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Abstract

We consider the (3+1)-dimensional locally finite gravity model pro-
posed by ’t Hooft [1]. In particular we revisit the problem of resolving
collisions of string defects. We provide a new geometric description
of the configurations of strings using piecewise flat manifolds, and use
it to resolve a more general class of collisions. We argue that beyond
certain bounds for the deficiency/surplus angles no resolutions may
be found that satisfy the imposed causality conditions.

1 Introduction

In [1] ’t Hooft introduced a locally flat model for gravity in 3 + 1 dimensions.
The basic premise was an attempt to generalize some features of general
relativity in 2 + 1 dimensions to 3 + 1 dimensions. In 2 + 1 dimensions
Einstein’s equation prescribes that in the absence of matter spacetime is
locally flat. Point particles can be introduced in 2 + 1 dimensions as (0 +
1)-dimensional line defects producing a conical singularity along the line.
Models like this have been studied at some length in the 1980’s and 1990’s.
[2, 3, 4, 5, 6]

The position and orientation of the (0+1)-dimensional line and the mag-
nitude of the singularity it produces are completely captured by the Poincaré
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holonomy it produces on a path looping the line defect. Alternatively, these
may be thought of as the position, velocity, and energy of a point particle
moving linearly through (2 + 1)-dimensional space. Each particle thus re-
quires only a finite number of degrees of freedom to describe it, and since
any finite volume of space contains only a finite number of particles this
model locally has a finite number of parameters. This makes the model of
interest for inquiries into quantum gravity.

The model introduced by ’t Hooft revolves around lifting the properties
of this (2 + 1)-dimensional model to 3 + 1 dimensions. Normally, in 3 + 1
dimensions Einstein’s equation does not fix all curvature degrees of freedom
in empty space. This freedom allows the propagation of gravitational waves
and long distance gravitational fields. To reproduce the properties of the
(2 + 1)-dimensional gravity we impose as an additional constraint on the
curvature that space be flat in the absence of matter.1 The local degrees of
freedom now turn out to be (1 + 1)-dimensional surfaces in spacetime, which
may be interpreted as 1-dimensional straight strings moving through space
at a constant velocity.

In sections 2 we recall the (3 + 1)-dimensional string model introduced
in [1]. Section 3 discusses the new problem of collisions in that model and
some of the basic results established by ’t Hooft. In section 4 we review
the quadrangle resolutions of such collisions suggested in [1] and find a com-
plete analytic solution. This solution confirms ’t Hooft’s conclusions based
on numerical calculations that such a resolution cannot be made consistent
with causality for extremely violent collisions. In section 5 we introduce the
more complicated tetrahedral resolutions and show that these can always
be solved in the non-relativistic low energy limit. In the general limit these
resolutions become too complicated to solve with the previously employed
algebraic methods. To deal with this we introduce an alternative geometric
way of describing the string configurations based on piecewise flat manifolds
in section 6. Section 6.1 explains how to use this new method to obtain a
tetrahedral resolution of a collision, while section 6.2 discusses when these
methods break-down and establishes that for the most violent collisions no
resolution (of any type) that is consistent with causality can be found . Fi-
nally, section 7 discusses some of the similarities and differences with other
gravity models that are piecewise flat.

1Note that, therefore, regions of spacetime that are Ricci flat but not Riemann flat,
must be represented by dense configurations of strings as well.
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2 Straight strings in 3 + 1 dimensions

Imposing the conditions that Einstein’s equation must apply and that empty
space must be flat, implies that the only matter that can be introduced
must appear as straight strings of constant density moving through space
at a constant velocity. This follows from the fact that any curvature of the
string or its path through space or any variation in its density would imply
a non-zero curvature in the surrounding space through Einstein’s equation.

The effect of a single such string standing still is easy enough to derive; it
simply adds or removes a wedge of space parallel to the string. This effect can
be recorded through the holonomy of a loop around the (1 + 1)-dimensional
surface defined by the string. If the density of the string is positive the
holonomy shows a deficit angle and if its density is negative it show a surplus
angle.2

The effect of any other moving string can simply be obtained by taking
a suitable Poincaré transformation of a stationary string. The (Poincaré)
holonomy around the string will then contain all the information about the
string. If P is the holonomy of a string then the (1 + 1)-dimensional surface
traced out by the moving string is given by {x ∈ R3,1|P (x) = x}. The density
of the string can be obtained (up to a sign) from the eigenvalues of P .

Note that not all holonomies will describe a moving string. To see this
consider an holonomy P , an element of the Poincaré group. By performing
a coordinate shift, we can always bring it in the form of a pure Lorentz
transformation R ∈ SO(3, 1). In order for the set S = {x ∈ R3,1|P (x) = x}
(= {x ∈ R3,1|R(x) = x} in the shifted coordinates) to be two dimensional R
must have two eigenvalues equal to one. For the surface to be timelike as
well, the eigenspace corresponding to eigenvalue one must contain a timelike
vector. Thus when S is a timelike surface, R is a pure rotation in the frame
in which it is block diagonal. It is easy to see the converse that when R is a
pure rotation in some frame, then S is a (1 + 1)-dimensional (i.e. timelike)
surface.

Clearly not all Lorentz transformations R have a frame in which they are a
pure rotation. In general, it can occur that R has no timelike eigenvector. In
such a case the set S = {x ∈ R3,1|R(x) = x} will be spacelike. Such objects
cannot represent a physically propagating degree of freedom and should not
appear in our model.

