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Statistical Energy Analysis and the second
principle of thermodynamics

Alain Le Bot

Abstract Statistical Energy Analysis is a statistical method in vibroacoustics en-
tirely based on the application of energy balance that is thefirst principle of ther-
modynamics. In this study, the definition of vibrational entropy is introduced for
sub-systems containing energy and modes. The rate of entropy production at in-
terfaces between sub-systems is also derived. Finally, in steady-state condition, an
entropy equilibrium is reached. The meaning of entropy and some implications of
this entropy balance are also discussed.

1 Introduction

Statistical Energy Analysis [1, 2] is born from the application of statistical physics
concepts to vibroacoustical systems. The idea is quite simple. When the number of
modes of vibroacoustical systems is so large that the solving of governing equa-
tions becomes unpracticable, it is preferable to give up a deterministic description
of the system and to adopt statistical methods. This standpoint is reasonable. It has
been followed in several other fields in physics, kinetic theory of gases instead of
point mechanics, statistical theory of turbulence insteadof Navier-Stoke’s equation,
statistical behaviour of granular material and some others. In all these cases, the
number of entities is very large so that a complete description of all of them would
lead to a set of equations untractable in practice and whose solution would be very
sensitive to errors of modelling. In addition, the amount ofproduced information
would be huge, the major part being useless.

The application of concepts and methods of statistical physics to the audio fre-
quency range instead of thermal vibration raises some difficulties. First of all, the
number of entities in vibroacoustics (the modes) is not so large than in thermics
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(atoms or molecules). Statistical methods applied to poor populations are fragile.
This explains why results of SEA are sometimes disappointing. SEA is too oftently
used outside its validity domain. Secondly, small populations lead to large fluctu-
ations. While it is almost impossible (or at least very difficult) to observe fluctua-
tions in thermodynamical systems, large fluctuations are common in SEA and it is
sometimes necessary to deal with large population of similar systems, the so-called
Gibb’s ensemble, to increase the quality of SEA results. Finally, the equipartition of
energy among modes is sometimes violated. Poor population and low modal overlap
are conditions favourable to a deviation from the equilibrium state. This is why it is
so urgent to extend SEA to non-equilibrium states [3, 4, 5] byrelaxing the diffuse
field assumption following the example of non-equilibrium thermodynamics.

Up to now, SEA is entirely based on the application of energy balance that is the
first principle of thermodynamics. But nothing is told on entropy in SEA [6, 7]. Con-
ceptually, both quantities energy and entropy are necessary for a complete derivation
of statistical physics and therefore SEA. Energy is indeed necessary to describe the
state of the system. Entropy is necessary to measure the lossof information induced
by the renouncement to a full description of the system. In this regard, different
levels of approximations would lead to different values of entropy. In particular,
starting from a complete theory (null entropy), a sequence of theories each of them
being an approximation of the preceeding one, leads to an increasing sequence of
entropy values. In SEA, the level of approximation has been stated, but the entropy
has not yet been defined. This is an important shortcoming.

Entropy is also necessary to define the temperature. The classical definition of
temperatureT with [8],

1
T

=
∂S
∂E

(1)

whereS is the entropy andE the internal energy, shows that the temperature mea-
sures the rate of increasing of entropy (and therefore the loss of information on the
system) with energy. A positive temperature means that entropy is a non-decreasing
function of internal energy. The loss of information duringthe approximation pro-
cess is therefore more important for energetic systems. It is rather common in SEA
literature to define the vibrational temperature as being the modal energy. This result
is true but a formal proof requires to introduce the entropy [9]. This is the purpose
of this paper.

2 First principle of thermodynamics in SEA

SEA is a simple method to assess the vibrational energy of complex systems. SEA
is entirely based on some statistical considerations and the application of energy
balance (first principle) and, as we shall see, the application of entropy balance
(second principle).
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In SEA, a complex system is sub-divided inton components called sub-systems.
Sub-systems are considered as tanks containing vibroacoustical energyEi with i =
1, . . .n whatever their nature, structural component or acousticalcavity (Fig. 1).

