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Abstract: This paper deals with the study of dependencies between two
given events modeled by point processes. In particular, we focus on the
context of DNA to detect favored or avoided distances between two given
motifs along a genome suggesting possible interactions at a molecular level.
For this, we naturally introduce a so-called reproduction function h that
allows to quantify the favored positions of the motifs and which is considered
as the intensity of a Poisson process. Our first interest is the estimation of this
function h assumed to be well localized. The estimator h̃ based on random
thresholds achieves an oracle inequality. Then, minimax properties of h̃ on
Besov balls Bs2,∞(R) are established. Some simulations are provided, allowing
the calibration of tuning parameters from a numerical point of view and
proving the good practical behavior of our procedure. Finally, our method is
applied to the analysis of the influence between gene occurrences along the
E. coli genome and occurrences of a motif known to be part of the major
promoter sites for this bacterium.
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1 Introduction

The goal of the present paper is to study the dependence between two given events modeled by point
processes. We propose a general statistical approach to analyze any type of interaction, for instance,
interactions between neurons in neurosciences or the comprehension of bankruptcies by contagion in
economics. In particular, we focus on a model to study favored or avoided distances between patterns
on a strand of DNA, which is an important task in genomics.

We are first interested in the modeling of the influence between two given motifs, a motif being de-
fined as a sequence of letters in the alphabet {a,c,g,t}. This alphabet represents the four nucleotides
bases of DNA: adenine, cytosine, guanine and thymine. Our aim is to model the dependence between
motifs in order to identify favored or avoided distances between them, suggesting possible interactions
at a molecular level. Because genomes are long (some 1 million bases) and motifs of interest are short
(3 up to 20 bases), motif occurrences can be viewed as points along genomes. For convenience, we
work in a continuous framework and then, the occurrences of a motif along a genome are modeled by a
point process lying in the interval [0;T ], where T is the normalized length of the studied genome and
will drive the asymptotic. We add that our model focuses on only one direction of interactions, that
is to say we investigate the way a first given motif influences a second one. To study the influence of
the second motif on the first one, we just invert their roles in the model.
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We observe the occurrences of both given motifs (we presuppose interactions between them) and
we assume that their distributions are as follows. The locations of the first motif are modeled by
a n-sample of uniform random variables on [0;T ], denoted U1, . . . , Un and named parents. As the
parameter T , the number n of parents will also drive the asymptotic. Then, each Ui gives birth
independently to a Poisson process N i with intensity the function t 7−→ h(t− Ui) with respect to the
Lebesgue measure on R (for instance, see [17]), which models the locations of the second motif. We
consequently observe the aggregated process

N =

n∑
i=1

N i with intensity the function t 7−→
n∑
i=1

h(t− Ui) (1.1)

and the points of the process N are named children. But in this model, for any child we do not observe
which parent gives birth to him. The unknown function h is so-called reproduction function. Our goal
is then to estimate h with the observations of the Ui’s and realizations of N .

Such a modeling of locations of the first motif is linked to the work on the distribution of words
in DNA sequences of Schbath and coauthors (for instance, see [31], [24] and [29]). Indeed, the first
motif of interest is a rare word and is modeled by a homogeneous Poisson process N0 on [0;T ]. Thus,
conditionally to the event "the number of points falling into [0;T ] is n", the points of the process N0

(i.e. the parents) obey the same law as a n-sample of uniform random variables on [0;T ]. Moreover,
with very high probability, n is proportional to T and this constitutes the asymptotic considered in
genomics, to which we will refer as the "DNA case". With our model (considering a uniform law on
the parents), we can also take into consideration the cases n ≪ T (parents are far away with respect
to each other and one can almost identify which points are the children of a given parent) and n≫ T
(parents are too close to each other, which leads to hard statistical problems).

If n = 1, the purpose is to estimate the intensity of only one Poisson process. Many adaptive
methods have been proposed to deal with Poisson intensity estimation. For instance, Rudemo [30]
studied data-driven histogram and kernel estimates based on the cross-validation method. Donoho
[8] fitted the universal thresholding procedure proposed by Donoho and Johnstone [9] by using the
Anscombe’s transform. Kolaczyk [18] refined this idea by investigating the tails of the distribution of
the noisy wavelet coefficients of the intensity. By using model selection, other optimal estimators have
been proposed by Reynaud-Bouret [25] or Willett and Nowak [32]. Reynaud-Bouret and Rivoirard [26]
proposed a data-driven thresholding procedure that is near optimal under oracle and minimax points
of view, with as few support assumptions as possible (the support of the intensity h may be unknown
or not finite), unlike previous methods that need to assume that the intensity has a known bounded
support.

We notice that the reproduction function h can be also viewed as the intensity of a Cox process
(for instance, see [5]) where the covariates are the parents U1, . . . , Un. Comte et al. [4] proposed an
original estimator of the conditional intensity of a Cox process (more generally, a marker-dependent
counting process). Using model selection methods, they prove that their estimator satisfies an oracle
inequality and has minimax properties. Note that we consider here point processes on the real line.
Some aspects of similar spatial processes are studied in a parametric way [23], for instance.

Some work has been done to study the statistical dependence between motif occurrences. For
instance, in Gusto and Schbath’s article [12], the framework consists in modeling the occurrences of
two motifs by a Hawkes process (see [13]): our framework can be viewed when the support of h is in
R+ as a very particular case of theirs. Their method, called FADO, uses maximum likelihood estimates
of the coefficients of h on a Spline basis coupled with an AIC criterion. However, even if the FADO
procedure is quite effective and can manage interactions between two types of events, spontaneous
apparition (a child can be an orphan) and self-excitation (a child can give birth to another child),
there are several drawbacks. In fact, this procedure is a parametric estimation method coupled with a
classical AIC criterion which behaves poorly for complex families of models. Moreover, FADO involves
sparsity issues. Indeed, our feeling is that if interaction exists, say around the distance d bases, the
function h to estimate should take large values around d and if there is no biological reason for any
other interaction, then h should be null anywhere else. However, if the FADO estimate takes small
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values in this last situation, it does not vanish, which can result in misleading biological interpretations
(see [27]). Finally, in this model, the occurrences of the first motif only depend on the past occurrences
of first and second motifs. Reynaud-Bouret and Schbath [27] have proposed an alternative based on
model selection principle for Hawkes processes that solves the sparsity problem. Their estimate satisfies
an oracle inequality and has adaptive minimax properties with respect to certain classes of functions.
But it manages only one motif whereas it is necessary to treat interaction with another type of events
and the method has a high computational cost even for a small number of models. Note that Hawkes
processes have a long story of parametric inference (see [22], [21] and [5]). In particular, for genomic
data, Carstensen et al. [2] recently deal with multivariate Hawkes process models in order to model
the joint occurrences of multiple transcriptional regulatory elements (TREs) along the genome that
are capable of providing new insights into dependencies among elements involved in transcriptional
regulation.

In this paper, the proposed model is simple. Each child comes from one parent (no orphan and
no child who is a parent), that is to say we do not take into account the phenomenons of sponta-
neous apparition and self-excitation, contrary to Hawkes process models. But it brings novelties. To
estimate the reproduction function h, we propose a nonparametric method, using a wavelet thresh-
olding rule that will compensate sparsity issues of the FADO method. Furthermore, our model treats
interaction between two types of events, with a possible influence of the past occurrences but also
future occurrences. Then, there is the presence of a double asymptotic: the normalized length of the
studied genome T and the number n of parents, which is not usual. In the biological context, it is not
acceptable assuming to know each child’s parent. Our model, via the reproduction function h, allows
to quantify the favored locations of children in relation to their parent, even if one cannot attribute a
child to a parent before the statistical inference. First we provide in this paper theoretical results and
we derive oracle inequalities and minimax rates showing that our method achieves good theoretical
performances. The proofs of these results are essentially based on concentration inequalities and on
exponential and moment inequalities for U -statistics (see [6], [11] and [14]). Secondly some simulations
are carried out to validate our procedure and an application on real data (Escherichia coli genome)
is proposed. The procedure provides satisfying reconstructions, overcomes the problems raised by
the FADO method and agrees with the knowledge of the considered biological mechanism. For these
numerical aspects, we have used a low computational complexity cascade algorithm.

In Section 2, we define the notations and we describe the method. Then Section 2 discusses
the properties of our procedure for the oracle and minimax approaches. Section 3 is devoted to the
implementation of our method and provides simulations. The cascade algorithm is presented in Section
3.1. Section 4 presents the application on the complete Escherichia coli genome. A more technical
result that is at the origin of the one stated in Section 2.3 and proofs can be found in Section 6
(Appendix).