More complex configurations of strings can similarly be described by spec-
ifying the holonomies around the various strings. Some care is needed how-

2The exact relation between the deficit angle α and the string mass density ρ is given
by α = 8πG

c2 ρ. We will employ units where 8πG = 1 and c = 1 such that deficit angle and
density become interchangeable.
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Figure 1: The path γ1 and path γ2 around the string A are topologically
inequivalent. The path Γ shows that γ1 can be deformed to the sequence of
paths γB then γ2 then γ−1

B .
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ever, since the holonomy of a string depends on the route taken to the string.
For example consider the situation in figure 1. When describing a loop from
point p around string A we have two topologically distinct options; we can
either pass above (γ1) or below (γ2) string B.3 Topologically, the path γ1 is
equivalent to first going around string B along path γB then following path
γ2 around string A and finally tracing back along γB. The holonomy of this
last path is the product of the holonomies of the individual paths. Since the
space away from the strings is flat the holonomy is a topological invariant of
the path. Consequently, the holonomy of γ2 should be equal to the holonomy
of the combination of paths. So, if we denote the holonomies of the different
paths Qγ1 , Qγ2 , and QγB , they should satisfy

Qγ1 = Q−1
γB
Qγ2QγB . (1)

We see that Qγ1 is related to Qγ2 by a conjugation. This is true in general.
The holonomies of different paths wrapping around a string once belong to
the same conjugacy class.

If we call our spacetime X and the subset of (1 + 1)-dimensional string
defects X(2) ⊂ X, then the classes of topologically equivalent loops starting
from the point p ∈ X \ X(2) are parameterized by the fundamental group
π1
[
X \X(2), p

]
, the group structure being defined by the concatenation of

loops. To each class of loops there must be assigned a holonomy so we have
a map

Q : π1
[
X \X(2), p

]
→ ISO(TpX), (2)

that assigns to each loop γ its holonomy Qγ, an element of the Poincaré group
at the point p: ISO(TpX). The consistency requirement of the example above
generalizes to the requirement that the map Q respects the group structure
of the groups, i.e. it is a group homomorphism.

As was the case for a single string, not any such homomorphism Q will de-
scribe a configuration of strings. The holonomies assigned to loops wrapping
around a single string must have a frame in which they are pure rotations.
Note that if this condition is met for one path wrapping a string, it will be
automatically met for all paths wrapping that string since these only differ
by a change of frame.

Note also that this condition is not met for all loops. Loops wrapping
multiple strings will generally not have a frame in which they are a pure
rotation.

3Actually, there is an infinite number of options if we allow the paths to wrap around
string B before going to string A, but here we restrict our attention to these two options.
The other options will lead to similar relations.
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Thus far we have only discussed infinitely extended strings. That is (1 +
1)-dimensional string sheets that extend infinitely far along their space and
time directions. Although one can build configurations consisting of only such
strings, in general one would also expect two strings to meet. Generically, any
two moving strings will collide at some point in spacetime.4 We will discuss
how to deal with such events later, but to do so we must first introduce
strings ending in junctions.

A junction is a line in spacetime that is shared by multiple string sheets.
That is it is a 1-dimensional set of points x satisfying

Q1x = Q2x = ... = Qnx = x, (3)

with Q1, ...,Qn being n holonomies describing strings. Note that n needs to
be equal or larger than 3 in order for the surrounding spacetime to be flat.5

Due to the presence of the junction the paths γi defining the holonomies Qi

will satisfy certain relations. For a simple example see figure 2, showing the
equivalence of loops around three strings meeting in a junction. In general,
one can always choose the paths γi in such a way that the concatenation
of paths γ1 · · · · · γn is equivalent to the trivial loop. Since, the holonomies
must follow the same algebraic conditions as the paths it follows that the
holonomies must satisfy

Qγ1 · · ·Qγn = I. (4)

The 1-dimensional line of a junction can be either timelike, lightlike, or space-
like. Timelike and lightlike junctions simply represent a point in space where
multiple strings meet moving through space. Spacelike junctions, however,
can be troublesome as they somehow represent information moving through
spacetime at superluminal speeds. Such junctions are to be avoided by this
model.

3 Collisions

When considering point particles in 2+1 dimensions one could safely assume
that the particles never collide, because generically the intersection of two
(0 + 1)-dimensional lines in R

2,1 is empty. When considering strings in 3 + 1
dimensions, we have no such luxury since two (1 + 1)-dimensional surfaces in
R

3,1 generically have 1 intersection. That is any two strings moving though
3-dimensional space will collide at some point (unless they are parallel).

4Note that this collision can actually lie in the past of the strings. For ease of argument
we will assume that the collision lies to the future of the considered configuration.

5That is a string cannot simply end somewhere in flat space, and if just two strings
meet we are restricted to the trivial case that Q1 = Q−

2 1.
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Figure 2: The loop Γ is homotopic to both the concatenation of paths γ1·γ2·γ3
and to the trivial loop. The holonomies assigned to the loops γi must thus
satisfy Qγ1Qγ2Qγ3 = I.