Within sub-systemi, the vibrational energyEi is repartited amongNi modes.
Modes are therefore the sites which carry vibrational energy, exactly in the same
way that molecules carry kinetic energy in kinetic theory ofgases and that atoms
carry vibrational energy in solids. In the two latter cases,this energy (kinetic or vi-
brational) is called heat. In SEA, the equivalent of heat is therefore the vibrational
energy itself. The only difference between a true heat and the vibrational heat in-
troduced in SEA is the frequency of the underlying vibration, thermal range for the
former and audio frequency range for the latter.

The heat in SEA is thus defined as the vibrational energyEi in broadband. The
analysis is confined to a frequency band∆ω about the central frequencyω (rad/s).
No strict definition is given for the width of the frequency band, but it is commonly
admitted that octave bands are well suited.

The first principle of thermodynamics can now be introduced.All sub-systems
can receive energy from sources, driving forces in the structural case or noise
sources in acoustics. The power being injected into sub-system i is notedPinj

i . But
they also dissipate vibrational energy by natural mechanisms such as damping of
vibration, absorption of sound by walls, attenuation of sound... The power being
dissipated is notedPdiss

i . Finally, the vibrational energy can be exchanged with ad-
jacent sub-systems. The net exchanged power between sub-sytem i and j is noted
Pi j. In steady-state condition, the energy balance for sub-systemi reads,

Pdiss
i + ∑

j 6=i

Pi j = Pinj
i . (2)

The power being injectedPinj
i is assumed to be known, but the powers being dis-

sipatedPdiss
i and being exchangedPi j must be expressed in terms of vibrational

energies (Fig. 2).
The power being dissipated by internal losses is,

Pdiss
i = ωηiEi, (3)

Fig. 1 Decomposition of
complex structure in SEA.
The vibroacoustical problem
is solved by splitting the com-
plex structure inton elements.
In all these sub-systems, the
vibration field is diffusei.e.
homogeneous and isotropic.
The SEA approach consists
in writing the exchange of
energy between these sub-
systems.
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whereηi is the damping loss factor usually determined by a direct measurement.
The power supplied by the sub-systemi to the sub-systemj is,

Pi→ j = ωηi jEi, (4)

whereηi j is the coupling loss factor. The net exchanged power betweensub-systems
i and j is Pi j = Pi→ j −Pj→i and therefore [10],

Pi j = ω (ηi jEi −η jiE j) , (5)

Coupling loss factors are phenomenological constants attached to the junction
between two sub-systems. Their values must be determined ineach case either by
a direct measurement or by using some predictive relationships. These theoretical
relationships have been derived for a large number of cases,coupling between adja-
cent plates, acoustical cavities, connection between plate and beam, sound radiation,
vibrational response and so on. We do not enter into the discussion of the validity
of a particular method to derive such relationships. A largeliterature is devoted to
this problem and many discussions on the efficiency of these relationships can be
found. For the purpose of the present discussion, it is enough to admit that for every
junctions, two coupling loss factorsηi j andη ji exist.

Coupling loss factors verify the reciprocity relationship,

Niηi j = N jη ji. (6)

The reciprocity relationship highlights the importance ofthe modal energiesEi/Ni.
Substituting Eq. (6) into Eq. (5) leads to,

Pi j = ωηi jNi

(

Ei

Ni
−

Ei

Ni

)

, (7)

showing that the net exchanged power is proportional to the difference of modal
energies.

Fig. 2 Energy balance in
SEA. Sources supply energy
to sub-systems. Part of this
energy is dissipated by natural
processes. Energy is finally
exchanged between adjacent
sub-systems. Vibrational en-
ergyEi of sub-systems results
from the balance of sources,
dissipation and exchanges.
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The SEA equation is simply obtained by substituting Eqs.(3,5) in Eq. (2),

ω







N1 ∑ j η1 j −Nlηlk
. . .

−Nkηkl Nn ∑ j ηn j













E1/N1
...

En/Nn






=







Pinj
1
...

Pinj
n






(8)

This is a linear system on vibrational temperatures whose matrix is symmetric.