2 General results

2.1 Notations

To estimate the reproduction function, we assume that h belongs to L1(R) and L∞(R). Consequently,
we can consider the decomposition of h on a particular biorthogonal wavelet basis, built by Cohen et
al. [3], that we can describe as follows. We set ϕ = 1[0,1] the analysis father wavelet. For any r > 0,
there exist three functions ψ, ϕ̃ and ψ̃ with the following properties:

• ϕ̃ and ψ̃ are compactly supported,

• ϕ̃ and ψ̃ belong to Cr+1, where Cr+1 denotes the Hölder space of order r + 1,

• ψ is compactly supported and is a piecewise constant function,

• ψ is orthogonal to polynomials of degree no larger than r,
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•
{
(ϕk, ψj,k)j>0,k∈Z, (ϕ̃k, ψ̃j,k)j>0,k∈Z

}
is a biorthogonal family: for any j, j′ > 0, for any k, k′ ∈ Z,∫

R
ϕk(x)ψ̃j′,k′(x) dx =

∫
R
ψj,k(x)ϕ̃k′(x) dx = 0,∫

R
ϕk(x)ϕ̃k′(x) dx = 1{k=k′},

∫
R
ψj,k(x)ψ̃j′,k′(x) dx = 1{j=j′,k=k′},

where for any x ∈ R,

ϕk(x) = ϕ(x− k), ψj,k(x) = 2j/2ψ(2jx− k)

and
ϕ̃k(x) = ϕ̃(x− k), ψ̃j,k(x) = 2j/2ψ̃(2jx− k).

On the one hand, decomposition wavelets ϕk and ψj,k are piecewise constant functions and, on the
other hand, reconstruction wavelets ϕ̃k and ψ̃j,k are smooth functions. This implies the following
wavelet decomposition of h ∈ L2(R):

h =
∑
k∈Z

αkϕ̃k +
∑
j>0

∑
k∈Z

βj,kψ̃j,k, (2.1)

where for any j > 0 and any k ∈ Z,

αk =

∫
R
h(x)ϕk(x) dx, βj,k =

∫
R
h(x)ψj,k(x) dx.

The Haar basis, used in practice, can be viewed as a particular biorthogonal wavelet basis, by setting
ϕ̃ = ϕ and ψ̃ = ψ = 1] 1

2
;1] − 1[0; 1

2
], with r = 0 (even if the second property is not satisfied with such

a choice). The Haar basis is an orthonormal basis, which is not true for general biorthogonal wavelet
bases. This kind of decomposition has already been used in thresholding methods by Juditsky and
Lambert-Lacroix [16], Reynaud-Bouret and Rivoirard [26], and Reynaud-Bouret et al. [28].

To shorten mathematical expressions, we set

Λ = {λ = (j, k) : j > −1, k ∈ Z},

and for any λ ∈ Λ,

φλ =

{
ϕk if λ = (−1, k)
ψj,k if λ = (j, k) with j > 0

, φ̃λ =

{
ϕ̃k if λ = (−1, k)

ψ̃j,k if λ = (j, k) with j > 0

and similarly

βλ =

{
αk if λ = (−1, k)
βj,k if λ = (j, k) with j > 0

.

Then (2.1) can be rewritten as

h =
∑
λ∈Λ

βλφ̃λ with βλ =

∫
R
h(x)φλ(x) dx (2.2)

and now, we have to estimate these wavelet coefficients.
For all λ in Λ, we define β̂λ an estimator of βλ as

β̂λ =
G(φλ)

n
, with G(φλ) =

∫
R

n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]
dNt, (2.3)

where π is the uniform distribution on [0;T ] and Eπ(φλ(t− U)) denotes the expectation of φλ(t− U)
where U ∼ π (an independent copy of U1, . . . , Un). If n = 1, we obtain the natural estimators of the
βλ’s in the case of only one Poisson process on the real line (see [26]).
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Lemma 2.1. For all λ = (j, k) in Λ,

E(G(φλ)) = n

∫
R
φλ(x)h(x) dx,

i.e. β̂λ is an unbiased estimator for βλ. Furthermore, its variance is upper bounded as follows:

Var(β̂λ) 6 C

{
1

n
+

1

T
+

2−jn

T 2

}
and

sup
λ∈Λ

Var(β̂λ) 6 C ′
{
1

n
+

n

T 2

}
,

where C and C ′ depend on ∥h∥1, ∥h∥∞, ∥ψ∥1 and ∥ψ∥2.

The behavior of the variance of the β̂λ’s is not usual, because two parameters n and T are involved.
Nevertheless, when n is proportional to T ("DNA case" as explained in Introduction), the variance is
bounded by 1/T up to a constant, as for the Hawkes process (see [27]). When n ≪ T , the variance
is bounded by 1/n up to a constant, which means that the apparition’s distance between two parents
is large enough to make their interactions insignificant for the statistical analysis. So in this case,
our framework can be viewed as the observation of a n-sample of a Poisson process with common
intensity h (see [26]). Finally, when n ≫ T , the variance deteriorates and is only bounded by n/T 2

up to a constant, and in this case, the small apparition’s distance between two parents leads to rough
statistical issues hard to overcome.

2.2 Description of our method

We start assuming that h is compactly supported in [−A;A], with A a positive real number. This
quantity A can denote the maximal memory along DNA sequences (this is chosen by the biologists (see
[12]), depending on the underlying biological process they have in mind). Furthermore, the properties
of the biorthogonal wavelet bases introduced previously allow us to assume that we know a positive
real number M such that the support of ψ is contained in [−M ;M ].

First, we introduce the following deterministic subset Γ of Λ

Γ =
{
λ = (j, k) ∈ Λ : −1 6 j 6 j0, k ∈ Kj

}
,

where j0 a positive integer that will be fixed later and at each resolution level j, we denote Kj the
set of integers such that the intersection of the supports of φλ and h is not empty, with λ = (j, k).
Straightforward computations lead to a cardinal of Γ of order 2j0 .

Then, given some parameter γ > 0, we define for any λ ∈ Γ, the threshold

ηλ(γ,∆) =

√
2γj0Ṽ

(φλ
n

)
+
γj0
3
B
(φλ
n

)
+∆

NR
n

(2.4)

where ∆ is a positive quantity and NR is the number of points of the aggregated process N lying in
R. For theoretical results, ∆ will be taken of order j202

j0/2

n + j0√
T
+

√
j0n
T times a constant depending on

γ, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞. In (2.4), we set

B
(φλ
n

)
=

1

n
B(φλ) =

1

n

∥∥∥∥∥
n∑
i=1

[
φλ(· − Ui)−

n− 1

n
Eπ(φλ(· − U))

]∥∥∥∥∥
∞

(2.5)

and

Ṽ
(φλ
n

)
=

1

n2
Ṽ (φλ) =

1

n2

(
V̂ (φλ) +

√
2γj0V̂ (φλ)B2(φλ) + 3γj0B

2(φλ)

)
(2.6)
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where

V̂ (φλ) =

∫
R

(
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

])2

dNt. (2.7)

Since they only depend on the observations, the numerical values of B(φλ), V̂ (φλ) and so Ṽ (φλ)
defined respectively by (2.5), (2.7) and (2.6) can be exactly computed.

We denote β̃ the estimator of β = (βλ)λ∈Λ associated with the previous thresholding rule:

β̃ =
(
β̂λ1|β̂λ|>ηλ(γ,∆)1λ∈Γ

)
λ∈Λ

(2.8)

and finally, we set
h̃ =

∑
λ∈Λ

β̃λφ̃λ (2.9)

an estimator of h that only depends on the choice of (γ,∆) and j0 fixed later.
Thresholding procedures have been introduced by Donoho and Johnstone [9]. They derive from the

sufficiency to keep a small amount of the coefficients to have a good estimation of the function h. The

threshold ηλ(γ,∆) seems to be defined in a rather complicated manner but the first term:
√

2γj0Ṽ
(φλ
n

)
looks like the universal threshold proposed by [9] in the Gaussian regression framework, by choosing
γ close to 1 and j0 of order log n. The universal threshold of [9] is defined by ηλ =

√
2σ2 logn,

where σ2 (assumed to be known) is the variance of each noisy wavelet coefficient. In our setting,
Var(β̂λ) depends on h, so it is (over)estimated by Ṽ

(φλ
n

)
. The other terms of the threshold (2.4) are

unavoidable remaining terms which allow to obtain sharp concentration inequalities.

2.3 Main result and discussions

Our main result is an oracle one. Given a collection of procedures (for example, penalization, projection
or thresholding), the oracle represents the ideal "estimator" among the collection. In our setting the
oracle gives, for our thresholding rule, the coefficients that have to be kept. In our framework (see [9]
and [26]), the "oracle estimator" is

h̄ =
∑
λ∈Γ

β̄λφ̃λ, with β̄λ = β̂λ1Var(β̂λ)<β2
λ
.