Since the strings carry some sort of deficit (or surplus) angle, a string
that is straight before such a collision cannot be straight after (see figure 3).
As our model does not allow strings to have kinks — as such a configuration
would imply curvature in its vicinity — we must add new intermediate strings
to complete the configuration. The simplest situation we can consider is two
strings hitting each other at a right angle (see figure 4). In that case we can
connect the kinks in the two strings with a single finite length string. If we
take the paths for the holonomies as shown in the figure, then the holonomy
for the intermediate string will satisfy

QAB = QAQ
−1
B Q−1

A QB. (5)

In the rest frame of the B string the velocity of the junction of the A half-
strings and the AB finite string measured along the AB string (see figure
5)is given by

w =
vA

cos(ψB

2
)
, (6)

where vA is the velocity of the A string and ψB is the deficit angle of the B
string. As ψB approaches π this velocity will approach infinity. This gives
us the first example of the effects of a collision propagating away from the
event at superluminal speeds. Now, this superluminal junction is of the least
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Figure 3: String A collides with string B viewed along the direction of B.
The red wedge represents the deficit angle produced by B. The deficit angle
can be removed in any direction from B. The top pictures show the situation
before and after the collision of A with B with the deficit angle to the right
of B. The bottom pictures show the same situation but with the deficit angle
drawn to the left. We see that it is impossible for A to continue as a straight
line after colliding with B.
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Figure 4: Top: Two strings about to collide at a right angle. The loop γA2

is equivalent to γ−1
B · γA1 · γB Bottom: The same strings after the collision

drawn without the wedges. The loops γA1 and γA2 are equivalent to the same
loops in the top picture. The loop γAB is equivalent to the loop γA1 · γ−1

A2
.
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Figure 5: The speed w of the junction of the A1, A2, and AB strings measured
in the direction of the AB string can be easily obtained using basic geometry.

worrisome kind as it represents the two ends of the B strings instantaneously
merging to the string AB.

In fact, if w > c one can choose a frame in which the two string half-lines
A1 and A2 string collide head on. Consequently, one could hope that this
seeming non-locality is avoided in more generic collisions. We will therefore
proceed to consider more general collisions.

To describe a string we need 7 parameters: the deficit angle ψ, two an-
gles to give its orientation, an angle and a positive real number to give the
direction and magnitude of its velocity, and two more numbers to give its
position with respect to the origin. So, to describe two strings (A and B) we
need a total of 14 parameters. Of those, 10 can be gauged away by a suitable
choice of frame, leaving us with 4 parameters to describe a general collision.
A convenient choice is: the deficit angles ψA and ψB of the two strings, the
relative velocities between the strings v,6 and the angle φ between the two
strings at the collision point.

When φ is not π/2, it is not possible to resolve the collision with just one
intermediate string (see figure 6). Algebraically, this results from the fact
that the holonomy QAB from equation 5, does not in fact have a frame in
which it is a pure rotation, and as such cannot occur as the holonomy of a
single string.

6At times it may be convenient to replace this velocity with the corresponding rapidity
η = arctanh v/c.
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Figure 6: When a string A scatters off some other string B at some non-right
angle, then the two piece A1 and A2 will not continue to meet at a single
point after the collision. It is thus impossible to connect all pieces with just
one intermediate string.

Figure 7: There are three different square configurations.

4 Square configurations

In [1] ’t Hooft tried to resolve such a slanted collision by considering a square
configuration of four intermediate strings. As shown in figure 7 there actually
are three variants of such a configuration. Here we will focus on case III,
because it will turn out to have the simplest solution. The other cases can
be solved in a similar way, and have similar (but more complicated solutions).
The four new strings add 28 new parameters to the system. The positions of
each of the intermediate strings is fixed by the fact that they must be created
in the incidence point of the collision. Consequently, the (1 + 1)-dimensional
surface swept out by each of the strings (both internal and external) must
pass through this point, which we will take to be the origin of all considered
frames allowing us to represent all holonomies as Lorentz transformations.
This fixes two parameters of each internal string.

For suitably chosen paths the conditions to be satisfied by the holonomies

11



at each junction are

QA1B1 = QA1QA1B2 QA2B1 = QB1QA1B1 QA2B2 = QA2QA2B1 QA1B2 = QB2QA2B2

(7)

with the external holonomies satisfying

QB2QA2QB1QA1 = I. (8)

The condition on the external holonomies comes from the fact that they
result from the holonomies of two strings before the collision. It also ensures
that if any three of the conditions (7) is met, the forth one is automatically
also met. The conditions (7) thus represent 18 algebraic conditions on the
remaining 20 parameters. It is thus expected that the space of solutions
forms a 2 dimensional manifold.

A suitable choice for these parameters are the rapidities µA1 and µB1 of
the junctions on the strings A1 and B1 along those strings. The equations
can be solved by representing the Lorentz transformations as elements of
PSL(2,C).7 In this representation, the condition that a holonomy Q repre-
sents a string is given by

−2 < Re TrQ < 2; (9)

Im TrQ = 0. (10)

For each junction, we can consider the frame in which the external string
is stationary pointing in the z-direction. In such a frame the condition on
the trace of the internal holonomies implies that each can be written in the
form (

a+ ib −e−µ(c− id)
e
µ(c+ id) a− ib

)
, (11)

with a2 + b2 + c2 + d2 = 1 and µ the rapidity of the junction along the
external string.8 Using this representation we can try to express µA2 and
µB2 in terms of the parameters µA1 and µB1 . The equations typically are a
horrendous nonlinear algebraic mess, but by making some clever choice for
the involved frames they become manageable for a computer algebra package
such as Mathematica.