3 Vibrational entropy, vibrational temperature

In order to rigorously define the entropy of vibrational systems within the context of
SEA, it is important to well understand the approximation process applied to equa-
tions of motion to derive SEA equations. The equations of motion are the reference
theory which gives an access to every physical quantities. There is no loss of infor-
mation, the entropy is null. SEA is a simplified theory which does not give access
to the detail of all physical quantities. There is a loss of information. In SEA, the vi-
brational energy is repartited among modes and the exact repartition of energy is not
known. This exact repartition is refered as microstate of the system. A microstate of
the system is a list of modes with a specification of their energy level such as:

Mode 1 Energye1

Mode 2 Energye2

. . .
ModeN EnergyeN

The sum of all modal energies is the energy of the overall systemE = ∑N
i=1 ei. In-

deed, the solving of the equations of motion provides this list and therefore the
knowledge of the microstate. Conversely, one can admit thatthe knowledge of this
list gives of the total information on the system. Actually,a complete description
of the state of system in steady condition is given by a list ofmodal amplitudes
(complex-valued numbers) rather than modal energies (real-valued numbers). But
in this text, we will not discuss the question of entropy induced by the loss of infor-
mation when one neglects phase shifts between modal amplitudes.

The problem is therefore to quantify the loss of informationbetween the knowl-
edge of a microstate, that is the repartitionei with i = 1. . .N and the knowledge of
a macrostate, that is the total energyE and the numberN of modes. The question is
to count the number of microstates that correspond to a givenmacrostate.

With this idea in mind, a SEA system can be viewed as a set ofN linear oscilators
whose natural frequencies is an increasing sequenceω1,ω2 . . .ωN (Fig. 3). And the
numberW of microstates attached to a macrostateE, N is given by the structure
function [9],

Ω(E) =

(

2π
ω

)N EN−1

N −1!
(9)
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and,

W =
Ω(E)

hN δE (10)

whereδE is the uncertainty onE andh is a constant introduced during the dis-
cretization of phase space into equiprobable cells. The final step is to apply Boltz-
mann’s definition of entropy,

S = k logW (11)

with the result,

S(E,N) = kN

[

1+ log

(

2π
hω

E
N

)]

(12)

This is the microcanonical entropy of a SEA sub-system. Eq.(12) gives the complete
expression of the ”vibrational entropy” of any SEA sub-system.

The temperature is obtained as for any thermodynamic systemwith,

1
T

=

(

∂S
∂E

)

N
(13)

with the result,

T =
E

kN
(14)

As it was expected from Eq. (7) giving the power flow between two SEA sub-
systems, the ”vibrational temperature” is well defined by the modal energy. In the
literature, this result is generally obtained from an analogy between SEA and ther-
modynamics. This is now a logical consequence of the expression of the entropy
obtained from Boltzmann’s definition.

Fig. 3 Principle of a SEA sys-
tem. The vibrational energy
E is repartited amongN lin-
ear oscillators whose natural
frequencies is an increasing
sequenceω1,ω2 . . .ωN . The
detailed repartition of the
energye1,e2 . . .eN is a mi-
crostate whereas the knowl-
edge of the total energyE and
the numberN of oscillators is
a macrostate.
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4 Second principle of thermodynamics in SEA

The second principle of thermodynamics states that entropyof isolated system can-
not decrease. This is also true within the context of SEA. Theproblem that must be
considered is the mixing of vibrational energy of two adjacent sub-systems.

Let us consider two sub-systems with energiesE1, E2 and mode countsN1 and
N2. If these sub-systems are isolated, their entropies are respectivelyS(E1,N1) and
S(E2,N2) given by Eq. (12). Now, if these two sub-systems are connected together,
the final state has energyE1 + E1 and the total number of modes isN1 + N2. When
equilibrium is reached, the final entropy of the overall system isS(E1+E2,N1+N2),
once again given by Eq. (12).

The difference between the final entropy and the sum of initial entropy is there-
fore the entropy created during the mixing process.

∆S = S(E,N)− [S(E1,N1)+ S(E2,N2)] (15)

By substituting Eq. (12), it yields,

∆S = k(N1 + N2) log
E1 + E2

N1 + N2
− kN1 log

E1

N2
− kN2 log

E2

N2
(16)

This is the entropy created by mixing the energy of the two sub-systems. This en-
tropy production is non-negative∆S > 0. This result stems from the convexity of
the functionf (x,y) = −y log(x/y).