This "estimator" is not a true estimator, of course, since it depends on h. The approach of optimal
adaptation is to derive true estimators which achieve the same performance as the "oracle estimator".
Our goal is now to compare the risk of h̃ defined in Section 2.2 to the oracle risk:

E
(
∥h̄− h∥22

)
=
∑
λ∈Γ

E
[
(β̂λ1Var(β̂λ)<β2

λ
− βλ)

2
]
+
∑
λ̸∈Γ

β2λ =
∑
λ∈Γ

min(Var(β̂λ), β
2
λ) +

∑
λ̸∈Γ

β2λ.

Theorem 1. We assume that n > 2, j0 ∈ N∗ such that 2j0 6 n < 2j0+1, γ > 2 log 2 and ∆ is defined
in the Appendix by (6.15) and (6.16). Then the estimator h̃ defined in Section 2.2 satisfies

E
(
∥h̃− h∥22

)
6 C1 inf

m⊂Γ

{∑
λ̸∈m

β2λ +

[
(log n)4 × 1

n
+ (log n)2 × n

T 2

]
|m|

}
+ C2

[
1

n
+

n

T 2

]
,

where |m| is the cardinal of the set m, C1 is a positive constant depending on γ, ∥h∥1, ∥h∥∞, ∥ψ∥1,
∥ψ∥2 and ∥ψ∥∞ and C2 is a positive constant depending on the compact support of h, ∥h∥1, ∥h∥∞, the
compact support of ψ, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞.

As the expression between brackets is of the same order as the upper bound of Var(β̂λ) established
in Lemma 2.1 (up to a logarithmic term), the oracle type inequality of Theorem 1 proves that the
estimator h̃ achieves satisfying theoretical properties.
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In particular, if we apply Theorem 1 with n proportional to T ("DNA case"), then the estimator
h̃ defined in Section 2.2 satisfies

E
(
∥h̃− h∥22

)
6 C1 inf

m⊂Γ

{∑
λ̸∈m

β2λ +
(log T )4

T
|m|

}
+
C2

T
.

This oracle type inequality is similar to the one obtained by Theorem 1 of [27] where the Hawkes process
is considered. Since n is proportional to T , this inequality is typical of classical oracle inequalities
obtained in model selection (for example, see Theorem 2.1 of [26] where only one Poisson process on
the real line is considered or more generally, see [20] for density estimation).

Then, we establish a minimax result on Besov balls still with n is proportional to T . For any
R > 0 and s ∈ R such that 0 < s < r + 1 (where r > 0 denotes the wavelet smoothness parameter
introduced in the description of the biorthogonal wavelet bases at the beginning of the current section),
we consider the following Besov ball of radius R:

Bs2,∞(R) =

f ∈ L2(R) : f =
∑
λ∈Λ

βλφ̃λ,∀j > −1,
∑
k∈Kj

β2(j,k) 6 R22−2js

 .

Now, let us state the upper bound of the risk of h̃ when h belongs to Bs2,∞(R).

Corollary 2.1. Let R > 0 and s ∈ R such that 0 < s < r + 1. Assume that h ∈ Bs2,∞(R) and n is
proportional to T . Then the estimator h̃ defined in Section 2.2 satisfies

E
(
∥h̃− h∥22

)
6 C

(
(log T )4

T

) 2s
2s+1

,

where C is a positive constant depending on γ, the compact support of h, ∥h∥1, ∥h∥∞, the compact
support of ψ, ∥ψ∥1, ∥ψ∥2, ∥ψ∥∞ and R.

The rate of the risk of h̃ corresponds to the minimax rate, up to the logarithmic term, for estimation
of a compactly supported intensity of a Poisson process (see [25]) or for a compactly supported density
when we have n i.i.d. observations (see [10]). One more time this illustrates the optimality of the
procedure h̃ but in the minimax setting.

3 Implementation procedure

From now on we consider the context of DNA, i.e.n is proportional to T . As mentioned in Introduction,
we can assume that the parents are the points of a homogeneous Poisson process N0 on [0;T ] with
constant intensity µ which allows to write n ≃ µT .

In this section, we specify a procedure for the computation of the family of random thresholds
(ηλ(γ,∆))λ∈Γ to reconstruct the reproduction function h. We also provide some simulations in order
to calibrate parameters from a numerical point of view and to show the robustness of our procedure.

3.1 Algorithm

We only focus on the Haar basis where

ϕ = ϕ̃ = 1[0;1] and ψ = ψ̃ = 1] 1
2
;1] − 1[0; 1

2
],

because the expression of the functions associated to this basis, that are piecewise constant functions,
allows to implement simple and fast algorithms. Furthermore, considering this kind of functions is
suitable for our genomic setting. In fact, according to biological studies, the reproduction function h
is expected to be very irregular, with large null ranges and sudden changes at specific distances. We
recall that h is assumed to be compactly supported in [−A;A], with A a positive integer in practice.
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We consider the thresholding rule h̃ defined in Section 2.2 with

Γ =
{
λ = (j, k) ∈ Λ : −1 6 j 6 j0, k ∈ Kj

}
,

and

ηλ(γ, δ) =

√
2γj0V̂

(φλ
n

)
+
γj0
3
B
(φλ
n

)
+

δ√
T

NR
n
.

Observe that ηλ(γ, δ) slightly differs from the threshold defined in (2.4) since the parameter ∆ is
replaced with δ√

T
(thanks to the definition (6.15) of ∆) and Ṽ (φλ) is now replaced with V̂ (φλ) (there

is no major difference in our simulations). The ideal choice (from a theoretical point of view) of the
maximal resolution level j0 is given by Theorem 1, that is to say j0 is the positive integer such that
2j0 6 n < 2j0+1. But we will fix j0 = 5 in the sequel (in particular, to limit the computation time).
The choice of the parameters γ and δ is discussed in the next subsection.

A key point of the algorithm is the computation of the quantity

S(φλ)(t) =
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]
, for all t ∈ R

that appears in β̂λ, B(φλ) and V̂ (φλ). We decompose it into two parts: a random "piecewise constant"

part Sr(φλ) =
n∑
i=1

φλ(· − Ui) and a deterministic (piecewise affine) part (n − 1)Eπ(φλ(t − U)). Note

that the deterministic part can easily be implemented with a low computational cost. This is not
the case of the random "piecewise constant" part for which we have constructed a cascade algorithm,
inspired by the pioneering work of Mallat [19]. To explain this algorithm in few words, we use the
following notations: for any j > 0, for any k ∈ Z, for any x ∈ R,

ϕj,k(x) = 2j/2ϕ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),

where ϕj,k are father wavelets and ψj,k mother wavelets. We have the following relationships between
wavelets at level j and wavelets at level (j + 1):

ψj,k =

√
2

2

(
ϕj+1,2k+1 − ϕj+1,2k

)
and ϕj,k =

√
2

2

(
ϕj+1,2k + ϕj+1,2k+1

)
. (3.1)

We notice that only mother wavelets and the father wavelet of level j = 0 (that corresponds to φλ with
λ = (−1, k)) are used to reconstruct the signal. The cascade algorithm is implemented as follows.

1. Compute Sr(ϕj0,0). Since Sr(ϕj0,0) is a piecewise constant function, this computation gives a
partition and the values of Sr(ϕj0,0) on the intervals of the partition.

2. Shift by +2−j0k the intervals of the previous partition by keeping the same values on the partition
to obtain Sr(ϕj0,k) for any integer k in [−2j0A; 2j0A− 1].

3. For any resolution level j going from (j0 − 1) to 0, in a decreasing way, compute Sr(ψj,k) and
Sr(ϕj,k) with expressions (3.1). The quantities Sr(ψj,k) allow the reconstruction of the signal
and the quantities Sr(ϕj,k) are transitional and will be used for the computations of the lower
resolution level (j − 1).

4. Also keep Sr(ϕ0,k) because it is used for the reconstruction of the signal.

Now, let us define our thresholding estimate of h for a practical purpose.

Step 0 Let j0 = 5 and choose also positive constants γ and δ.

Step 1 Set Γ =
{
λ = (j, k) ∈ Λ : −1 6 j 6 j0, k ∈ Kj

}
and compute for any λ in Γ, S(φλ)(X) for all

points X of the process N . In the same way, also compute the coefficients β̂λ, B(φλ) and V̂ (φλ).
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Step 2 Threshold the coefficients by setting β̃λ = β̂λ1|β̂λ|>ηλ(γ,δ) according to the following threshold
choice:

ηλ(γ, δ) =

√
2γj0V̂

(φλ
n

)
+
γj0
3
B
(φλ
n

)
+

δ√
T

NR
n
.

Step 3 Reconstruct the function h by using the β̃λ’s and denote

h̃ =
∑
λ∈Λ

β̃λφ̃λ.

3.2 Experiments on simulated data

The programs have been coded in Scilab 5.2 and are available upon request.