7We take the Pauli matrices σx, σy, and σz as generators. A pure rotation of angle φ
along direction n̂ is then represented as exp(iφn̂ ·~σ), and a pure boost of rapidity η in the
n̂ direction is represented as exp(ηn̂ · ~σ).

8The value of µ is ambiguous since we can shift it by an arbitrary boost in the z-
direction. Here, and elsewhere, we will take µ to be measured in the frame where the
other (colliding) external string has zero velocity in the z-direction.
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For case III the result of these calculations is

e
−2µA2 =

(
2 sinh η

sinφ
+ tan ψB

2
(1− sinh2 η

sin2 φ
)
)
− tan ψB

2
(1 + sinh2 η

sin2 φ
)e−2µA1

tan ψB

2
(1 + sinh2 η

sin2 φ
) +

(
2 sinh η

sinφ
− tan ψB

2
(1− sinh2 η

sin2 φ
)
)
e−2µA1

(12)

e
−2µB2 =

(
2 sinh η

sinφ
+ tan ψA

2
(1− sinh2 η

sin2 φ
)
)
− tan ψA

2
(1 + sinh2 η

sin2 φ
)e−2µB1

tan ψA

2
(1 + sinh2 η

sin2 φ
) +

(
2 sinh η

sinφ
− tan ψA

2
(1− sinh2 η

sin2 φ
)
)
e−2µB1

. (13)

Similar results may be obtained for the cases I and II. We notice a couple
of things. First of all, the expression for µA2 is independent of µB1 and
the expression for µB2 is independent of µA1 . This odd decoupling of the
dependence on the parameters was already noticed in the numerical analysis
done in [1]. This property is common to the solutions of all three cases.
The rapidities of two opposite junctions only depend on each other (and the
external string parameters).

Second, the relation between µA1 and µA2 is independent of ψA and the
relation between µB1 and µB2 is independent of ψB. This property is particu-
lar to case III and most certainly is related to the fact the opposing junctions
lie on the two pieces of the same original string. This is what makes case III
easier to deal with since the calculations involve one less parameter. In the
other cases the coefficients do depend on both ψA and ψB.

Third, the equations 12 and 13 are related to each other by a simple
substitution of the labels A and B. This simply reflects the original symmetry
between the two colliding strings and similar relations hold for the other
cases.

Finally (and most crucially), notice that as sinh(η)
sin(φ)

approaches infinity

(and tanψA and tanψB are positive) the RHS of both equations become
negative for any value of the rapidities µA1 and µB1 . The junctions along
A2 and B2 thus become superluminal, and unlike the junctions in case of
the orthogonal collision we saw before, these are of the most unfavourable
kind representing the external strings A2 and B2 instantaneously splitting
in two strings. An observer light years away from the collision point could
thus instantly become aware of the event. This kind of non-local behaviour
cannot be deemed acceptable for any physical theory. One could hope that
this behaviour is particular for the considered case (III), and that for any
chosen set of values of the collision parameters (ψA,ψB,φ, and η) at least
one of the cases I, II, or III would admit a solution with just subluminal
junctions. But, alas, the limiting behaviour for the solutions of each of
the three cases is the same. For certain values of the collision parameters
there are no square string configurations of the resulting state that have only
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Figure 8: Connecting all the vertices yields a tetrahedral configuration of
internal strings.

subluminal junctions.

5 Tetrahedral configurations

So there exist values for the collision parameters, for which there are no
simple configurations involving one or four intermediate strings that resolve
the collision. We can still hope that more involved configurations will provide
a suitable resolution.

The square configurations considered in the previous section basically
consisted of four vertices moving away from the collision along the exter-
nal strings which were connected by four internal strings. This involved the
choice which vertices should be connected by strings leading to three differ-
ent cases. We will now consider the more general case where each vertex
is connected to each other vertex. We thus end up with a tetrahedral con-
figuration of internal strings (see figure 8). The cases I, II, and III for the
square configurations considered before can be considered as special cases of
the tetrahedral configuration where the deficit angles of two of the internal
strings become zero. For example, case III is obtained by setting the deficit
angles of the A1A2 and B1B2 strings to zero.
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Six internal strings originating from the collision point gives 6 · 5 = 30
parameters. Of these 18 are fixed by the 18 independent algebraic relations
imposed by the algebraic conditions at the vertices, which would leave us
with 12 parameters. However, there are extra conditions that result from
the fact that we now have 4-vertices. The fact that the algebraic condition
on the 4-vertex does not completely fix the 4-vertex, is most easily seen by
observing that the algebraic condition for a 4-vertex is the same as the one
for a similar configuration of two 3-vertices and an intermediate string (like
in figure 4). To prevent the 4-vertex splitting up in two 3-vertices we need
to require that the velocities of each of the three internal strings along the
external string match. This gives two additional conditions per vertex. The
number of free parameters is thus expected to be four.

This agrees with our above observation that we can obtain the square
configurations (each having two free parameters) by setting two deficit angles
to zero. In case of the square configurations we took two of the velocities
of the vertices along the external strings as our free parameters. Since we
have four vertices moving along four external strings and four free parameters
it is tempting to take these velocities (or their corresponding rapidities) as
our free parameters. Among other things this choice allows us to explicitly
impose that these vertices move at subluminal speeds.

