

in the previous section. The remaining two terms are proportional to two directional limits of the

bulk equations (i.e. the limits of the bulk equations when approaching the brane from the “+” or

the “−” side).

None of these equations can be called an effective brane equation of motion. The directional

limits of the bulk equations have no explicit dependence on the brane localized quantities (7). The

junction conditions do depend on the brane localized quantities, like the brane energy momentum

tensor τµν , but they determine the jumps in the bulk quantities values and not the dynamics of

the brane quantities. However, one should not draw the conclusion that it is not possible to define

any effective brane equations of motion, as there are more d-dimensional bulk equations than are

needed for a (d − 1)-dimensional brane gravity. In addition, one should remember that the metric

tensor and the scalar field are continuous at the brane. The effective equations of motion at the

brane are obtained by combining all available information: the junction conditions, the directional

limits of all bulk equations and the continuity conditions. This will be explained in more detail in

the next subsection - employing our model with the bulk equations of motion (14) and (15).

4.2 Construction – general case

We start with projecting the bulk tensor equation of motion (14) on the brane hypersurface and/or

on the normal vector field nµ. Multiplying (14) by hµ
ρhν

σ, using the fact that nµ is orthogonal to all

11



brane directions, and taking appropriate limits of the bulk fields, we get the following two equations

(one for each side of the brane):

[
hρσV (φ) −

Nmax∑

N=1

αN

2
hµ

ρhν
σ T µν

(
MN ⊕ 2N

[(
(KK)∗∗ − £nK∗

∗
)
⊕
(
£n

2φ − aλ∇λφ
) ]

MN−1

⊕ 8N(1 − N)NMN−2

)]

−(+)

= 0 , (30)

where we introduced symbols M and N to denote the following formal combinations of the tensors

of different ranks:

M = 1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2 ⊕ (−1)
(
K∗

∗ ⊕ (−1)£nφ
)2

, (31)

N =
[
D∗K

∗
∗ ⊕

(
Kλ

∗ Dλφ − D∗£nφ
)] [

D∗K∗
∗ ⊕

(
K∗

λD
λφ − D∗£nφ

)]
, (32)

which will appear under the generalized traces T and T µν in numerous formulae. The index

structure of N is different than that of all other objects appearing under T and T µν. So far all

such objects had natural pairs (covariant-contravariant) of indices - corresponding to the pairs of

indices present in the generalized Kronecker delta (3). In N there is one unpaired covariant index in

the first square bracket in (32) and one unpaired contravariant index in the second square bracket.

It should be understood that these two indices form a pair under T and T µν. Thus, we have for

example

T (N ) = δσ1σ2σ3
ρ1ρ2ρ3

(
Dσ1K

ρ2
σ2

) (
Dρ1Kρ3

σ3

)
+ δσ1σ2

ρ1ρ2

(
Dσ1K

ρ2
σ2

) (
Kρ1

λ Dλφ − Dρ1£nφ
)

+ . . .

The bulk dilaton equation of motion (15) is very similar to the projection (30) of the bulk tensor

equation of motion on the brane (i.e. obtained by contracting with hµ
ρh

ν
σ) and reads

[
V (φ) − V ′(φ) −

Nmax∑

N=1

αN

2
T
(
MN ⊕ 2N

[(
(KK)∗∗ − £nK∗

∗
)
⊕
(
£n

2φ − aλ∇λφ
) ]

MN−1

⊕ 8N(1 − N)NMN−2

)]

−(+)

= 0 . (33)

The contractions of the bulk tensor equation of motion (14) with hµ
ρnν and nµnν are given by,

respectively,

[
Nmax∑

N=1

αN T ρσ

(
N
[
DσK∗

∗ ⊕
(
Kσ

λDλφ − Dσ£nφ
) ]

MN−1

)]

−(+)

= 0 , (34)

[
V (φ) −

Nmax∑

N=1

αN

2
T
(
MN

)]

−(+)

= 0 . (35)
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Before discussing the properties of the above equations of motion, let us rewrite the tensor

equation (30) in a somewhat different form. One of the reasons is that we would like to remove

from our equations all terms containing the quantity aλ∇λφ, which is the only term being neither

“parallel”, nor “perpendicular” to the brane. Another reason is that we would like to rewrite the

tensor equation (30) in a form more suitable to compare our results with those presented so far

in the literature. In order to achieve these goals, we conduct the following procedure: Using the

decomposition (9) and the definition of the d-dimensional Weyl tensor Cµνρσ:

Cµνρσ = Rµνρσ − 2
d−2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 2

(d−1)(d−2)
gµ[ρgσ]νR , (36)

we obtain the equation

£nKµν − (KK)µν = 1
d−1

hµν

[
(h£nK) − (KK)

]
− 1

d−3

[
Rµν − KKµν + (KK)µν

]

+ 1
(d−1)(d−3)

hµν

[
R − K2 + (KK)

]
− d−2

d−3
Eµν , (37)

expressing the Lie derivative of the extrinsic curvature, £nKµν , as a function of its trace, (h£nK) ≡
hµν£nKµν , and the following projection of the d-dimensional Weyl tensor:

Eµν = nαhβ
µnγhδ

ν Cαβγδ . (38)

After using eq. (37), the tensor equation (30) depends (explicitly) only on two second Lie derivatives

of the bulk fields, (h£nK) and £n
2φ, which appear always in the combinations [(h£nK) − (KK)]

and [£n
2φ − aλ∇λφ]. These two combinations can be calculated from a system of two linear

algebraic equations consisting of the scalar equation (33) and the trace of the tensor equation (30)

- both evaluated “next to the brane”. The solution of this system of equations reads

(h£nK) − (KK) = (d − 1)
b0B1 − b1B0

b0b2 − b2
1

, (39)

£n
2φ − aλ∇λφ =

b1B1 − b2B0

b0b2 − b2
1

, (40)

where

bm =

Nmax∑

N=1

αNN T
(

(h∗
∗)

m MN−1
)

, (41)

Bm =
Nmax∑

N=1

αN

2
T
(

(h∗
∗)

m
[
MN ⊕ 2N

d−3
PMN−1 ⊕ 8N(1 − N)NMN−2

])

− (d − 1)m V (φ) + (1 − m) V ′(φ) , (42)

P =R∗
∗ − KK∗

∗ + (KK)∗∗ − 1
d−1

h∗
∗
[
R − K2 + (KK)

]
+ (d − 2)E∗

∗ , (43)
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whereas M and N are defined in (31) and (32), respectively. Substituting eqs. (37), (39) and (40)

into the projected tensor equation (30), we obtain a tensor equation of motion without explicit

dependence on the second Lie derivatives of the bulk fields, namely

[
hρσV −

Nmax∑

N=1

αN

2
hµ

ρhν
σ T µν

(
MN ⊕ 2N

d−3
PMN−1 ⊕ 8N(1 − N)NMN−2

⊕ 2N

[
h∗
∗
b1B0 − b0B1

b0b2 − b2
1

⊕ b1B1 − b2B0

b0b2 − b2
1

]
MN−1

)]