3.2.1 Choice of parameters

Now, we deal with the choice of the parameters γ and δ in our procedure from a practical point of
view. The question is: how to choose the optimal parameters? We work with two testing functions
denoted ’Signal1’ and ’Signal2’ whose definitions are given in the following table:

’Signal1’ ’Signal2’

ν × 1[0;1] ν × 8
3

(
1[0.5;0.625] + 1[1;1.25]

)
with ν, the children’s intensity, set to 4. We fix willfully A = 10. Such a choice of A (remember that
[−A;A] is the support of h) assumes that we do not know the support of functions. We recall that
j0 = 5.

Given T , µ the parents’ intensity and a testing function, we denote R(γ, δ) the quadratic risk of
our procedure h̃ (depending on (γ, δ)) defined in Section 3.1. Of course, we aim at finding values of
(γ, δ) such that this quadratic risk is minimal. The average over 100 simulations of R(γ, δ) is computed
providing an estimation of E(R(γ, δ)). This average risk, denoted R̄(γ, δ) and viewed as a function
of the parameters (γ, δ), is plotted for (T, µ) ∈ {(10000, 0.1), (2000, 0.1), (2000, 0.5)} and for the two
signals considered previously: ’Signal1’ and ’Signal2’.
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Figure 1: The function (γ, δ) 7→ R̄(γ, δ) for ’Signal1’ and ’Signal2’ for different values of T and µ: ’Signal1’
in � and ’Signal2’ in � with (T, µ) = (10000, 0.1); ’Signal1’ in � and ’Signal2’ in � with (T, µ) = (2000, 0.1);
’Signal1’ in � and ’Signal2’ in � with (T, µ) = (2000, 0.5).
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Figure 1 displays R̄ for ’Signal1’ and ’Signal2’ decomposed on the Haar basis. This figure allows to
draw the following conclusion: for any (T, µ) ∈ {(10000, 0.1), (2000, 0.1), (2000, 0.5)} and for ’Signal1’
or ’Signal2’,

R̄(γ, δ) ≈ 0

for many values of (γ, δ). So, we observe a kind of "plateau phenomenon".
Reconstructions of the intensities of ’Signal1’ and ’Signal2’ are respectively given in Figure 2 and

Figure 3 with the choice (γ, δ) = (0.18, 2.4), a common value of several plateaus. Note the good
performance of our thresholding rule, in particular for T = 10000 and µ = 0.1 (we have µT = 1000
parents and µνT = 4000 children in average), which corresponds to the real case treated in Section 4.
Thus, we propose to take systematically (γ, δ) = (0.18, 2.4) in our procedure h̃ defined in Section 3.1.
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Figure 2: Reconstructions of ’Signal1’ (true: dotted line, estimate: solid line): left: (T, µ) = (10000, 0.1);
middle: (T, µ) = (2000, 0.1); right: (T, µ) = (2000, 0.5).
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Figure 3: Reconstructions of ’Signal2’ (true: dotted line, estimate: solid line): left: (T, µ) = (10000, 0.1);
middle: (T, µ) = (2000, 0.1); right: (T, µ) = (2000, 0.5).
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3.2.2 About the support of h

We are interested in the robustness of our procedure with respect to the support issue from a numerical
point of view. What happens if we are wrong about the support of the function that we want to
estimate? For instance, we consider the testing function denoted ’Signal3’ whose definition is given in
the following table:

’Signal3’

ν × 1
4

(
1[−0.75;−0.5] + 1[4.25;8]

)
with ν, the children’s intensity, set to 4.

Figure 4 displays reconstructions of ’Signal3’ with different supports of h: [−A;A], with A ∈
{1, 5, 10}. This figure shows that when we take a not large enough support (A = 1 or 5), we do not
make large errors of approximation on [−A;A]. So, the procedure seems to take into account what
happens beyond the chosen support. And for A = 10, we have a good complete reconstruction of
’Signal3’.
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Figure 4: Reconstructions of ’Signal3’ (true: dotted line, estimate: solid line) with different supports: top:
A = 1; middle: A = 5; bottom: A = 10.

Finally, even if the support of the reproduction function is unknown, our method estimates correctly
the signal on the chosen support, which explains the robustness of our procedure with respect to the
support issue.

3.2.3 The case of spontaneous apparition

Here, we investigate the case of spontaneous apparition. Even if our model does not take into account
the spontaneous apparition (i.e. children can not be orphans), we are interested by the performance of
our procedure if there is a presence of orphans. On the one hand, let us give two processes: a process
of intensity ’Signal1’ with ν = 3, T = 10000 and µ = 0.1, to which is added a homogeneous Poisson
process on [0;T + 1] with intensity µ(4 − ν) = 0.1 (the orphans are viewed as a Poissonian noise).
Thus, we have in average 1000 parents, 3000 children having a parent and 1000 children being orphans.
On the other hand, let us give two other processes: a process of intensity ’Signal1’ with ν = 1 this
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time, T = 10000 and µ = 0.1, to which is added a homogeneous Poisson process on [0;T + 1] with
intensity µ(4 − ν) = 0.3. Thus, we have in average 1000 parents, 1000 children having a parent and
3000 children being orphans.

Reconstructions of ’Signal1’ with ν = 3 and ν = 1 are given in Figure 5. When there is a small
proportion of children being orphans, the reconstruction is still acceptable; the procedure can manage
few orphans. But, when there are too many orphans, our procedure makes approximation errors, which
are due to the fact that our model consists in associating any child with a parent.
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Figure 5: Reconstructions of ’Signal1’ (true: dotted line, estimate: solid line) with different values of ν: left:
ν = 3; right: ν = 1.

We mention that the case of spontaneous apparition is only numerical. For a more precise study of
this phenomenon, we should extend our model by adding a positive constant to the intensity function
t 7−→

∑n
i=1 h(t− Ui), that would represent the orphans. This is outside the scope of this paper.

4 Applications to genomic data

As application, we are interested in the Escherichia coli genome. E. coli is an intestinal bacterium in
mammals and very common in humans which is widely studied and used in genetics. More precisely,
we are interested in the study of the dependence between promoter sites and genes along the complete
genome of the bacterium. In particular, promoters are usually structured motifs located before the
genes and not too far from them. Here, we have considered the major promoter of the bacterium E. coli
and more precisely the word tataat. Most of the genes of E. coli should be preceded by this word
at a very short distance apart. In order to validate our thresholding estimation procedure (proposed
at Section 3), we hope to detect short favored distances between genes and previous occurrences of
tataat.

For this, as in [12] we have analyzed the sequence composed of both strands of E. coli genome
(4639221 bases); each strand being separated by 10000 artificial bases to avoid artificial dependencies
between occurrences on one strand and occurrences on the other strand; we took 10000 bases for the
maximal memory. It then represents a sequence of length 9288442; there are 4290 genes (we took the
positions of the first base of coding sequences) and 1036 occurrences of tataat. For convenience, we
set T = 9289 and so A = 10 (we work on a scale of 1 : 1000). We recall that we have fixed j0 = 5 and
taken (γ, δ) = (0.18, 2.4).
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First, we investigate the way the DNA motif tataat influences genes and so, in our model, the
parents are the occurrences of tataat and children are the occurrences of genes. To give general insight
on h, Figure 6 gives the estimator h̃ defined in Section 3.1 without Step 2 (no thresholding), i.e. we
have kept all the estimated coefficients. We observe a peak around 0 which corresponds to what we
thought about the fact that most of the genes of E. coli should be preceded by the word tataat at a
very short distance apart. We also observe other peaks, for instance around 1200 bases. The biological
significance of these peaks remains an open question.
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Figure 6: Estimator, no thresholding, for E. coli data at the scale 1 : 1000 (i.e. 1 corresponds to 1000 bases),
with parents=tataat and children=genes.

We apply the complete procedure proposed in Section 3.1 (with thresholding) and we obtain Fig-
ure 7. The shape of this estimator explains how occurrences of genes are influenced by occurrences of
tataat. We can draw following conclusions, that coincide with the ones we could expect:

• The estimator h̃(t) = 0 if t 6 0 and t > 500. It means that for such t’s, gene occurrences seem
to be uncorrelated of tataat occurrences.

• Conversely, if t ∈ [0; 500], h̃(t) > 0, meaning that short distances are favored; smaller the distance,
higher is the influence.
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Figure 7: Estimator h̃ defined in Section 3.1 for E. coli data at the scale 1 : 1000, with parents=tataat and
children=genes.

Then, we investigate the way genes influences the DNA motif tataat and so, in our model, the
parents are the occurrences of genes and children are the occurrences of tataat. Figure 8 gives the
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estimator h̃ defined in Section 3.1 (with (γ, δ) = (0.72, 2.4)). The shape of this estimator explains how
occurrences of tataat are influenced by occurrences of genes. We can draw following conclusions, that
is completely coherent with biological observations:

• When t 6 −500 and t > 1000, h̃(t) = 0. It means that for such t’s, tataat occurrences seem to
be uncorrelated of gene occurrences.