5.1 Non-relativistic low energy limit

Trying to solve the various conditions for the internal parameters of the
tetrahedral configuration is very complex. It is thus instructive to first solve
these conditions in the limit that all velocities are much smaller than the
speed of light (non-relativistic) and all deficit angles are small (all energies
are low).

In the low energy limit the string holonomies, that before could be repre-
sented by Lorentz transformations, can now be represented by 4×4 Galilean
transformations

Q =

(
1 0

~v R(~φ)

)
, (14)

where ~v ∈ R
3 is the boost velocity and R(~φ) ∈ SO(3) is a rotation of

|~φ| degrees around the ~φ axis. So the holonomy Q(~φ,~v) of a string with
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orientation ~φ and deficit angle |~φ| moving with velocity ~v is given by

Q(~φ,~v) =

(
1 0
−~v I

)(
1 0

0 R(~φ)

)(
1 0
~v I

)
(15)

=

(
1 0

(I−R(~φ))~v R(~φ)

)
(16)

=

(
1 0

−~φ× ~v R(~φ)

)
+O(|~φ|2), (17)

where in the last line we used that in the low energy limit R(~φ)~x = I + ~φ×
~x+O(|~φ|2).

The vertex conditions thus become of the form

I = Q1 · · ·Qn (18)(
1 0
0 I

)
=

(
1 0

−~φ1 × ~v1 R(~φ1)

)
· · ·
(

1 0

−~φn × ~vn R(~φn)

)
+O(|~φ|2) (19)

=

(
1 0

−~φ1 × ~v1 − . . .− ~φn × ~vn R(~φ1 + · · ·+ ~φn)

)
+O(|~φ|2). (20)

Consequently, in the low energy limit the vertex conditions become

~φ1 + · · ·+ ~φn = 0, and (21)

~φ1 × ~v1 + . . .+ ~φn × ~vn = 0. (22)

Coming back to our tetrahedral configuration, fixing the velocity mi of
each vertex along the corresponding external string given by ~φi and ~vi gives
us the velocity ~wi of each vertex

~wi = ~vi +mi

~φi

|~φi|
. (23)

These velocities in turn fix the orientations φ̂i,j and velocities ~vi,j of the
internal strings

φ̂i,j =
~wi − ~wj
|~wi − ~wj|

, and (24)

~vi,j =
~wi + ~wj

2
. (25)

The only remaining unknown parameters are the deficit angles αi,j of the in-
ternal strings. Equation 21 tells us that the αi,j are simply the coefficients of
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the vector−~φj when decomposed in the base
{
φ̂i,j|i ∈ {A1, A2, B1, B2} i 6= j

}
.

It is straight forward to show that this also solves (22).
Since we independently obtain values for αi,j and αj,i we may fear that

the answer is over determined. However up till now we have ignored the
relation (8) for the external strings. These give two relations among the
external string parameters

~φ1 + ~φ2 + ~φ3 + ~φ4 = 0, and (26)

~φ1 × ~v1 + ~φ2 × ~v2 + ~φ3 × ~v3 + ~φ4 × ~v4 = 0. (27)

It is a straight forward yet involved exercise in linear algebra to show this
conditions guarantee that αi,j = −αj,i.

We thus find that, in the non-relativistic low energy limit, fixing the ve-
locities of the vertices along the external strings indeed fixes all the internal
parameters of the tetrahedral configuration. Since none of the imposed con-
ditions truly degenerate in this limit it is reasonable to assume that this
approach should also fix the internal parameters for configurations further
away from this limit, although there is absolutely no guarantee that solutions
exist for the entire collision parameter space.

6 A more geometrical approach

Thus far we have tackled the problem of resolving collisions using the holonomies
of the involved strings and algebraically solving their relations. Since these
relations are typically non-linear, the problem rapidly grows in complexity.
The square configuration of intermediate strings was solvable with the help
of computer algebra in a reasonable amount of time, but the tetrahedral
problem already becomes so complex that it seems intractable with those
methods.

However, there is an alternative more geometrical way of describing the
situations considered. This will facilitate a much more straight forward way
of finding the resolving configuration.

A configuration of strings in spacetime naturally divides the space in a
cell complex with each cell having a flat metric.9 Collision points form the
0-cells of this complex, junctions the 1-cells, and the strings themselves form
the 2-cells.

9This process can require the adding of extra strings with zero tension/deficit angle,
which can also be tachyonic since they do not represent any physical information. There
may be multiple ways in which such strings can be added, making the cell structure for a
given configuration of strings not unique. If desired the addition of strings can be continued
to make the cell complex into a simplicial complex.
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Multiple strings can form loops like the square in the configuration con-
sidered in section 4. Typically such a loop does not lie in a single hyperplane,
but we can add new strings to divide the loop in to smaller loops that do.
These ‘flat’ loops will become the 3-cells of the complex. The new virtual
strings10 added this way have trivial holonomy, and thus are not subject to
the physical limitation of being timelike. Typically, there are multiple ways
in which virtual strings may be added to obtain flat 3-cells. The cell structure
obtained is thus not unique.

The system of 3-cells will divide (3 + 1)-dimensional space in disjoint
pieces. Each such piece will become a 4-cell in the cell complex.