−(+)

= 0 . (44)

It is useful to reformulate this equation further in order to rewrite it as a sum of the ordinary

lowest order Einstein equation and some corrections. The first step is very simple, we just have

to multiply (44) by (d − 3)/(d − 2) in order to get the usual normalization of the Ricci tensor. A

second step is necessary, as the ratio of the coefficients in front of hρσR and Rρσ is different than

the desired −1/2. To solve this problem we have to add a product of eq. (35) and the brane metric

tensor hρσ with the appropriate coefficient. Finally, we obtain the following Einstein-like tensor

equation of motion:

[
(d−3)(2d−3)
(d−1)(d−2)

hρσV − d−3
d−2

Nmax∑

N=1

αN

2
hµ

ρhν
σ T µν

(
MN ⊕ 2N

d−3
PMN−1 ⊕ 8N(1 − N)NMN−2

⊕ 2N

[
h∗
∗
b1B0 − b0B1

b0b2 − b2
1

⊕ b1B1 − b2B0

b0b2 − b2
1

]
MN−1

)
− d−3

d−1

Nmax∑

N=1

αN

2
hρσT

(
MN

)]

−(+)

= 0 . (45)

The above equation seems to be rather complicated, but, in fact, after calculating the generalized

traces (2) and (8) it takes the most Einstein-like form we could obtain, as we shall show explicitly

for Nmax = 1, 2. Moreover, it does not depend on the Lie derivative of the extrinsic curvature,

£nKµν , and on the second Lie derivative of the dilaton, £n
2φ. The whole dependence on these

quantities, which cannot be restricted by the junction conditions, is encoded in the projection (38)

of the bulk Weyl tensor on the brane, Eµν . This dependence is implicit via the quantities Bm and

P defined in (42) and (43), respectively. Due to the explicit bulk contribution, represented by Eµν ,

the Einstein-like equation of motion (45) does not form a closed system. Consequently, to describe

fully the brane dynamics, the bulk solution usually would have to be known.

All the equations we wrote down so far in this subsection are directional limits of the bulk

equations of motion (or their combinations). In order to get any effective brane equations of

motion we need some dependence on the brane sources (7). Such a dependence can be introduced

by taking into account the junction conditions, which determine the jumps in the values of Kµν and

£nφ, i.e. [Kµν ]± and [£nφ]±, in terms of the sources τµν and τφ. Let us now discuss what equations

are obtained after substituting the solutions (not always known in a closed analytic form) of the
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junction conditions (24) and (25) into the bulk equations (30), (33), (34) and (35)8.

The first obvious observation is that eqs. (30) and (33) give no useful effective brane equations

of motion, as they involve second derivatives of the brane metric and the dilaton field along the

vector field nµ normal to the brane, i.e. £nKµν and £n
2φ, respectively. To show this more explicitly

we consider the following construction: We choose some brane sources τµν and τφ, together with a

metric hµν and a scalar field φ on the brane. More precisely, we choose [hµν ]+ and [φ]+ (which is the

same as [hµν]− and [φ]−, as the fields are continuous) at one of the two hypersurfaces infinitesimally

close to the brane. Due to the junction conditions, the brane sources τµν and τφ restrict (or in some

cases determine) the first derivatives in the direction perpendicular to the brane, i.e. [Kµν ]+ and

[£nφ]+ (or [Kµν ]− and [£nφ]−) at the chosen hypersurface “next to the brane”. The values of these

fields (i.e. [hµν ]+ and [φ]+) and their first derivatives constitute simply the boundary conditions

for the quasi-linear second order differential eqs. (30) and (33). The Cauchy-Kowalewski theorem

tells us that such boundary conditions problem can be solved at least in some neighborhood of

the brane. The existence of the solutions does not require any relations between the brane fields

and the brane sources. Without any additional assumptions (e.g. about the symmetries of the

bulk/brane solutions) the eqs. (30) and (33) and the junction conditions (24) and (25) do not yield

any effective brane equations of motion, as they are not sufficient to get any constraints on the

brane fields hµν and φ in terms of the brane sources τµν and τφ.

From the above reasoning it is clear that in order to get any effective (d − 1)-dimensional

brane equations we need bulk equations of motion which do not involve the second derivatives

perpendicular to the brane. Such equations, obtained from the d-dimensional tensor equation of

motion by contracting at least one of its indices with the vector field nµ normal to the brane, are

given by (34) and (35). Let us start with the latter. The “+” side eq. (35) is just a consistency

condition on the “+” side first Lie derivatives of the brane fields, [Kµν ]+ and [£nφ]+. Using the

relations

[Kµν ]− = [Kµν ]+ − [Kµν ]± , [£nφ]− = [£nφ]+ − [£nφ]± ,

the “−” side eq. (35) becomes another consistency condition on [Kµν ]+ and [£nφ]+, this time

depending on the brane sources τµν and τφ. It can be seen that in general, even in the simplest

Nmax = 1 case, these two consistency conditions obtained from eq. (35) can be fulfilled, thus eq.

(35) does not lead to any effective brane equations of motion. The situation may change if some

assumptions about the bulk are made, e.g. if the bulk Z2 symmetry, relating [Kµν ]+ with [Kµν ]−,

and thus with [Kµν ]± and the brane sources τµν and τφ, is assumed. Such models will be discussed

in the next subsection.

We have shown that in general eqs. (30), (33) and (35) cannot be used to obtain any effective

8For this discussion it is better to use eqs. (30), (33) and (35), than the derived from them eqs. (44) and (45).
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brane equations. What remains to discuss now, are two eqs. (34) - one for each side of the brane.

They were obtained from the full d-dimensional tensor equation of motion (14) by contracting one

of the indices with nµ and the other one with hµν . The “+” side eq. (34) gives (d − 1) additional

consistency conditions on [Kµν ]+ and [£nφ]+. Together with those 2 resulting from eq. (35), we

have (d + 1) such conditions. Hence, the number of the conditions is smaller than the number of

the (gauge independent) degrees of freedom in [Kµν ]+ and [£nφ]+, i.e. these conditions can be in

general fulfilled.

The situation is more interesting for the “−” side eq. (34). One could try to use the same

argument as for the “−” side eq. (35) and expect to get additional consistency conditions for [Kµν]+

and [£nφ]+. However, this time that argument does not work. The reason is that the difference

between the “+” and the “−” sides projections (34) is closely related to the junction conditions

(24) and (25). After a somewhat tedious calculation, it can be shown that such a difference is

equivalent to the following condition on the brane sources:

Dµτµν + Dµφ
(
hµντφ − τµν

)
= 0 . (46)

This condition has the same simple form for all theories of the structure described by the Lagrangian

(1) of arbitrary higher order in derivatives. It does relate the brane sources (7) to the brane metric

(the covariant derivative on the l.h.s. is covariant with respect to the induced brane metric hµν).

However, its character depends crucially on the brane localized contribution LB to the Lagrangian

(1). For a wide class of LB eq. (46) is not a dynamical brane equation of motion, because it

does not involve the second derivatives (in the brane directions) of the brane fields. It is rather a

consistency condition on the source terms9 τµν and τφ. Such consistency conditions are typical of

gravity theories [19].