• When t ∈ [−500; 0], h̃(t) > 0, meaning that there is a preference having a word tataat just
before the occurrence of a gene. It corresponds to the same conclusions drawn from Figure 7
(second point). The motif tataat is part of the most common promoter sites of E. coli meaning
that it should occur in front of the majority of the genes.

• When t ∈ [0; 1000], h̃(t) < 0; occurrences of tataat are avoided for such distances t. Genes on
the same strand do not usually overlap and they are about 1000 bases long in average: this fact
can explain this conclusion.
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Figure 8: Estimator h̃ defined in Section 3.1 for E. coli data at the scale 1 : 1000, with parents=genes and
children=tataat .

Finally, Figure 9 presents the results of the FADO procedure [12] and Figure 10 presents the
results of the Islands procedure of [27]. For the FADO procedure, we have forced the estimators to
be piecewise constant to make the comparison easier. Our results agree with the ones obtained by
FADO and Islands. But our method has advantage to point out that nothing significant happens after
a certain distance (contrary to the FADO procedure), has advantage to treat interaction with another
type of events (contrary to the Islands procedure) and has advantage to deal with the dependence on
the past occurrences but also on the future occurrences (the function h is supported in R+ for the
two other procedures). For algorithmic reason, a practical limitation of our method is that we only
consider piecewise constant estimators (as for the Islands procedure), but it is enough to get a general
trend on favored or avoided distances within a point process.
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Figure 9: FADO estimators for both E. coli datasets: left: tataat; right: genes.

0 2000 4000 6000 8000 10000

0
.0
0
0
0
0

0
.0
0
0
0
5

0
.0
0
0
1
0

0
.0
0
0
1
5

0
.0
0
0
2
0

 m =  5

t

e
s
ti
m
a
to
r

0 2000 4000 6000 8000 10000

−
2
e
−
0
4

−
1
e
−
0
4

0
e
+
0
0

1
e
−
0
4

2
e
−
0
4

 m =  4

t

e
s
ti
m
a
to
r

Figure 10: Islands estimators for both E. coli datasets: left: tataat; right: genes.

5 Conclusion

In our paper, we have investigated the dependencies between two given motifs. A random thresh-
olding procedure has been proposed in Section 2.2. The general results of Section 2.3 have revealed
the optimality of the procedure in the oracle and minimax setting. Our theoretical results have been
strengthened by simulations illustrating the robustness of our procedure, despite a calibration of pa-
rameters from a practical point of view that differs from the theoretical choice. Section 4 has validated
the procedure with a good detection of favored or avoided distances between occurrences of tataat

and genes along the E. coli genome.

Further extensions of our model could be investigated. First, we could consider a more sophisticated
model that takes into account the phenomenons of spontaneous apparition and self-excitation (as for
the complete Hawkes model). But this model raises serious difficulties from the theoretical point of
view. This is an exciting challenge to overcome them. Secondly, we could extend our cascade algorithm
to general wavelet bases and not only to Haar bases. Finally, it is also relevant to study similar processes
in the spatial framework and to connect them, for instance, to the Neymann-Scott process (see Section
6.3 of [5]), which is a stimulating topic we wish to consider.

Acknowledgments: The author wishes to thank Sophie Schbath for the two genomic data sets used
in Section 4 and both her PhD advisors, Patricia Reynaud-Bouret and Vincent Rivoirard, for a wealth
of smart advice and encouragement along this work.
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6 Appendix: Proof of Theorem 1

In the sequel, the values of the constants K,K ′,K0,K1,K2,K3, . . . may change from line to line. For
the sake of clarity, the proofs are fully detailed in this appendix.

6.1 A more general result

We first give a general result stated and proved in [26].

Theorem 2 (Theorem 2.2 of [26]). To estimate a countable family β = (βλ)λ∈Λ, such that ∥β∥ℓ2 <∞,
we assume that a family of coefficient estimators (β̂λ)λ∈Γ, where Γ is a known deterministic subset of
Λ, and a family of possibly random thresholds (ηλ)λ∈Γ are available and we consider the thresholding
rule

β̃ =
(
β̂λ1|β̂λ|>ηλ1λ∈Γ

)
λ∈Λ

.



18 Laure Sansonnet

Let ε > 0 be fixed. Assume that there exist a deterministic family (Hλ)λ∈Γ and three constants κ ∈ [0; 1[,
ω ∈ [0; 1] and ζ > 0 (that may depend on ε but not on λ) with the following properties:

(A1) For all λ in Γ,
P
(
|β̂λ − βλ| > κηλ

)
6 ω.

(A2) There exist 1 < p, q <∞ with 1
p +

1
q = 1 and a constant R > 0 such that for all λ in Γ,[

E
(
|β̂λ − βλ|2p

)] 1
p 6 Rmax

{
Hλ,H

1
p

λ ε
1
q

}
.

(A3) There exists a constant θ such that for all λ in Γ such that Hλ < θε,

P
(
|β̂λ − βλ| > κηλ, |β̂λ| > ηλ

)
6 Hλζ.

Then the estimator β̃ satisfies

1− κ2

1 + κ2
E
(
∥β̃ − β∥2ℓ2

)
6 E

 inf
m⊂Γ

1 + κ2

1− κ2

∑
λ̸∈m

β2λ +
1− κ2

κ2

∑
λ∈m

(β̂λ − βλ)
2 +

∑
λ∈m

η2λ


+ LD

∑
λ∈Γ

Hλ,

with LD = R
κ2

(
(1 + θ−1/q)ω1/q + (1 + θ1/q)ε1/qζ1/q

)
.

Using the previous theorem, we establish the following result that we will prove in Section 6.4.

Theorem 3. Let n > 1, j0 ∈ N∗, γ > 0 and ∆ defined by (6.15) and (6.16). Then the estimator β̃
defined by (2.8) in Section 2.2 satisfies

E
(
∥β̃ − β∥2ℓ2

)
6 C1 inf

m⊂Γ

{∑
λ̸∈m

β2λ + F (j0, n, T )|m|

}
+ C2R

(
e−κ1j0γ/2 + e−κ2n∥h∥1/2

)
2j0 ,

where C1 is a positive constant depending on γ, ∥h∥1, ∥h∥∞, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞, C2 is a positive
constant depending on the compact support of h and the compact support of ψ,

F (j0, n, T ) =
j0
n

+
j
3/2
0 2j0/2

n3/2
+
j402

j0

n2
+
j20
T

+
j
3/2
0 2j0/2

nT 1/2
+
j0n

T 2
,

R = CR

{
1

n
+

2j0/2

n3/2
+

2j0/2

nT 1/2
+

n

T 2

}
,

with CR a positive constant depending on ∥h∥1, ∥h∥∞, the compact support of ψ, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞
and κ1 and κ2 are absolute constants in ]0; 1[.

To obtain Theorem 1, we consider n > 2, we take j0 the positive integer such that 2j0 6 n < 2j0+1

and γ > 2 log 2 in the previous theorem. Therefore, we note that

F (j0, n, T ) =
j0
n

+
j
3/2
0 2j0/2

n3/2
+
j402

j0

n2
+
j20
T

+
j
3/2
0 2j0/2

nT 1/2
+
j0n

T 2

6 K

{
log n

n
+

(log n)3/2n1/2

n3/2
+

(log n)4n

n2
+

(log n)2

T
+

(log n)3/2n1/2

nT 1/2
+

(log n)n

T 2

}

6 K

{
log n

n
+

(log n)3/2

n
+

(log n)4

n
+

(log n)2

T
+

(log n)3/2

n1/2T 1/2
+

(log n)n

T 2

}

6 K

{
(log n)4

n
+

(log n2)n

T 2

}
,
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by comparing all the terms of the right-hand side between them (for this, we distinguish the cases
n 6 T and n > T ), with K an absolute positive constant (that changes from line to line) and

R 6 K ′CR

{
1

n
+

n

T 2

}
,

with K ′ an absolute positive constant. Moreover, e−κ1j0γ/22j0 is bounded thanks to the choice of γ.
Finally, since

∥h̃− h∥22 6 K0∥β̃ − β∥2ℓ2 ,
with K0 a positive constant depending only on the functions that generate the biorthogonal wavelet
basis, we establish Theorem 1.

6.2 Technical lemmas

Before proving Theorem 3, we establish two lemmas which we will use throughout the proof.

Lemma 6.1.

(a) For any function f in L2(R) and for all t ∈ R, Varπ(f(t− U)) 6 1

T

∫
R
f2(x) dx, where

Varπ(f(t− U)) denotes the variance of f(t− U) where U ∼ π.

(b) For any function f in L1(R) and for all t ∈ R,
∫
R
Eπ(f(t− U)) dt =

∫
R
f(x) dx.

(c) For any nonnegative function f in L1(R) and for all t ∈ R, Eπ(f(t− U)) 6 1

T

∫
R
f(x) dx.