Each n-cell in the complex will inherit a flat metric from the original
spacetime. Moreover, the attaching maps are simply the inclusion of the
boundary of each n-cell in the skeleton of (n − 1)-cells. In particular, the
attaching maps will preserve the flat metrics of the cells, and are thus given
(piecewise) as Poincaré transformations.

Conversely, given such a cell complex with flat metrics we can try to
reconstruct a string configuration. This requires some conditions on the cell
complex. First of all the cell-complex must be a orientable topological 4-
manifold.11 Moreover, the flat metric of each 4-cell must have Lorentzian
signature.

Since each 4-cell has a flat Lorentzian metric, we can assign a global
Poincaré frame to each 4-cell. Then if 4-cells α and β are attached to a
single 3-cell the attachment maps will induce a Poincaré transformation Mαβ

mapping the frame of α to the frame of β. The holonomy of a 2-cell can then
be determined by composing the Mαβ’s of all the 3-cells attached to it.

If a 2-cell has a non-trivial holonomy it must represent a string. In order
to avoid unphysical tachyonic strings, we must require that all 2-cells with
non-trivial holonomy, have a metric with Lorentzian signature (i.e. propagate
at subluminal speeds.) Finally, in order to avoid superluminal junctions we
can explicitly require that the inclusion of each 1-cell that is attached to 3 or
more physical strings (i.e. 2-cells with non-trivial holonomy) into a physical
string is timelike.

So, we are basically describing Regge manifolds with some extra con-
ditions connected to the requirement that the strings behave as physical
excitations.

10From here on we will use the term ‘virtual string’ to refer to strings that carry trivial
holonomy.

11This involves some technical conditions on the cell complex. Each 3-cell should be
attached to exactly two 4-cells, each (n − 1)-cell is connected to at least 2 n-cells. The
fourth homology group over the real numbers should be isomorphic to R. Et cetera.
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6.1 Back to tetrahedral configurations

With this more geometrical approach, we can try to tackle the tetrahedral
resolution of the string collision. We will divide the tetrahedral configuration
up in five cells as shown in figure 9.

For this we start out far away from (outside the light cone of) the collision.
Here the geometry of the spacetime is not yet effected by the collision and can
be constructed by continuing the geometry as it existed before the collision.
In this region there will be four half-strings pointing in towards the collision,
each a half of one of the two original strings.

This region can be roughly divided into four 4-cells, each corresponding
to an area that is in between three of the half-strings and opposite to the
fourth. Since two half-strings will typically not lie in a single plane, it is
necessary to add virtual strings to properly define the boundary between the
‘external’ 4-cells as flat 3-cells.

In each of these external 4-cells we can continue the geometry inward
towards the collision until we reach the junctions on each of the half-strings.
A priori, we are still free to set the speeds of these junctions.12 Particularly,
we take these speeds to be subluminal. Since all the junctions originate in
the point of collision, the three junctions (1-cells) in an external 4-cell will lie
in a single 3-plane. This 3-plane will become the inner boundary 3-cell of the
external 4-cell. The boundary of this 3-cell will consist of three 2-cells each
spanned by two of the junctions. Since each of the junctions is subluminal,
these 2-cells are timelike, and we can thus interpret them as the internal
strings of the tetrahedral configuration.

We thus know the geometry on the external 4-cells and the entire 3-
skeleton of the tetrahedral configuration. The missing piece to be added is a
4-cell with a piecewise flat metric, which is to be attached to the boundary
formed by the four interior boundary 3-cells of the external 4-cells. The
geometry of each of the boundary 3-cells is simply that of a triangle that
grows linearly with time. The geometry of the internal 4-cell should thus
be that of a tetrahedron filled with a piecewise flat metric that expands
linearly with time and that agrees with the given flat metrics on the boundary
triangles.

The problem of filling a tetrahedron with an internal flat metric given
a flat metric on the boundary is well-known in Euclidean geometry. It is
known that this is possible if and only if the boundary metrics satisfy the
(generalized) triangle inequalities.[7] That is, if and only if the sum of the
areas of any three of the boundary triangles is larger than the area of the
remaining triangle.

12We will return to the question what velocities can be chosen in the next section.
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Figure 9: The tetrahedral configuration can be divided in five 4-cells. Here
shown on a time slice after the collision, such that each 4-cell is represented by
a 3-dimensional cell. There are four external cells extending to infinity, and
one internal tetrahedral cell. Surfaces (representing 3-cells) with matching
colour are mapped into each other through a Lorentz transformation. The
black lines on the external surfaces are virtual strings that subdivide the
external surfaces and carry no holonomy. These are necessary because the
external strings generically do not lie in the same plane.
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Figure 10: A tetrahedron can be subdivided into four smaller tetrahedra by
adding a single vertex, four 1-cells, six 2-cells, and four 3-cells.

It is not clear to us that these triangle inequalities will be satisfied for
any choice of the collision parameters and junction speeds. We therefore
assume the worst possibility, that there exist situations in which these are
not satisfied. Consequently, we must provide a way to construct an internal
piecewise flat metric. This is indeed possible for any flat geometry of the
boundary.

To construct an internal piecewise flat metric in the tetrahedron, we will
subdivide it in four pieces (see figure 10). We build a cell complex (in fact
a simplicial complex) on the interior in the following way. We add a single
vertex, which we connect to each of the four vertices on the boundary by
1-cells. Each of the triangles formed by two of the new internal 1-cells and
one of the 1-cells on the boundary is filled by a new 2-cell, and each of the
tertahedra formed by three of the new 2-cells and one of the boundary 2-cells
is filled by a new 3-cell.