The situation changes for more complicated brane Lagrangians LB. Specifically, if LB contains

e.g. localized kinetic terms for the gravity [20] or for the scalar [21], the condition (46) becomes a

dynamical brane equation of motion involving the second derivatives (in the brane directions) of

the brane fields hµν and φ. Certainly even in such a case we do not get a full system of the brane

gravitational equations of motion. The reason is obvious: the condition (46) is a (d−1)-dimensional

vector of equations, while the brane gravitational equations should have a (d−1)-dimensional tensor

character.

The condition (46) seems to be of the lowest order, as all the higher order terms present in the

bulk Lagrangian (1) “canceled-out” in its derivation when we combined the higher order junction

conditions (24) and (25) with the higher order bulk equation (34). However, the condition (46) may

9In the case without the dilaton, i.e. in the case of the Einstein-Lovelock theory of gravity, eq. (46) reduces to
the requirement that the brane tensor source τµν must be covariantly conserved.
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involve terms with more than two derivatives of the fields if appropriate interactions are present in

the brane Lagrangian LB.

Let us summarize the general case without Z2 or any other symmetry imposed on the bulk

Lagrangian (1) or the bulk background solution. We have the following system of equations:

(i) Junction conditions (24) and (25), which determine (not always explicitly) the jumps in the

values of the extrinsic curvature and the Lie derivative of the dilaton: [Kµν]± and [£nφ]±.

(ii) System of equations for [Kµν ]+ and [£nφ]+ given by the “+” side eq. (34) together with both

eqs. (35). The number of these equations is smaller than the number of (gauge-independent)

degrees of freedom in [Kµν ]+ and [£nφ]+, so that system of equations in general has solutions.

(iii) Consistency condition (46) on the brane sources τµν and τφ.

The first two systems of equations, (i) and (ii), are not restrictive enough to obtain any effective

brane equations of motion relating the dynamics of the brane fields to the brane sources (7). One

can choose any brane fields, i.e. induced metric hµν and dilaton φ, and any brane sources, τµν and τφ,

satisfying the consistency condition (iii). In general, there exist values of [Kµν ]−(+) and [£nφ]−(+)

which fulfill eqs. (i) and (ii) for any such choice. On the other hand, the consistency condition (iii)

may have a character of a dynamical brane equation of motion. This depends crucially on the form

of the brane localized interactions described by LB.

4.3 Construction with Z2 symmetry

The bulk Z2 symmetry is employed in many papers on brane models. We will show now that such

a symmetry not only simplifies the calculations, but can also change qualitatively the problem of

the existence of the effective brane equations of motion.

The bulk Z2 symmetry relates the fields at the “+” and the “−” sides of the brane. We have

e.g.

[Kµν ]+ = −[Kµν ]− = 1
2
[Kµν ]± , [£nφ]+ = −[£nφ]− = 1

2
[£nφ]± . (47)

In such a case, the “−” side eqs. (30), (33)-(35) coincide with the “+” side ones. Moreover, the

junction conditions (24) and (25) determine the extrinsic curvature Kµν and the Lie derivative of

the dilaton £nφ on both sides of the brane. The junction conditions are given by equations of

order (2Nmax − 1), so in general they cannot be solved explicitly for models of the higher order

in derivatives. They can be solved analytically in some cases of highly symmetric configurations.

Otherwise we have to solve them numerically. Substituting the (explicit or not) solutions of the

junction conditions, [Kµν ]+(τµν , τφ) and [£nφ]+(τµν , τφ), into eqs. (35) we obtain the following
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effective brane equation of motion:

V (φ) −
Nmax∑

N=1

αN

2
T
([

1
2
R∗∗

∗∗ ⊕ 2(DD)∗∗φ ⊕ (−1)(Dφ)2

⊕(−1)
(
[K∗

∗ ]+(τµν , τφ) ⊕ (−1)[£nφ]+(τµν , τφ)
)2
]N
)

= 0 . (48)

This is the first equation we found which has the character of an effective brane equation of motion

even for simple brane Lagrangians LB. It involves the brane sources (7), as well as the second

derivatives (along the brane directions) of the brane metric, Rρσ
µν , and the dilaton, i.e. DνDµφ and

(Dφ)2. The covariant derivatives of the dilaton can be eliminated using the condition (46). This

way we obtain one equation relating the dynamics of the brane metric hµν to the brane sources τµν

and τφ. It is the only such equation which appears in our theory - if we assume nothing else but

the Z2 symmetry in the bulk.

One effective equation of motion in a (d − 1)-dimensional brane gravity is not much. The

induced brane metric hµν has d(d − 1)/2 gauge independent degrees of freedom. Nevertheless,

even one equation of motion can be very important if we restrict our attention to highly symmetric

brane solutions. For example, any maximally symmetric space-time (like de Sitter space-time used

to describe inflation) is fully determined by just one parameter - the curvature scalar. Similarly,

the cosmologically important Friedmann-Robertson-Walker space-time depends on one function of

time only - the cosmic scale factor, for each sign of the brane spatial curvature.

Despite the fact that there is only one “true” effective brane equation (48), it is sometimes

convenient to write down the full tensor Einstein-like equation of motion for the brane fields hµν

and φ. It follows straightforwardly from eq. (45) and is of the same structure, namely

(d−3)(2d−3)
(d−1)(d−2)

hρσV − d−3
d−2

Nmax∑

N=1

αN

2
hµ

ρhν
σ T µν

(
MN ⊕ 2N

d−3
PMN−1 ⊕ 8N(1 − N)NMN−2

⊕ 2N

[
h∗
∗
b1B0 − b0B1

b0b2 − b2
1

⊕ b1B1 − b2B0

b0b2 − b2
1

]
MN−1

)
− d−3

d−1

Nmax∑

N=1

αN

2
hρσ T

(
MN

)
= 0 , (49)

with the metric hµν and the dilaton φ taken on the brane and all (implicit) terms involving [Kµν]+

and [£nφ]+ (with the bulk Z2 symmetry it does not matter which side of the brane we choose)

replaced with the appropriate solutions of the junction conditions (24) and (25). Obviously, the

above effective brane equation does not constitute a closed system. The solution of the equations

of motion for the bulk gravity has to be known to fully describe the gravity induced on the brane.