Proof.

(a) Let f ∈ L2(R) and t ∈ R.

Varπ(f(t− U)) 6 Eπ(f2(t− U)) =
1

T

∫ T

0
f2(t− u) du 6 1

T

∫
R
f2(x) dx.

(b) Let f ∈ L1(R) and t ∈ R.∫
R
Eπ(f(t− U)) dt = Eπ

(∫
R
f(t− U) dt

)
= E

(∫
R
f(x) dx

)
=

∫
R
f(x) dx.

(c) Let f ∈ L1(R) such that f > 0 and t ∈ R.

Eπ(f(t− U)) =
1

T

∫ T

0
f(t− u) du 6 1

T

∫
R
f(x) dx.

The next result is a Rosenthal type inequality for any Poisson process, that extends Lemma 6.2 of
[26].

Lemma 6.2. Let p > 1. Consider a Poisson process N on (X,X ) a measurable space, with a finite mean

measure ν : X 7→ R+ and a function φ : X 7→ R which belongs to L2p(ν). We denote β̂ =

∫
X
φ(x) dNx

a natural estimator of β =

∫
X
φ(x) dν(x) that satisfies E(β̂) = β. Then, there exists a positive constant

C(p) only depending on p such that

E(|β̂ − β|2p) 6 C(p)

(∫
X
|φ(x)|2p dν(x) +

(
Var(β̂)

)p)
,

where Var(β̂) =

∫
X
φ2(x) dν(x).
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Proof. Let p > 1. Suppose ∥φ∥∞ < +∞ first. As a Poisson process is infinitely divisible, we can write:
for any positive integer k,

dN =

k∑
i=1

dN i,

where the N i’s are mutually independent Poisson processes on X with mean measure ν/k. Hence,

β̂ − β =
k∑
i=1

∫
X
φ(x)

(
dN i

x − k−1dν(x)
)
=

k∑
i=1

Yi,

where for any i,

Yi =

∫
X
φ(x)

(
dN i

x − k−1dν(x)
)
.

So the Yi’s are i.i.d. centered variables, each of them has moments of order 2p and 2. We apply the
classical Rosenthal’s inequality (for instance, see Proposition 10.2 of [15]): there exists a positive
constant C(p) only depending on p such that

E

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣
2p
 6 C(p)

(
k∑
i=1

E(|Yi|2p) +

(
k∑
i=1

E(Y 2
i )

)p)
.

Now, we give an upper bound of the limit of E

(
k∑
i=1

|Yi|ℓ
)

for ℓ ∈ {2p, 2} when k → ∞. Let us

introduce
Ωk =

{
∀i ∈ {1, . . . , k}, N i

X 6 1
}
,

where N i
X is the number of points of N i lying in X. Then,

P(Ωck) = P(∃i ∈ {1, . . . , k}, N i
X > 2)

6
k∑
i=1

P(N i
X > 2) = k

∑
j>2

(ν(X)/k)j

j!
e−ν(X)/k

6 k(ν(X)/k)2 = k−1ν(X)2.

On Ωk, if N i
X = 0 (so

∫
X
φ(x) dN i

x = 0),

|Yi|ℓ = Ok(k
−ℓ)

and if N i
X = 1 (so

∫
X
φ(x) dN i

x = φ(T ), where T is the point of the process N i),

|Yi|ℓ = |φ(T )|ℓ +Ok(k
−1|φ(T )|ℓ−1).

Consequently,

E

(
k∑
i=1

|Yi|ℓ
)

6 E

[
1Ωk

(
kOk(k

−ℓ) +
∑
T∈N

[
|φ(T )|ℓ +Ok(k

−1|φ(T )|ℓ−1)
])]

+
√

P(Ωck)

√√√√√E

( k∑
i=1

|Yi|ℓ
)2
.

(6.1)
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But we have

k∑
i=1

|Yi|ℓ 6 2ℓ−1
k∑
i=1

[∣∣∣∣∫
X
φ(x) dN i

x

∣∣∣∣ℓ + (k−1

∫
X
|φ(x)| dν(x)

)ℓ]

6 2ℓ−1

(
k∑
i=1

∥φ∥ℓ∞(N i
X)
ℓ + k

(
k−1

∫
X
|φ(x)| dν(x)

)ℓ)

6 2ℓ−1

(
∥φ∥ℓ∞N ℓ

X + k

(
k−1

∫
X
|φ(x)| dν(x)

)ℓ)
.

Thus, when k → ∞, the last term in (6.1) converges to 0 since a Poisson variable has moments of
every order and

lim sup
k→∞

E

(
k∑
i=1

|Yi|ℓ
)

6 E
(∫

X
|φ(x)|ℓ dNx

)
=

∫
X
|φ(x)|ℓ dν(x),

which concludes the proof in the bounded case.
But for any function φ such that

∫
X |φ(x)|2p dν(x) < +∞, the desired upper bound is finite and we

get it by approximating φ by, for instance, piecewise constant functions.

6.3 Proof of Lemma 2.1

Let λ ∈ Λ be fixed. G(φλ), defined by (2.3), is a measurable function of the observations and by
considering the aggregated process (1.1), we can write

G(φλ) =

∫
R

n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]
dNt

=

∫
R

n∑
i=1

φλ(t− Ui) dNt − (n− 1)

∫
R
Eπ(φλ(t− U)) dNt

=
∑

16i,j6n

∫
R
φλ(t− Ui) dN

j
t −

∑
16i̸=j6n

∫
R
Eπ(φλ(t− U)) dN j

t

=
n∑
i=1

∫
R
φλ(t− Ui) dN

i
t +

∑
j ̸=i

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
dN j

t

 .
Now, we prove the first part of Lemma 2.1. We have

E(G(φλ)|U1, . . . , Un)

=

n∑
i=1

∫
R
φλ(t− Ui)h(t− Ui) dt+

∑
j ̸=i

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
h(t− Uj) dt

 .
Write x = t− Ui in the first integral. Therefore,

E(G(φλ)|U1, . . . , Un) = n

∫
R
φλ(x)h(x) dx+W (φλ),

where

W (φλ) =
∑

16i̸=j6n

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
h(t− Uj) dt.
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Moreover,

E(W (φλ)) =
∑

16i̸=j6n

∫
R
E
([
φλ(t− Ui)− Eπ(φλ(t− U))

]
h(t− Uj)

)
dt

=
∑

16i̸=j6n

∫
R
E
[
φλ(t− Ui)− Eπ(φλ(t− U))

]
E(h(t− Uj)) dt

= 0.

Finally,

E(G(φλ)) = n

∫
R
φλ(x)h(x) dx,

i.e. β̂λ is an unbiased estimator for βλ:

E(β̂λ) = E
(
G(φλ)

n

)
=

∫
R
φλ(x)h(x) dx = βλ.

It remains to control the variance of the estimator β̂λ.

Var(G(φλ)) = E

[(
G(φλ)− n

∫
R
φλ(x)h(x) dx

)2
]

= E
[
(G(φλ)− E(G(φλ)|U1, . . . , Un) +W (φλ))

2
]

= E(V (φλ)) + E(W (φλ)
2),

where
V (φλ) = Var(G(φλ)|U1, . . . , Un).

We start by dealing with the first term by using technics for Poisson processes. We have

V (φλ) =

∫
R

(
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

])2 n∑
j=1

h(t− Uj) dt

=

∫
R

n∑
j=1

φλ(t− Uj) +
∑
i ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]2

h(t− Uj) dt

=

n∑
j=1

∫
R
φ2
λ(t− Uj)h(t− Uj) dt

+ 2

n∑
j=1

∫
R

∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
φλ(t− Uj)h(t− Uj) dt

+
n∑
j=1

∫
R

∑
i̸=j

∑
k ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
h(t− Uj) dt.

In the first integral, write x = t− Uj . So,

V (φλ) = n

∫
R
φ2
λ(x)h(x) dx+ 2

n∑
j=1

∫
R

∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
φλ(t− Uj)h(t− Uj) dt

+

n∑
j=1

∫
R

∑
i̸=j

∑
k ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
h(t− Uj) dt.

(6.2)
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Each term can be computed by taking the expectation conditionally to Uj (in each sum) and we obtain

E(V (φλ)) = n

∫
R
φ2
λ(x)h(x) dx+

n∑
j=1

∫
R

∑
i̸=j

E
([
φλ(t− Ui)− Eπ(φλ(t− U))

]2)E(h(t− Uj)) dt

= n

∫
R
φ2
λ(x)h(x) dx+ n(n− 1)

∫
R
Varπ(φλ(t− U))Eπ(h(t− U)) dt. (6.3)

Then using equations (a) and (b) of Lemma 6.1, we have

E(V (φλ)) 6 n

∫
R
φ2
λ(x)h(x) dx+

n(n− 1)

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx. (6.4)

Now, we deal with the second term by using the U -statistics technics. However, W (φλ) is a
U -statistics of order 2 but it is not degenerate. So we write

W (φλ) =W1(φλ) +W2(φλ), (6.5)

with

W1(φλ) =
∑

16i̸=j6n

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

= (n− 1)

n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

and
W2(φλ) =

∑
16i ̸=j6n

g(Ui, Uj),

where
g(Ui, Uj) =

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt.