The fact that∆S is non-negative can be interpreted in terms of loss of informa-
tion. The loss of information for sub-systemi is the log of the number of microstates
corresponding toEi, Ni. And the loss of information for the overall system is the log
of the number of microstates corresponding toE = E1+E1, N = N1 +N1. But there
is many more possibilities to share the energyE = E1+E1 overN = N1+N1 modes
than the sum of possibilities to share on the one hand,E1 overN1 modes and, on the
second hand,E2 overN2 modes. The difference between the two is exactly the loss
of information during the mixing process.

5 Entropy balance in SEA

Coming back to the initial situation ofn sub-systems in interaction, we are now in
position to state an entropy balance of the overall system inSEA. Three questions
must be examined: sources, dissipation and mixing.

The variation of entropy is driven by the variation of vibrational energy around
a vibrational temperature. Since the number of modesN is always fixed, Eq. (13)
gives the infinitesimal variation of entropydS for an infinitesimal variationδE,

dS =
δE
T

(17)



8 Alain Le Bot

For sources, the injected power isPinj
i . The vibrational energyδE supplied to the

sub-system during timedt is δE = Pinj
i dt. It follows that the increase rate of entropy

by sources is,
dSinj

i

dt
=

Pinj
i

Ti
= k

Pinj
i Ni

Ei
(18)

The last equality stems from Eq. (14).
Similarly, dissipation processes of vibration within sub-systems leads to a mod-

ification of vibrational level. This energy is dissipated that is transformed into heat
(in the sense of thermics). In classical thermodynamics, dissipation processes in-
duce an increase of entropy by creating heat inside the system. But, in SEA, that we
have called vibrational heat is the vibrational energy itself. And dissipation leads
to a decreasing of vibrational energy. In other words, dissipation tends to cool the
system and therefore induces a decreasing of vibrational entropy.

dSdiss
i

dt
= −

Pdiss
i

Ti
= −kωηiNi (19)

where the last equality is deduced from Eq. (3).
The mixing of energy at interfaces between sub-systems alsoinduces a vari-

ation of entropy. As we have seen in previous section, this variation is always
non-negative. Let us develop this point. The power being exchanged between sub-
systemsi and j is Pi j. Therefore, the vibrational entropy introduced in or extracted
from sub-systemi is−Pi j/Ti. Following the same reasoning, the vibrational entropy
introduced in sub-systemj is−Pji/Tj. SincePi j = −Pji, the net vibrational entropy
introduced in the entire system by the mixing process is,

dSi j

dt
= Pi j

(

1
Tj

−
1
Ti

)

= kω(ηi jEi −η jiE j)

(

N j

E j
−

Ni

Ei

)

(20)

The last equality stems from Eq. (5).
For the entire system, the vibrational entropy introduced in the system is,

dS
dt

=
n

∑
i=1

dSinj
i

dt
+

dSdiss
i

dt
+ ∑

i> j

dSi j

dt
(21)

It is easy to deduce from Eq. (2) that this entropy is null,

dS
dt

= 0 (22)

It means that there is no production of entropy for the entireSEA system. But there
is an exchange of entropy with exterior which exactly balances the production of
entropy by mixing processes (Fig. 4).
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6 Conclusion

In this paper, it has been shown that the second principle of thermodynamics can
be stated in the context of SEA. Explicit relationships havebeen derived for the
vibrational entropy of sub-systems and the production of entropy at interfaces of
sub-systems. SEA is up to now only based on the application ofthe energy balance.
An entropy balance also applies.
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7 Questions

G. Tanner:
What is the meaning of the number of modes N if one considers the continuum limit
which is natural in acoustics?

A. Le Bot:
This problem is also encoutered in classical mechanical statistics. The usual re-
sponse of physicists is to say that basically nothing is continous, everything is quan-
tum that is discrete. I think that this response is not satisfactory for vibroacoustics.
In physical statistics, we start from systems which have a huge but finite number
of states and we derive continuum mechanics. But in statistical vibroacoustics we
start from a continous equation and our problem is not to knowif this equation is
an approximation of a more fundamental equation but rather to degrade it with fur-
ther statistical assumptions. What was discussed in this talk is how to quantify the
amount of information that has been lost during this second level statistical process.