However, the total bulk dependence of the above equation is described by the projected Weyl tensor

Eµν , given by (38), which enters (implicitly - via P and Bm defined in (43) and (42), respectively)

in a quite complicated and in general non-linear way.
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Our effective brane equation (49) has one feature which is unusual for the standard equations

of motion, but quite typical of the brane ones. Specifically, there are no terms linear in the brane

energy-momentum tensor τµν . The reason is as follows: The brane sources (in our model: τµν and

τφ) appear explicitly in the junction conditions only, which determine the jumps in the values of the

Lie derivatives (in our model: the extrinsic curvature, Kµν , and the Lie derivative of the dilaton,

£nφ) of the brane fields (the induced metric tensor hµν and the dilaton field φ, respectively). The

left hand sides of the junction conditions (24) and (25) are given by polynomials of the order

(2Nmax − 1) with only odd powers of the Lie derivatives. Although in general there can be several

different solutions of these equations, we are interested only in those which vanish in the limit of

vanishing sources (in the absence of sources the jumps in the values of the Lie derivatives have to

vanish). Such solutions can be written as series in τµν and τφ with vanishing constant terms. On

the other hand, only even powers of the Lie derivatives (Kµν and £nφ) are present in the (bulk)

equations of motion. Consequently, in our effective brane equation (49) the terms involving the

sources are at least quadratic (or bilinear) in τµν and τφ. Moreover, among the bilinear terms there

is no term proportional to τφτµν . As we will show in the next section, such term is absent in the case

of Nmax = 1. It cannot appear for higher Nmax as well, as the higher order corrections can change

only those terms in the junction conditions solutions which are of higher order in the sources (we

recall that one should consider only such solutions which have no constant terms when expanded

in the sources).

In the standard Einstein equation the energy-momentum tensor appears linearly only. In order

to have such a term in our effective brane equations of motion (48) and (49) we have to rewrite τµν

as a sum of the energy-momentum tensor τ̃µν associated with the fields we are interested in (e.g. the

Standard Model fields which are usually assumed to be localized on a brane) and some “cosmological

constant” λ̃ term: τµν = τ̃µν + hµν λ̃. The result of such a redefinition will be discussed in more

detail in the next section, which is devoted to the dilaton gravity with Nmax = 1 and Nmax = 2.

5 Examples

The results presented in the previous sections are valid for models with corrections of arbitrarily

high orders. In this section we write down those results explicitly10 for two simplest cases of

Nmax = 1 and Nmax = 2. Although models with higher order corrections are the main topic of

this work, we nevertheless want to present the results also for the lowest order theory. There are

two reasons. First: the complexity of the calculations grows rapidly with the order of corrections.

10Due to their complexity, explicit formulae leading to the Nmax = 2 Einstein-like brane equation are moved to
the appendix.
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Thus, it is more instructive to discuss the main features of our procedure and results in the simplest

situation with Nmax = 1. Second: we have obtained new results even for the lowest order theory.

In our approach we treat the dilaton field on the same footing as the metric tensor, which has not

been done before. The results on the effective brane equations for the dilaton gravity obtained so

far in the literature were not fully satisfactory11.

In the present work we give only the general formulae for Nmax = 1 and Nmax = 2. Presentation

and discussion of some specific examples are postponed to a future publication.

5.1 Nmax = 1

Let us illustrate the main features of the construction of the effective brane equations of motion by

considering a simple example with Nmax = 1. In this case the “+” and the “−” sides limits of the

bulk tensor equation of motion projected on the brane (30) have the form of

[{
Rµν + (DD)µνφ − 1

2
hµν

[
R + 2(DD)φ − (Dφ)2

]
+ α−1

1 V (φ)hµν

}
+
{

2 (KK)µν − Kµν(K − £nφ)

−1
2
hµν

(
3(KK) − (K − £nφ)2 − 2aλ∇λφ

)}
−
{
£nKµν − hµν

(
(h£nK) − £n

2φ
)}]

−(+)

= 0 , (50)

whereas the “+” and the “−” sides limits of the dilaton equation of motion (33) read

[{
R + 2(DD)φ − (Dφ)2 − 2α−1

1

(
V (φ) − V ′(φ)

)}
+
{

3 (KK) − (K − £nφ)2 − 2 aλ∇λφ
}

−2
{

(h£nK) − £n
2φ
}]

−(+)

= 0 . (51)

Both of these equations are genuine bulk equations of motion. They just determine the second Lie

derivatives of the fields (£nKµν and £n
2φ in the third curly bracket in each equation) in terms of the

fields (the metric tensor hµν and the dilaton field φ, together with their derivatives along the brane

directions, in the first curly bracket) and their first Lie derivatives12 (Kµν and £nφ in the second

curly bracket). The values of all the quantities in the first two curly brackets in each equation are

11For example, in ref. [14] not all the calculations were carried out in a fully covariant way. Terms containing the
combination aλ∇λφ were removed by a gauge choice. Moreover, the influence of the bulk scalar field on the brane
dynamics was taken into account only in some approximation and its bulk behavior was not eliminated from the
brane gravitational equations.

12The last term in the second curly bracket is a mixture of the first Lie derivative of the dilaton with its derivatives
along the brane directions. Hence, a part of that term should be moved to the first curly bracket. However, this
subtlety does not change any further reasoning. Moreover, as was already mentioned, this slightly problematic
term, aλ∇λφ, does not appear in our final results due to the appropriately designed derivation of the effective brane
equations.
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just the Cauchy boundary conditions for the corresponding d-dimensional second order differential

equations. Without other equations or any additional assumptions about the bulk solution, these

boundary conditions can be arbitrary. Thus eqs. (50) and (51) do not give any constraints on the

brane fields hµν and φ in terms of the brane sources τµν and τφ. To get any effective brane equations

of motion we have to analyze the junction conditions and the bulk tensor equation of motion with

at least one index contracted with that of the vector nµ normal to the brane.

The junction conditions (24) and (25) are very simple in the case of Nmax = 1. Solving them

we can express the jumps in the values of the extrinsic curvature, Kµν, and the Lie derivative of

the scalar field, £nφ, in terms of the brane sources, τµν and τφ, as

[Kµν]± = α−1
1

(
hµντφ − τµν

)
, (52)

[£nφ]± = α−1
1

(
(d − 2)τφ − τ

)
. (53)

Subsequently, we consider two vector eqs. (34) - one for each side of the brane. The difference

of those two equations together with the junction conditions (52) and (53) gives the consistency

condition (46) for the sources, namely

Dµτµν + Dµφ
(
hµντφ − τµν

)
= 0 . (54)

As the second combination of the “−” and the “+” side eqs. (34) we take the “+” one. Hence, we

obtain the following condition for the “+” side quantities:

Dµ
[
Kµν

]
+
− Dµφ

[
Kµν

]
+
− Dν

[
K
]
+

+ Dν

[
£nφ

]
+

= 0 . (55)

Finally, we have to take into account two scalar eqs. (35) with Nmax = 1. The brane curvature

R and the dilaton φ, together with the first and the second (covariant with respect to the brane

metric hµν) derivatives of the latter all are continuous at the brane. Thus their contributions cancel

in the difference of the “−” and the “+” side eqs. (35). Such a difference reduces to the equality

0 = [(K − £nφ)2]± − [(KK)]±, which, after employing the junction conditions (52) and (53), can

be rewritten as

τµν [Kµν ]+ − τφ [£nφ]+ + 1
2
α−1

1

(
(ττ) − 2ττφ + (d − 2)τ 2

φ

)
= 0 , (56)

where (ττ) ≡ τµντµν . The “+” side eq. (35) reads

R + 2(DD)φ− (Dφ)2 − 2α−1
1 V (φ) =

(
[K]+ − [£nφ]+

)2 − [(KK)]+ . (57)

The last six eqs. (52)-(57) are the only equations which can yield the effective brane equations of

motion in a general case. The junction conditions (52) and (53) determine the jumps in the values of
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the Lie derivatives of the metric tensor and the dilaton field: [Kµν ]± and [£nφ]±, respectively. These

quantities do not appear in any of the remaining four equations. Equation (54) is a consistency

condition on the brane sources τµν and τφ - corresponding to the covariant conservation of the

energy momentum tensor in the standard theory of gravity. The remaining equations establish

conditions for the directional limits of the values of the first derivatives (normal to the brane) of

the brane fields - evaluated at one of the “sides of the brane”, which we chose to be the “+” side.