W2(φλ) is a degenerate U -statistics. It is easy to verify that

E(W (φλ)
2) = E(W1(φλ)

2) + E(W2(φλ)
2).

First we compute E(W1(φλ)
2).

E(W1(φλ)
2) = Var(W1(φλ))

= n(n− 1)2Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

)
= n(n− 1)2Var

(∫
R
φλ(t− U1)Eπ(h(t− U)) dt

)
6 n(n− 1)2E

[(∫
R
|φλ(t− U1)|Eπ(h(t− U)) dt

)2
]

6 n(n− 1)2

T 2
E

[(∫
R
|φλ(t− U1)| dt

)2
](∫

R
h(x) dx

)2

6 n(n− 1)2

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2

, (6.6)

by applying inequality (c) of Lemma 6.1 with f = h.
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It remains to compute E(W2(φλ)
2). It is easy to see that

E(W2(φλ)
2) =

∑
16i̸=j6n

E
[
g(Ui, Uj)(g(Ui, Uj) + g(Uj , Ui))

]
6 2

∑
16i̸=j6n

E
[
g(Ui, Uj)

2
]

6 2n(n− 1)E

[(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

][
h(t− U2)− Eπ(h(t− U))

]
dt

)2
]
.

We denote E(U,V )∼π⊗π(g(U, V )) the expectation of g(U, V ) where U ∼ π and V ∼ π are independent
and fX(t) = f(t−X). Hence,

E(W2(φλ)
2)

6 2n(n− 1)E(U,V )∼π⊗π

[(∫
R

[
φUλ (t)− Eπ(φUλ (t))

][
hV (t)− Eπ(hV (t))

]
dt

)2
]

6 2n(n− 1)E(U,V )∼π⊗π

[(∫
R
φUλ (t)h

V (t) dt− EV∼π

(∫
R
φUλ (t)h

V (t) dt

)

− EU∼π

(∫
R
φUλ (t)h

V (t) dt

)
+ E(U,V )∼π⊗π

(∫
R
φUλ (t)h

V (t) dt

))2]

6 2n(n− 1)

{
E(U,V )∼π⊗π

[(∫
R
φUλ (t)h

V (t) dt

)2
]
− EU∼π

[(
EV∼π

(∫
R
φUλ (t)h

V (t) dt

))2
]

− EV∼π

[(
EU∼π

(∫
R
φUλ (t)h

V (t) dt

))2
]
+

(
E(U,V )∼π⊗π

(∫
R
φUλ (t)h

V (t) dt

))2
}

6 2n(n− 1)

{
E(U,V )∼π⊗π

[(∫
R
φUλ (t)h

V (t) dt

)2
]
+

(
E(U,V )∼π⊗π

(∫
R
φUλ (t)h

V (t) dt

))2
}
.

But,

E(U,V )∼π⊗π

[(∫
R
φUλ (t)h

V (t) dt

)2
]
6 E(U,V )∼π⊗π

(∫
R
(φUλ )

2(t)hV (t) dt

∫
R
hV (t) dt

)
= E(U,V )∼π⊗π

(∫
R
(φUλ )

2(t)hV (t) dt

)∫
R
h(x) dx

=

∫
R
Eπ
(
(φUλ )

2(t)
)
Eπ(hV (t)) dt

∫
R
h(x) dx

6 1

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

and ∣∣∣∣E(U,V )∼π⊗π

(∫
R
φUλ (t)h

V (t) dt

)∣∣∣∣ = ∣∣∣∣∫
R
Eπ(φUλ (t))Eπ(hV (t)) dt

∣∣∣∣ 6 1

T

∫
R
|φλ(x)| dx

∫
R
h(x) dx,

by using Lemma 6.1. So,

E(W2(φλ)
2) 6 2n(n− 1)

{
1

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

+
1

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2
}
.

(6.7)

Finally, by combining inequalities (6.4), (6.6) and (6.7), we obtain the following control of the
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variance of the estimator β̂λ:

Var(β̂λ) = Var

(
G(φλ)

n

)
6 1

n

∫
R
φ2
λ(x)h(x) dx+

1

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx

+
n

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2

+
2

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

6 1

n

∫
R
φ2
λ(x)h(x) dx+

1

T
∥φλ∥22∥h∥1 +

n

T 2
∥φλ∥21∥h∥21 +

2

T
∥φλ∥22∥h∥21.

By using the properties of the biorthogonal wavelet bases considered in this paper, for any λ = (j, k)
in Λ, we have: ∥φλ∥1 6 2−j/2max(

√
2/2, ∥ψ∥1) and ∥φλ∥2 6 max(1, ∥ψ∥2), which allows us to get the

purposed upper bound in Lemma 2.1.

6.4 Proof of Theorem 3

In the sequel, we will consider: n > 1, T > 1 and j0 = O(n) and we will use following notations:
Mh,1 = max(∥h∥1, 1), Mh,∞ = max(∥h∥∞, 1), Mψ,1 = max(∥ψ∥1,

√
2/2), Mψ,2 = max(∥ψ∥2, 1) and

Mψ,∞ = max(∥ψ∥∞,
√
2) (so that, for any λ = (j, k) ∈ Λ, we have: ∥φλ∥1 6 2−j/2Mψ,1, ∥φλ∥2 6Mψ,2

and ∥φλ∥∞ 6 2j/2Mψ,∞).
We recall that A and M are positive real numbers such that h and ψ are compactly supported in

[−A;A] and in [−M ;M ] respectively.
Now, to prove Theorem 3, we apply Theorem 2 and for this purpose we have to verify Assumptions:

(A1), (A2) and (A3).

6.4.1 Proof of Assumption (A1)

Let λ ∈ Γ be fixed. Remember that conditionally to the Ui’s, the expression given in (1.1) is a
Poisson process. We apply Lemma 6.1 of [26]: for any α > 0, with probability larger than 1 − 2e−α,
conditionally to the Ui’s, we have∣∣∣∣G(φλ)− n

∫
R
φλ(x)h(x) dx−W (φλ)

∣∣∣∣ 6√2αV (φλ) +
α

3
B(φλ),

where W (φλ) is defined by (6.5), V (φλ) = Var(G(φλ)|U1, . . . , Un) and

B(φλ) =

∥∥∥∥∥
n∑
i=1

[
φλ(· − Ui)−

n− 1

n
Eπ(φλ(· − U))

]∥∥∥∥∥
∞

.

Unlike B(φλ), V (φλ) is non-observable (it depends on the unknown function h). This is the reason
why, by fixing α > 0, we estimate V (φλ) by

Ṽ (φλ) = V̂ (φλ) +

√
2αV̂ (φλ)B2(φλ) + 3αB2(φλ)

where

V̂ (φλ) =

∫
R

(
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

])2

dNt.

Moreover, by Lemma 6.1 of [26], we have also: P(V (φλ) > Ṽ (φλ)) 6 e−α. So, with probability larger
than 1− 3e−α, ∣∣∣∣G(φλ)− n

∫
R
φλ(x)h(x) dx

∣∣∣∣ 6√2αṼ (φλ) +
α

3
B(φλ) + |W (φλ)|. (6.8)
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We provide a control in probability of W1(φλ).

W1(φλ) = (n− 1)
n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt.

This is a sum of i.i.d. random variables. We apply Bernstein’s inequality (for instance, see Proposition
2.9 of [20]) to get that with probability larger than 1− 2e−α,

|W1(φλ)| 6
√

2αv(φλ) +
α

3
b(φλ),

with

v(φλ) = Var(W1(φλ)) 6
n(n− 1)2

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2

(see inequality (6.6)) and

b(φλ) = (n− 1) sup
u∈[0;T ]

∣∣∣∣∫
R

[
φλ(t− u)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣
6 2(n− 1)

T

∫
R
|φλ(x)| dx

∫
R
h(x) dx,

using equations (b) and (c) of Lemma 6.1. Then, with probability larger than 1− 2e−α,

|W1(φλ)| 6
√
2αn(n− 1)

T

∫
R
|φλ(x)| dx

∫
R
h(x) dx+

2α(n− 1)

3T

∫
R
|φλ(x)| dx

∫
R
h(x) dx. (6.9)

Now it remains to control W2(φλ), with

W2(φλ) =
∑

16i ̸=j6n
g(Ui, Uj),

where
g(Ui, Uj) =

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt.