Y. Ben-Haim:
Could you extend this formalism to open systems? For instance, when vibroacous-
tic systems radiate and they have a lost of energy and they also exchange entropy
because energy is leaving the system and going into vacuum orair.

A. Le Bot:
I just said that this approach is limited to the case where thesurface of constant en-
ergy is closed but not that the system itself is closed. I don’t know if this a possibility
to apply this formalism to open systems, but I feel that this formalism is not simply
well-suited for non-finite systems which, by nature, cannotbe in thermal equibrium.

P. Shorter:
Let’s me make a comment on the number of configurations. It’s not only a story of
number of modes. If you consider a plate with only two modes but in a very large
ensemble of similar plates, they may have varying damping, material properties or
boundary conditions. So the variation of entropy is taken over this space of con-
figurations. But, if you look at a single system, a single system has a very smooth
response, while it has a huge number of modes. But that doesn’t definetely suppose
it has only one value, the one given by a SEA model. It’s value can be different from
the one you’ve got from an ensemble average.

A. Le Bot:
In the expression of the vibrational entropy I propose to use, it is just included
the missing information relative to fact that we don’t know the exact repartition of
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energy over modes. But if we want to measure the effect of particular statistical
properties such as the boundary conditions are not known, wemust modify this
entropy expression. And we can even imagine to add all these individual entropies
for boundary conditions, size of system, properties of material and so on, to get a
more accurate expression of vibrational entropy.

F. Ziegler:
You mentioned that when you define the ”vibrational temperature” as modal energy
divided by Boltzmann constant and when you calculate the vibrational temperature
of a plate for usual acoustical levels, you get very a high temperature about ten
power eleven Kelvins! So, what are the physical consequences of this fact? Can we
will not use this theory of thermodynamics only because of the improper scale of
these numbers?

A. Le Bot:
I think that there is absolutely no physical consequences ofthis fact. In astronomy,
for instance, measurements are so accurate and signals so tiny that they must aware
of noise level induced by mechanical vibration. They have very large structures
which are in thermal equilibrium with surrounding air and therefore, the ”vibra-
tional temperature” is equal to the true thermal temperature of hundred Kelvins.
But in our case, the sources of vibration have a mechanical origin and therefore
we deals with very large vibration, which are not in thermal equilibrium with usual
thermal frequencies. This is why we get so high vibrational temperatures. But this
very hot vibration is confined into a relatively low and narrow frequency band which
is disconnected from thermal frequencies. The value of Boltzmann constant is not
well-suited in SEA for usual vibrational systems and therefore, the question which
raises is the definition of an appropriate scale for vibrational temperature.

A. Belayev:
Antonio was the first to introduce the vibrational entropy inSEA.

A. Carcaterra:
I just worked on that subject some years ago. And it is a very interesting theoret-
ical point of view. But my concern was that it is not really obvious how we can
use this additional concept of vibrational entropy in termsof improving the SEA
models. How is it possible to use an entropy balance equationin order to get more
information on SEA models or in order to get an advantage in the description of
vibroacoustical systems?

A. Le Bot:
This is indeed an important question and may be the only question of interest in fact.
Is it useful to use the entropy concept in vibroacoustics? I now work on this problem
for a couple of years and I sincerely hope that it is useful! But let me read some lines
from Ingo Muller who recently wrote an interesting paper in Entropy journal on his-
torical aspects of thermodynamics: ”In the nineteenth century - after the formulation
of the seconf law - there was a noisy controversy betweenenergetics, represented
by Oswald, and thermodynamics favoured by Boltzmann. Energeticists maintained
that the entropy was not needed. There were wrong, but they did have a point, albeit
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only at small temperatures. Planck was involved - in a minor role - in the discussion
as an unaprreciated supporter of Boltzmann’s thermodynamic view. It was this con-
troversy which prompted Planck to issue his oft-quoteddictum: The only way to get
revolutionary advances in science accepted is to wait for all scientists to die.”