Specifically, eq. (56) relates [Kµν ]+ and [£nφ]+ to the brane sources τµν and τφ, while eqs. (55)

and (57) relate them to the brane fields hµν and φ. Equations (55)-(57) provide us with (d + 1)

relations, i.e. less than the number of the (gauge-independent) degrees of freedom in [Kµν ]+ and

[£nφ]+. Thus, in general, eqs. (55)-(57) can be solved for arbitrary brane fields and sources. The

junction conditions (52) and (53) do not change this situation, as without any assumptions on

the bulk solution (as e.g. the already mentioned and usually employed bulk Z2 symmetry) the

quantities [Kµν]±, [£nφ]±, [Kµν ]+ and [£nφ]+ are all independent.

The only equation which involves the brane quantities exclusively is given by the formula (54).

However, it is usually considered as a consistency condition on the brane sources and not as a

dynamical equation of motion. As we pointed out in the previous section, it can yield a dynamical

equation if the brane Lagrangian LB is complicated enough, e.g. when it involves brane localized

kinetic terms for the bulk fields.

Let us now check the implications of some usually assumed features of the bulk solution. The by

far most popular assumption of this kind is the already discussed bulk Z2 symmetry with the fixed

point at the brane position. With this symmetry it is enough to consider eqs. (34) and (35) on one

“side of the brane” only. The corresponding equations on the other side of the brane are fulfilled

automatically. Hence, in the case of Nmax = 1 we are left with eqs. (52)-(54) and (57). Employing

[Kµν ]± = 2[Kµν ]+ and [£nφ]± = 2[£nφ]+ relations, which are due to the bulk Z2 symmetry, together

with the junction conditions (52) and (53), we can rewrite eq. (57) in the following form:

R + 2(DD)φ − (Dφ)2 − 2α−1
1 V (φ) = 1

4
α−2

1

[
−(ττ) + 2 ττφ − (d − 2) τ 2

φ

]
. (58)

It determines the brane curvature scalar R in terms of the brane sources τµν and τφ (the dilaton

field derivative can be obtained from the consistency condition (54)).

We shall now construct explicitly the brane tensor equation of motion for Nmax = 1 - following

the procedure for arbitrary Nmax, described at the end of subsection 4.2. We start with eliminating

the second derivatives normal to the brane, £nKµν and £n
2φ, from the bulk tensor equation (50)

and the bulk dilaton equation of motion (51). The parameters bm and Bm, defined in (41) and
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(42), can be easily calculated:

bm =α1
(d−1)!

(d−1−m)!
, (59)

Bm =α1

{
1
2
(d − 3)m

[
R − K2 + (KK)

]
+ (d − 2)m

[
(DD)φ + K£nφ

]

−1
2
(d − 1)m

[
(Dφ)2 + (£nφ)2

]}
− (d − 1)mV + (1 − m)V ′ . (60)

Employing the above explicit formulae on the parameters bm and Bm, and the definitions (31)

and (43), with Kµν and £nφ given by their limits [Kµν]+ and [£nφ]+ obtained from the junction

conditions (52) and (53) supplemented by the relations (47) due to the bulk Z2 symmetry, the

brane tensor equation (49) reduces to

Rµν − 1
2
hµνR =−d−3

d−2

[
(DD)µνφ − hµν(DD)φ

]
− d−3

d−1
hµν

[
1
2
(Dφ)2 + α−1

1 V (φ)
]
− Eµν

+1
4
α−2

1

[
1

d−2
ττµν − (ττ)µν + hµν

(
1
2
(ττ) − 1

(d−1)(d−2)
τ 2

−d−3
d−1

ττφ + (d−2)(d−3)
2(d−1)

τ 2
φ

)]
. (61)

This equations is truly of the form of the (d−1)-dimensional Einstein equation with some corrections

(which was not apparent for the general Nmax formula (49)). Three specific types of contributions

can be discerned on its r.h.s. There are terms with the explicit φ-dependence, typical of the gravity

theories with scalar fields. Moreover, the tensor Eµν represents the bulk influence on the dynamics

at the brane. Finally, the last square bracket contains the contributions from the brane sources

τµν and τφ. These contributions are quadratic in the brane energy-momentum tensor τµν (which

is typical of the brane models) and its dilaton counterpart τφ. In order to have terms linear in

some energy-momentum tensor (as is the case in the standard Einstein gravity) we have to rewrite

τµν as the already mentioned sum of the energy-momentum tensor τ̃µν associated with the fields

we are interested in and some “cosmological constant” λ̃ term: τµν = τ̃µν + hµν λ̃. With such a

decomposition we get the Einstein-like brane equation of motion as

Rµν − 1
2
hµνR = 8πG̃ τ̃µν − d−3

d−2

[
(DD)µνφ − hµν(DD)φ

]
− d−3

d−1
hµν

[
1
2
(Dφ)2 + α−1

1 V (φ)
]
− Eµν

+1
4
α−2

1

[
1

d−2
τ̃ τ̃µν − (τ̃ τ̃ )µν + 1

2
hµν (τ̃ τ̃ ) − 1

(d−1)(d−2)
hµν τ̃ 2 +

(
d−3
d−2

λ̃ − d−3
d−1

τφ

)
hµν τ̃

+
(

d−3
2

λ̃2 − (d − 3) λ̃ τφ + (d−2)(d−3)
2(d−1)

τ 2
φ

)
hµν

]
, (62)

where we introduced

G̃ ≡ −(d − 3) λ̃

32(d − 2)π α2
1

, (63)

which can be interpreted as the effective brane Newton’s constant. The contributions to eq. (62)

which are proportional to the brane metric, hµν, and depend neither on the scalar field φ, nor on
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the tensor τ̃µν , should be interpreted as the effective brane cosmological constant:

Λ̃ = d−3
d−1

α−1
1 V |φ=0 − 1

4
α−2

1

(
d−3
2

λ̃2 − (d − 3) λ̃ τφ|φ=0 + (d−2)(d−3)
2(d−1)

τ 2
φ |φ=0

)
. (64)

It depends on the brane Lagrangian LB (via τφ) and on the way in which we divide the brane

energy-momentum tensor τµν into its “standard” part τ̃µν and the “cosmological constant” term

hµν λ̃. In addition, a part of Eµν proportional to hµν can be also treated as a contribution to the

effective brane cosmological constant.