For each of the new cells we will have to specify a flat metric that is
compatible with the metrics on its boundary. Any metric on a 1-cell is flat
and is specified by a single parameter; its length. Consequently, the four
new internal 1-cells give us four free parameters. To construct a flat metric
on a 2-cell we need that the metrics on its boundary 1-cells satisfy the (2D)
triangle inequalities. This can easily be satisfied for all the new 2-cells. One
particular way is to choose all four lengths equal and larger than half the
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length of the longest 1-cell on the boundary.
To construct a flat metric on a 3-cell, we again need the metrics on its

boundary 2-cells to satisfy the (3D) triangle inequalities. The choice above
guarantees that three of the four inequalities are satisfied.

To see this, call the length of the new internal 1-cells a and the length of
the three 1-cells on the outer boundary of any particular internal 3-cell b1,
b2, and b3. Because they are on the boundary of a given triangle they satisfy

bi + bj ≥ bk, (28)

with i, j, k ∈ {1, 2, 3}, and without loss of generality we can take the labelling
such that b1 ≤ b2 ≤ b3. The area Ai of the internal 2-cell incident to the
1-cell with length bi is thus equal to

Ai =
1

2
bi

√
a2 − 1

4
b2i . (29)

Since a > 1
2
bi for all i, b1 ≤ b2 ≤ b3 implies that A1 ≤ A2 ≤ A3. Furthermore

we have

A1 + A2 =
1

2
b1

√
a2 − 1

4
b21 +

1

2
b2

√
a2 − 1

4
b22 (30)

≥ 1

2
(b1 + b2)

√
a2 − 1

4
b23 (31)

≥ 1

2
(b3)

√
a2 − 1

4
b23 ≥ A3. (32)

As a result any sum involving two of the areas of the internal 2-cells will be
larger than the area of the remaining 2-cell.

The remaining triangle inequality is that the sum of the areas of the
internal 2-cells is larger than the area of the boundary 2-cell. Since the areas
of the internal 2-cells can be made arbitrarily large by increasing a, it is
possible to also satisfy this fourth triangle inequality for the new 3-cells.

Hence we can construct a piecewise flat metric on the interior of the
tetrahedron. Consequently, the geometry of the missing 4-cell can be taken
to be such a piecewise flat metric expanding linearly with time. That is,
we can expand our original cell complex by adding four new internal 4-
cells each with the geometry of a tetrahedron growing linearly with time
(each corresponding to one of the internal 3-cells in our construction of the
piecewise flat metric).

The new 1-cells in the construction of the piecewise flat metric, correspond
to four new internal 2-cells that are timelike and generically carry nontrivial
holonomy. These must therefore be interpreted as new internal strings.
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As is clear from the arbitrary choices we made along the way this con-
struction is far from unique.

6.2 Limits

So does this construction always work? In the exposition above we have
sidestepped a couple of possible hurdles. The first issue is that due to the
presence of the holonomies of the colliding strings the geometry around the
collision point is non-Euclidean. In particular two lines passing through a
single point are not guaranteed to have a single plane connecting the two.
There maybe more planes connecting the two (which is not really a problem
but does add another arbitrary choice) or worse there may be none at all.
This is bad since it prevents us from connecting the junctions with strings.

The latter can indeed happen if one of the original strings has a very large
surplus angle. For example, consider the case in figure 11, where a string is
colliding with a second stationary string with a surplus angle of π. After
the collision, no matter what frame you choose, there is no way to draw a
straight line between the points A1 and A2. You might try to solve this by
allowing the endpoints of A1 and A2 to move in the negative direction, but
the issue will just reappear at even larger surplus angles and larger incident
speeds. Large surplus angles can thus pose serious issues for finding our type
of solution. This suggests that we need to avoid surplus angles, or at least
control them in such a way that they do not become arbitrarily large.

Another convenient assumption we made was that the junctions can al-
ways be chosen to move at a subluminal speed. We already know that this is
a dangerous assumption to make since this was exactly the thing that failed
in previous attempts to identify resolutions. And in fact it also fails here.
In the construction in section 6.1 it is relatively easy to find an example
where junctions can never be subluminal. This generally happens when both
strings have large deficiency angles. Figure 12 shows the result of continuing
the geometry of two strings colliding almost orthogonally at high velocity,
as viewed from the centre of velocity frame13. The black sphere marks all
the points moving away from the collision at the speed of light. The sphere
is completely contained in the wedges indicating the area removed by the
deficiency angles of the two strings. Since any junction on the strings will
have to be outside the wedges it must move at a superluminal speed.

This example not only shows that it is impossible to resolve a collision
with a tetrahedral configuration of intermediate strings, but it squashes all
hope that any more complicated configuration of internal strings can do the

13i.e. the frame where the sum of the velocities of the strings vanishes.