The effective brane equation of motion (62) has the same tensor character as the standard

Einstein equation. This certainly does not mean that we found another bulk-independent effective

brane equation of motion - in addition to (58). It is just a convenient way to parameterize the bulk

influence by a single geometric quantity: the projection of the bulk Weyl tensor on the brane, Eµν .

Observe that there is no additional bulk influence due to the presence of the dilaton field13.

5.2 Nmax = 2

The formulae for arbitrary order of corrections given in sections 3 and 4 can be employed to obtain

more explicit equations for any given Nmax. However, the complexity of the resulting expressions

grows rapidly with Nmax. The effective brane equations of motion become quite intricate already

for the Nmax = 2 case. Nevertheless, they can be still obtained even in the most general case,

i.e. without any additional assumptions on the bulk background. We impose only the usual Z2

symmetry. As was already underlined, the Nmax = 2 case is equivalent to the appropriate subset

of higher order interaction terms of the effective action derived from string theories.

In the Nmax = 2 case the junction conditions (24) and (25) take the following form:

τµν =2
[
α1

[
hµν(K − £nφ) − Kµν

]

+ 2 α2

{[
hµν(K − £nφ) − Kµν

] [
R − K2 + (KK) + 2 (DD)φ + 2 K£nφ − (Dφ)2 − (£nφ)2

]

− 2 hµν Kρσ

[
Rρσ + (KK)ρσ + (DD)ρσφ

]
− 2 (K − £nφ)

[
Rµν + (DD)µνφ + (KK)µν

]

+ 2 Kµρ

[
Rρ

ν + (KK)ρ
ν + (DD)ρ

νφ
]
+ 2 Kνρ

[
Rρ

µ + (KK)ρ
µ + (DD)ρ

µφ
]

+ 2 Kρσ
[
Rµρνσ − KµρKνσ

]
+ 2

3

[
hµν(K − £nφ)3 + 2(KKK)

]}]
+

, (65)

τφ =2
[
α1

(
K − £nφ

)
+ 2 α2

{
(K − £nφ)

[
R − K2 + (KK) + 2 (DD)φ + 2 K£nφ − (Dφ)2 − (£nφ)2

]

+ 2
3
(K − £nφ)3 − 2Kµν

[
Rµν + 1

3
(KK)µν + (DD)µνφ

]}]
+

, (66)

13This differs from the results previously presented in the literature. For example, it is claimed in [15] that in the
effective brane equations of motion it is easier to remove the dependence on the projected bulk Weyl tensor than
the dependence on the bulk dilaton field. Our analysis clearly indicates the opposite.
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where (KKK) denotes the trace of the third power of the extrinsic curvature: Kσ
ρ Kλ

σKρ
λ. There

are two new features as compared to the lowest order case. First: the junction conditions (65)

and (66) are no longer linear in [Kµν]+ and [£nφ]+. They are now third order equations for these

quantities and their tensor structure is much more complicated. Thus, obtaining an explicit result

is considerably more difficult. Second: solving these junction conditions (explicitly or not) yields

the jumps in the values of Kµν and £nφ as functions not only of the brane sources τµν and τφ, but

also of the brane curvature R and the dilaton φ.

The simplest form of the effective brane equation of motion is given by the scalar eq. (35). In

the model with the bulk Z2 symmetry and Nmax = 2 it reads:

V −1
2
α1

[
R − K2 + (KK) + 2 (DD)φ + 2 K£nφ − (Dφ)2 − (£nφ)2

]

−1
2
α2

{ [
R − K2 + (KK) + 2 (DD)φ + 2 K£nφ − (Dφ)2 − (£nφ)2

]2

− 4
[
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]
·

·
[
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]

+
[
Rµνρσ − KµρKνσ + KµσKνρ

][
Rµνρσ − KµρKνσ + KµσKνρ

]}
= 0 , (67)

with Kµν (and all its contractions) and £nφ replaced by their “next to the brane” values [Kµν]+

and [£nφ]+, given by the solutions of the junction conditions (65) and (66). This is the only bulk-

independent brane equation of motion in addition to the consistency condition (46) on the brane

sources τµν and τφ. It is also possible to derive the Einstein-like effective equation of motion, as

discussed at the end of subsection 4.2. However, the result is truly complicated and we postpone

presenting the appropriate formulae to the appendix. Those formulae indicate that employing the

brane Einstein-like effective equation for a general case is rather problematic. However, it can be

significantly simplified if we restrict our considerations to the situations with sufficient symmetries.

This is quite typical of all theories of gravity. Usually only solutions with some specific symmetry

properties are looked for. An alternative way to investigate some highly symmetric solutions is to

use the simplest form of the effective brane equation (67) instead of the Einstein-like form discussed

in the appendix.

6 Conclusions

The starting point of the present analysis has been given by the d-dimensional higher order dilaton

gravity constructed previously [7] as a generalization of the Einstein-Lovelock theory and remaining

in the close relation to the effective action in string theories if restricted to the gravity and the

dilaton field. It was supplemented by a co-dimension 1 brane with general brane localized inter-
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actions LB included into the Lagrangian (1). The effective brane equations of motion for such a

theory were constructed and discussed. All calculations were performed in the covariant approach.

In order to obtain the effective brane equations of motion one has to start from the full bulk

equations of motion (14), (15) and attempt to eliminate all quantities evaluated away from the

brane position. In general this is not possible and the effective brane equations do not form a

closed system. The dynamics of the brane fields hµν (the induced brane metric tensor) and φ (the

dilaton field) depends usually not only on the brane sources τµν and τφ defined in (7), but also on

the bulk gravity solution.

On the basis of the full bulk equations of motion derived from the Lagrangian density defining

our model, we can obtain three types of equations involving fields determined either on or infinites-

imally close to the brane. These equations represent the junction conditions and two directional

limits of the bulk equations established when the brane is approached from the “+” and the “−”

sides, respectively. The junction conditions (24) and (25) relate the brane fields, hµν and φ, and the

sources, τµν and τφ, to the across-the-brane jumps in the values of the extrinsic curvature and the

Lie derivative (along the vector field nµ orthonormal to the brane) of the scalar field: [Kµν ]± and

[£nφ]±, respectively. The directional limits of the bulk equations (given by eqs. (30), (33)-(35))

involve the brane fields (hµν and φ), together with their first (Kµν and £nφ) and second (£nKµν

and £n
2φ) Lie derivatives, but do not include the brane sources τµν and τφ. An important point

should be underlined: the number of the d-dimensional bulk gravitational equations of motion is

bigger than the number of equations necessary for a (d−1)-dimensional brane gravity. These extra

equations (corresponding to the consistency conditions for a Cauchy problem with the boundary

conditions defined infinitesimally close to the brane) play a crucial role, as they do not depend on

the second Lie derivatives of the fields, i.e. £nKµν and £n
2φ.

Genuine effective brane equations of motion should relate the values of the fields, hµν and φ,

evaluated on the brane, to the brane sources, τµν and τφ. In addition, they should not depend on

the bulk configuration. The crucial question is: How many such brane equations can be obtained

by combining information from all bulk equations mentioned in the previous paragraph? The

answer depends strongly on the symmetries we assume for the bulk theory and for the bulk and/or

brane solutions. The minimal number of the effective brane equations is obtained when no such

symmetries are assumed. The only effective brane equation in such a case is given by formula (46).

However, this equation is usually treated not as a dynamical brane equation of motion, but rather as

a consistency condition on the brane sources (7). In the pure gravity case (i.e. without the dilaton)

it reduces simply to the covariant conservation of the brane localized energy-momentum tensor.

However, there are models in which this “consistency” condition yields a dynamical equation of

motion. This is the case when e.g. brane localized kinetic terms are present in the brane localized
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Lagrangian LB.

The number of the effective brane equations of motion increases when we restrict the model

by imposing some symmetries. The bulk Z2 symmetry with the fixed point coinciding with the

brane position is particularly frequently employed. In such a case, an additional effective brane

equation of motion (48) appears. It is obtained from the bulk tensor equation of motion if both

indices are contracted with the vector field nµ normal to the brane - after applying the appropriate

junction conditions. This is the only effective brane equation of motion in models for which the

“consistency” condition (46) is not dynamical. The importance of this equation depends on the

class of solutions we are interested in. For example, it is all we need when considering maximally

symmetric brane solutions.

In many models the number of the effective brane equations of motion is (much) smaller than

the number of independent components of the Einstein equation in a (d − 1)-dimensional space-

time. Nevertheless, it is useful to derive an Einstein-like (tensor) brane equation. Such an equation

for the higher (arbitrary) order dilaton gravity with the bulk Z2 symmetry is given by eq. (49).

The entire dependence of the brane dynamics on the bulk gravity solution is encoded in the Weyl

tensor projected on the brane, Eµν , which appears in eq. (49) implicitly via the parameters defined

by formulae (42) and (43). It should be stressed that, contrary to some previous claims, those

effective brane gravitational equations do not depend on the bulk scalar solution.

Our general results obtained for corrections up to order 2Nmax (arbitrary, as long as it is not

higher than the space-time dimensionality) in derivatives are presented in a very compact notation

based on the generalizations (2) and (8) of the trace operation. Those results are rewritten explicitly

in the conventional notation for the two simplest cases of Nmax = 1 and Nmax = 2. Although the

analysis of the higher order theories is the main topic of our work, two reasons motivated us to

address also the lowest order theory (i.e. with Nmax = 1), which has been already considered by

other authors. First, it is useful as the simplest illustration of our general, non-trivial procedure.

Second, we improved the analysis presented so far in the literature even for this lowest order theory.

The resulting explicit formulae for the effective brane Newton’s and cosmological constants are given

by eqs. (63) and (64), respectively.

The case of Nmax = 2 is the Einstein-Gauss-Bonnet gravity interacting with a scalar field

(which is also self-interacting) via terms with up to four derivatives. Similarly to the Nmax = 1

case, the effective brane equations of motion do not involve quantities dependent on the bulk

scalar solution. The total bulk influence enters again through the projected Weyl tensor Eµν . The

effective brane equations of motion for such a theory have not been presented before. They are quite

lengthy when the generalized traces are explicitly calculated (all necessary formulae are collected

in the appendix). Although the effective brane equations are rather complicated for a general case,
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they simplify substantially if highly symmetric branes are considered. Applications of the derived

equations for such symmetric models are postponed to a future publication.
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Appendix

In the appendix we collect the formulae appearing in the Einstein-like effective brane equation (49)

for the case of Nmax = 2. This equation, after writing down explicitly the sum over N , takes the

form of

(d−3)(2d−3)
(d−1)(d−2)

hρσV − 1
2
α1

{
d−3
d−2

hµ
ρhν

σ T µν (M) + 2
d−3

hµ
ρhν

σ T µν (P) + d−3
d−1

hρσ T (M)

+ 2 (d− 3)
b1B0 − b0B1

b0b2 − b2
1

hρσ + 2
d−2

b1B1 − b2B0

b0b2 − b2
1

hρσ

}

− 1
2
α2

{
d−3
d−2

hµ
ρhν

σ T µν

(
M2

)
+ 4

d−3
hµ

ρhν
σ T µν (PM) + d−3

d−1
hρσ T

(
M2

)
− 16(d−3)

d−2
hµ

ρhν
σ T µν (N )

+ 4(d−3)
d−2

b1B0 − b0B1

b0b2 − b2
1

hµ
ρhν

σ T µν (h∗
∗M) + 4(d−3)

d−2

b1B1 − b2B0

b0b2 − b2
1

hµ
ρhν

σ T µν (M)

}
= 0 . (A.1)

Performing the summations over N in definitions (41) and (42), we obtain the following expressions

for the parameters bm and Bm:

b0 = α1 + 2 α2 T (M) , (A.2)

b1 = α1(d − 1) + 2 α2 T (h∗
∗M) , (A.3)

b2 = α1(d − 2)(d − 1) + 2 α2 T
(
(h∗

∗)
2M

)
, (A.4)

B0 =−V + V ′ + α1 T (M) + α2

[
T
(
M2

)
+ 2

d−3
T (PM) − 8 T (N )

]
, (A.5)

B1 =−(d − 1)V + α1 T (h∗
∗M) + α2

[
T
(
h∗
∗M2

)
+ 2

d−3
T (h∗

∗PM) − 8 T (h∗
∗N )

]
. (A.6)
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Various generalized traces present in the above formulae should be replaced with the following

explicit expressions:

T (M) = = R − K2 + (KK) + 2(DD)φ + 2K£nφ − (Dφ)2 − (£nφ)2 , (A.7)

T
(
M2

)
=
[
R − K2 + (KK) + 2(DD)φ + 2K£nφ − (Dφ)2 − (£nφ)2

]2

− 4
[
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]

·
[
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]

+
[
Rµνρσ − KµρKνσ + KµσKνρ

][
Rµνρσ − KµρKνσ + KµσKνρ

]
, (A.8)

T (PM) = 2
d−1

[
R − K2 + (KK)

] [
R − K2 + (KK) + (DD)φ + K£nφ

]

− 2
[
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]

·
[
Rµν − KKµν + (KK)µν + (d − 2)Eµν

]
, (A.9)

T (N ) =
[
DµK − DρK

ρ
µ + Kρ

µDρφ − Dµ£nφ
] [

DµK − DσKµ
σ + Kµ

σ Dσφ − Dµ£nφ
]

− (DµKσ
ρ )(DµKρ

σ) + (DµK
σ
ρ )(DρKµ

σ ) , (A.10)

T (h∗
∗ M) = (d − 3)

[
R − K2 + (KK)

]
+ 2(d − 2)

[
(DD)φ + K£nφ

]

− (d − 1)
[
(Dφ)2 + (£nφ)2

]
, (A.11)

T
(
h∗
∗ M2

)
= (d − 5)

[
R − K2 + (KK)

]2
+ 2(d − 4)