23



Figure 11: String A is scattering off the stationary string B, which has a
surplus angle of π. (Viewed along the direction of B.) The dashed line
indicates the cut leading to the surplus area. On the bottom row the same
process is depicted, but now as two separate pieces of space that are glued
together along boundary of the red area. (The lines marked with a triangle
are identified with each other, idem for the lines marked with a square.)
After the collision there exist no straight lines going from A1 to A2.
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Figure 12: Two strings colliding at high velocity viewed from the centre of
velocity frame. The black sphere in the middle marks all the points moving
away from the collision point at the speed of light. The area is completely
cut out by the deficiency angles of the two strings.
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job while all junctions stay subluminal.
From the same centre of velocity frame we can obtain a safe limit on the

collision parameters for which the resolution using a tetrahedral configuration
of strings will always work. If the half-string of string B meets the sphere
of points moving away from the collision point at the speed of light before
it meets the wedge cut out by the A string, then we can find a subluminal
location for the junction on that half-string. If we take the deficiency angles
of the strings (in their respective rest-frames) to be ψA and ψB, the angle
between the strings at the collision φ, and the speed of the string with respect
to the collision point v, then this condition can be expressed as

(2v)2 +

(
2vγ(v)

tanψA/2

sinφ

)2

≤ 1, (33)

where the Lorentz factor γ(v) appears due to the Lorentz contraction of the
moving wedge of string A. If we impose this condition for both strings and in
addition require both deficiency angles to be positive, we can chose all four
junctions to move at the speed of light and connect them by intermediate
strings to find the geometry of the boundary of the tetrahedron. Moreover
due to the symmetry of the situation, the pair of opposing faces incident to
each string will have the same area. This guarantees that the triangle in-
equalities are satisfied and we can thus find a flat interior for the tetrahedron.
We thus obtain as a safe condition on the collision parameters that each ψ
must satisfy

0 < tan
ψ

2
≤

√
sin2 φ

1− 4v2

4v2γ(v)
. (34)

Within those bounds it is clear that the construction will always work. This
bound may not be maximal in the sense that there may be values beyond
these bounds for which a resolution may still be obtained for either the
tetrahedral of a more complicated configuration of internal strings. But,
this is not guaranteed and it is clear from the examples mentioned above
that at some point beyond these bounds it will become impossible to find a
resolution.

7 Comparison to other piecewise flat gravity

approaches

At the first sight the model proposed by ’t Hooft is similar to many other
approaches describing gravity that is piecewise flat. We will here discuss
these similarities and point out some notable differences.
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As a first remark note that the dynamical model studied here is not quan-
tum mechanical, so it must be considered as the classical limit of a discretized
theory. Our study of it is motivated by the wish to understand what the rules
are for both a classical and a quantized discrete Regge-like model, its space of
states, the question of the positivity of the energy, et cetera. Other models,
on the other hand, often delve directly into the quantum aspects of such a
model.

The proposed model has a lot in common with the world crystal model
proposed by Kleinert. [8, 9] That model also proposes to describe gravity
through propagating topological defect lines. The difference is that his defect
lines are not necessarily straight nor follow a constant trajectory. This means
that he is not imposing that Einstein’s equation should hold on top of the
requirement that empty space is (locally) flat. It is precisely the combination
of these two requirements that implies that strings must have planar world
sheets.

It also seems that there might be some connection with loop quantum
gravity approaches and the related spin foam models. These also take holonomies
as fundamental variables, and have historically arisen from considerations
of Ponzano-Regge models, which also feature piecewise flat manifolds. One
could wonder for example if the model considered here appears as the classical
limit of LQG. This question was addressed recently by Eugenio Bianchi[10],
who came to the conclusion that to reproduce the kinematical state space of
LQG by standard path integral quantization techniques, one should consider
the holonomies of loops around string defects caused by locally-flat connec-
tions. This is a weaker condition than restriction to locally-flat metrics made
by us here.

Another similarity is with causal dynamical triangulations. [11, 12, 13]
The configurations of 4-simplices with a Lorentzian metric pasted together
considered there are very similar to the cell complexes described in section 6.
A cell complex can always be reduced to a simplicial complex by repeatedly
dividing the cells until all cells are simplices. The difference here is the em-
phasis we lay on considering the 2-cells with nontrivial holonomy as physical
degrees of freedom resulting in the requirement that all such cells be time-
like. CDT makes no such requirement on its configurations. By construction
it contains many spacelike 2-simplices that generically do not have a trivial
holonomy.
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8 Conclusions

We have revisited the locally flat gravity model introduced by ’t Hooft and
studied the problem of resolving the collisions of flat strings. We have found
a closed form solution for the quadrangle resolutions proposed in his paper,
which confirms his conclusion based on numerical analysis that this resolution
becomes incompatible with the requirements of causality for certain values
of the collision parameters.

In the hope of finding resolutions for these situations we have introduced
a new more complicated configuration with six internal strings forming a
tetrahedron. We have shown that in the non-relativistic low energy limit
this resolution is solvable for any choice of the collision parameters with the
speeds of the junctions of the tetrahedron along the external strings as free
parameters. To further analyse this configuration we have introduced the
description if the configuration as a piecewise flat manifold as an alternative
the algebraic description using the Poincaré holonomies.

Using this new geometric description we have shown how to find a tetra-
hedral resolution of a collision. To guarantee that the junction are sublu-
minal and thus do not violate causality we need to restrict to a bounded
range of the collision parameters. Beyond this range it is not clear that
resolutions exists that satisfy causality, and in fact there are examples of
the collision parameters for which it is clear that no resolution—no matter
how complicated—exists that satisfies this condition. A viable model with
straight strings must thus only contain collisions that satisfy certain bounds
on the collision parameters. Whether it is possible for such a model to be
consistent is a possible future line of enquiry.
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