[
R − K2 + (KK)

] [
(DD)φ + K£nφ

]

+ (d − 3)
(
4
[
(DD)φ + K£nφ

]2 −
[
R − K2 + (KK)

] [
(Dφ)2 + (£nφ)2

] )

− 4(d − 2)
[
(DD)φ + K£nφ

][
(Dφ)2 + (£nφ)2

]
+ (d − 1)

[
(Dφ)2 + (£nφ)2

]2

− 4(d − 5)
[
Rµν − KKµν + (KK)µν

][
Rµν − KKµν + (KK)µν

]

− 8(d − 4)
[
Rµν − KKµν + (KK)µν

][
(DD)µνφ + Kµν£nφ

]

− 4(d − 3)
[
(DD)µνφ + Kµν£nφ

][
(DD)µνφ + Kµν£nφ

]

+ (d − 5)
[
Rµνρσ − KµρKνσ + KµσKνρ

][
Rµνρσ − KµρKνσ + KµσKνρ

]
, (A.12)

T (h∗
∗ PM) = 2(d−4)

d−1

[
R − K2 + (KK)

]2
+ 2(d−3)

d−1

[
R − K2 + (KK)

] [
(DD)φ + K£nφ

]

− 2
(
(d − 4)

[
Rµν − KKµν + (KK)µν

]
+ (d − 3)

[
(DD)µνφ + Kµν£nφ

])

·
[
Rµν − KKµν + (KK)µν + (d − 2)Eµν

]
, (A.13)

T (h∗
∗ N ) = (d − 4)

( [
DµK − DρK

ρ
µ

] [
DµK − DσKµ

σ

]
− (DµK

σ
ρ )(DµKρ

σ) + (DµK
σ
ρ )(DρKµ

σ )
)

+ 2 (d − 3)Kν
µ

[
(DνK)(Dµφ) − (DρK

ρ
ν )(Dµφ)

]

+ (d − 2)
[
Kρ

µDρφ − Dµ£nφ
] [

Kµ
σ Dσφ − Dµ£nφ

]
, (A.14)
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T
(
(h∗

∗)
2M

)
= (d − 4)(d − 3)

[
R − K2 + (KK)

]
+ 2(d − 3)(d − 2)

[
(DD)φ + K£nφ

]

− (d − 2)(d − 1)
[
(Dφ)2 + (£nφ)2

]
, (A.15)

hµ
ρhν

σ T µν (M) = hρσ T (M) − 2
[
Rρσ − KKρσ + (KK)ρσ + (DD)ρσφ + Kρσ£nφ

]
, (A.16)

hµ
ρhν

σ T µν (P) = 1
d−1

hρσ

[
R − K2 + (KK)

]
−
[
Rρσ − KKρσ + (KK)ρσ

]
, (A.17)

hµ
ρhν

σ T µν

(
M2

)
= hρσ T

(
M2

)
− 4
[
Rρσ − KKρσ + (KK)ρσ + (DD)ρσφ + Kρσ£nφ

]
T (M)

+ 8
[
Rρµ − KKρµ + (KK)ρµ + (DD)ρµφ + Kρµ£nφ

]

·
[
Rµ

σ − KKµ
σ + (KK)µ

σ + (DD)µ
σφ + Kµ

σ£nφ
]

+ 8
[
Rρσµν − KρµKσν + KρνKσµ

][
Rµν − KKµν + (KK)µν + (DD)µνφ + Kµν£nφ

]

− 4
[
Rρµνλ − KρνKµλ + KρλKµν

][
Rσ

µνλ − Kσ
νKµλ + Kσ

λKµν
]
, (A.18)

hµ
ρhν

σ T µν (N ) = hρσ T (N ) + 2(DµKν
ρ )(DµKνσ)

− 2
[
DµK − DνK

ν
µ

] [
DµKρσ − DρK

µ
σ

]
+
[
DρK

ν
µ − DµKν

ρ

] [
DσK

µ
ν − DνK

µ
σ

]

−
[
DρK − DµKµ

ρ + Kµ
ρ Dµφ − Dρ£nφ

][
DσK − DνK

ν
σ + Kν

σDνφ − Dσ£nφ
]
, (A.19)

hµ
ρhν

σ T µν (h∗
∗M) = hρσ

(
(d − 4)

[
R − K2 + (KK)

]
+ 2(d − 3)

[
(DD)φ + K£nφ

]

− (d − 2)
[
(Dφ)2 + (£nφ)2

])

− 2 (d − 3)
[
Rρσ − KKρσ + (KK)ρσ

]
− 2(d − 2)

[
(DD)ρσφ + Kρσ£nφ

]
, (A.20)

hµ
ρhν

σ T µν (PM) = hρσ T (PM) − 1
d−1

hµ
ρhν

σ T µν (h∗
∗M) −

[
Rρσ − KKρσ + (KK)ρσ + (d − 2)Eρσ

]

− 2
[
R − K2 + (KK)

][
Rρσ − KKρσ + (KK)ρσ + (DD)ρσφ + Kρσ£nφ

]

+ 2
[
Rρµ − KKρµ + (KK)ρµ + (d − 2)Eρµ

][
Rµ

σ − KKµ
σ + (KK)µ

σ + (DD)µ
σφ + Kµ

σ£nφ
]

+ 2
[
Rµ

σ − KKµ
σ + (KK)µ

σ + (d − 2)Eµ
σ

][
Rρµ − KKρµ + (KK)ρµ + (DD)ρµ + Kρµ£nφ

]

+ 2
[
Rρµσν − KρµKσν + KρνKσµ

][
Rµν − KKµν + (KK)µν + (d − 2)Eµν

]
. (A.21)

By substituting eqs. (A.2)-(A.21) into (A.1) and employing the solutions of the junction conditions

(65) and (66), the effective brane equation of motion in the Einstein-like form can be obtained.

However, the result is quite intricate and will not be given here. Moreover, the formulae collected

in this appendix should be compared with the relatively simple eq. (67). This shows how big price,

in terms of complication, has to be paid in order to derive the effective brane equation of motion

in the Einstein-like form, instead of confining to eq. (67).

Similarly to the Nmax = 1 case, the whole bulk dependence of the brane dynamics is encoded

in the projected Weyl tensor Eµν . However, this dependence is quite complicated for Nmax = 2.

Specifically, Eµν enters the brane Einstein-like equation of motion (A.1) through the generalized

30



trace hµ
ρhν

σ T µν (PM), appearing in eq. (A.1) and given by (A.21), as well as through the generalized

traces T (PM) and T (h∗
∗PM), present in the definitions of B0 and B1 and given by (A.9) and

(A.13), respectively. Although the projected Weyl tensor Eµν enters these formulae only linearly,

it is involved in intricate contractions with other tensors. Furthermore, these tensors contain the

extrinsic curvature Kµν , i.e. a complicated solution of the junction conditions (65) and (66) - which

in general cannot be solved explicitly.

As for Nmax > 2, it is in principle possible to write down the Einstein-like effective brane

equation of motion explicitly, but they become practically intractable.
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