This is a degenerate U -statistics of order 2, we can rewrite it as

W2(φλ) =
∑

16j<i6n
G(Ui, Uj),

where
G(Ui, Uj) = g(Ui, Uj) + g(Uj , Ui).

We apply Theorem 3.4 of [14] to W2 and −W2 (keeping the same notations of [14]): for all ε0 > 0
(ε0 = 1 for instance), with probability larger than 1− 2× 2.77e−α,

|W2(φλ)| 6 2(1 + ε0)
3/2C

√
α+ η(ε0)Dα+ β(ε0)Bα

3/2 + γ(ε0)Aα
2, (6.10)

where

• A = ∥G∥∞ and by applying equality (b) of Lemma 6.1 with f = h, we easily have

A 6 8∥φλ∥∞
∫
R
h(x) dx, (6.11)

• C2 = E(W2(φλ)
2) and with (6.7), we have

C2 6 2n(n− 1)

{
1

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

+
1

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2
}
, (6.12)
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• D = sup

E

 ∑
16j<i6n

G(Ui, Uj)ai(Ui)bj(Uj)

 : E

(
n∑
i=2

ai(Ui)
2

)
6 1,E

n−1∑
j=1

bj(Uj)
2

 6 1

,

D = sup

{
E

 n∑
i=2

i−1∑
j=1

g(Ui, Uj)ai(Ui)bj(Uj) +

n−1∑
j=1

n∑
i=j+1

g(Uj , Ui)ai(Ui)bj(Uj)

 :

E

(
n∑
i=2

ai(Ui)
2

)
6 1,E

n−1∑
j=1

bj(Uj)
2

 6 1

}
.

But, with the conditions on the ai’s and the bj ’s, we have:

E

 n∑
i=2

i−1∑
j=1

g(Ui, Uj)ai(Ui)bj(Uj)


6
∫
R
E

(
n∑
i=2

∣∣φλ(t− Ui)− Eπ(φλ(t− U))
∣∣|ai(Ui)|)E

n−1∑
j=1

∣∣h(t− Uj)− Eπ(h(t− U))
∣∣|bj(Uj)|

 dt

6
∫
R

√
(n− 1)Varπ(φλ(t− U)) E

n−1∑
j=1

∣∣h(t− Uj)− Eπ(h(t− U))
∣∣|bj(Uj)|

 dt

6
√
n− 1

T

∫
R
φ2
λ(x) dx E

n−1∑
j=1

∫
R

∣∣h(t− Uj)− Eπ(h(t− U))
∣∣|bj(Uj)| dt


6
√
n− 1

T

∫
R
φ2
λ(x) dx E

2

n−1∑
j=1

|bj(Uj)|
∫
R
h(x) dx


6 2(n− 1)

√
1

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx,

using equations (a) and (b) of Lemma 6.1. Inverting the ai’s and the bj ’s, the same computations
apply to the second term and we obtain

D 6 4(n− 1)

√
1

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx, (6.13)

• B2 = max

sup
u,i

 i−1∑
j=1

E(G(u,Uj)2)

 , sup
u,j

 n∑
i=j+1

E(G(Ui, u)2)

 and since G is symmetric, we

have:

B2 = sup
u,i

 i−1∑
j=1

E(G(u, Uj)2)


= sup

u

n−1∑
j=1

E(G(u,Uj)2)


6 2 sup

u

n−1∑
j=1

[
E(g(u,Uj)2) + E(g(Uj , u)2)

] .
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But,

E(g(u,Uj)2)

= E

[(∫
R

[
φλ(t− u)− Eπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt

)2
]

6 E
[∫

R

[
φλ(t− u)− Eπ(φλ(t− U))

]2∣∣h(t− Uj)− Eπ(h(t− U))
∣∣ dt∫

R

∣∣h(t− Uj)− Eπ(h(t− U))
∣∣ dt]

6 2E
[∫

R

[
φλ(t− u)− Eπ(φλ(t− U))

]2∣∣h(t− Uj)− Eπ(h(t− U))
∣∣ dt] ∫

R
h(x) dx

6 4

T

∫
R

[
φλ(t− u)− Eπ(φλ(t− U))

]2
dt

(∫
R
h(x) dx

)2

6 16

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

and in the same way

E(g(Uj , u)2)

= E

[(∫
R

[
φλ(t− Uj)− Eπ(φλ(t− U))

][
h(t− u)− Eπ(h(t− U))

]
dt

)2
]

6 E
[∫

R

[
φλ(t− Uj)− Eπ(φλ(t− U))

]2∣∣h(t− u)− Eπ(h(t− U))
∣∣ dt∫

R

∣∣h(t− u)− Eπ(h(t− U))
∣∣ dt]

6 2E
[∫

R

[
φλ(t− Uj)− Eπ(φλ(t− U))

]2∣∣h(t− u)− Eπ(h(t− U))
∣∣ dt] ∫

R
h(x) dx

6 2

T

∫
R

∣∣h(t− u)− Eπ(h(t− U))
∣∣ dt ∫

R
φ2
λ(x) dx

∫
R
h(x) dx

6 4

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

,

by using Lemma 6.1. Hence,

B2 6 40(n− 1)

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

. (6.14)

Finally, by inequalities (6.8), (6.9) and (6.10) combined with (6.11), (6.14), (6.12) and (6.13), we
obtain: for any ε0 > 0, with probability larger than 1− (5 + 2× 2.77)e−α,

|β̂λ − βλ| 6
√
2αṼ

(φλ
n

)
+
α

3
B
(φλ
n

)
+

{√
2αn

T
∥φλ∥1 +

2α

3T
∥φλ∥1 + 2(1 + ε0)

3/2
√
2α

√
1

T
∥φλ∥22 +

1

T 2
∥φλ∥21

+ 4η(ε0)α

√
1

T
∥φλ∥22 + β(ε0)α

3/2

√
40

nT
∥φλ∥22 +

8

n
γ(ε0)α

2∥φλ∥∞

}
∥h∥1

6
√
2αṼ

(φλ
n

)
+
α

3
B
(φλ
n

)
+

{
2Mψ,1

√
αn

T
+ 2

√
2Mψ,1

α

3T
+ 2

√
2(1 + ε0)

3/2Mψ,2

√
α

T
+ 4(1 + ε0)

3/2Mψ,1

√
α

T

+ 4η(ε0)Mψ,2
α√
T

+
√
40β(ε0)Mψ,2

α3/2

√
nT

+ 8γ(ε0)Mψ,∞
2j0/2α2

n

}
∥h∥1,
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because 2−j/2 6
√
2 if −1 6 j 6 j0. We denote b the quantity between braces above.

This upper bound depends on h (via ∥h∥1) and this potential threshold could not be used for
applications because h is unknown. So we overestimate ∥h∥1 by (1+ε0)NR

n and we have a threshold that
does not depend on h. So, for any value of κ ∈]0; 1[, by fixing α = κ2j0γ with γ > 0, we define for all
λ in Γ,

ηλ(γ,∆) =

√
2j0γṼ

(φλ
n

)
+
j0γ

3
B
(φλ
n

)
+∆

NR
n
,

where

∆ = (1 + ε0)

{
2Mψ,1

√
j0γn

T
+ 2

√
2Mψ,1

j0γ

3T
+ 2

√
2(1 + ε0)

3/2Mψ,2

√
j0γ

T
+ 4(1 + ε0)

3/2Mψ,1

√
j0γ

T

+ 4η(ε0)Mψ,2
j0γ√
T

+
√
40β(ε0)Mψ,2

j
3/2
0 γ3/2√
nT

+ 8γ(ε0)Mψ,∞
2j0/2j20γ

2

n

}
.

Thus, for all λ in Γ,

P
(
|β̂λ − βλ| > κηλ(γ,∆)

)
6 P

(
|β̂λ − βλ| >

√
2αṼ

(φλ
n

)
+
α

3
B
(φλ
n

)
+ b

(1 + ε0)NR
n

,
(1 + ε0)NR

n
> ∥h∥1

)
+ P

(
|β̂λ − βλ| >

√
2αṼ

(φλ
n

)
+
α

3
B
(φλ
n

)
+ b

(1 + ε0)NR
n

,
(1 + ε0)NR

n
6 ∥h∥1

)
6 P

(
|β̂λ − βλ| >

√
2αṼ

(φλ
n

)
+
α

3
B
(φλ
n

)
+ b∥h∥1

)
+ P

(
(1 + ε0)NR

n
6 ∥h∥1

)
6 (5 + 2× 2.77)e−α + P

(
(1 + ε0)NR

n
6 ∥h∥1

)
,

with

P
(
(1 + ε0)NR

n
6 ∥h∥1

)
= P

(
NR − n∥h∥1 6 −ε0n∥h∥1

1 + ε0

)
6 exp (−g(ε0)n∥h∥1),

using Proposition 7 of [25] with g(ε0) = 1
1+ε0

(
log 1

1+ε0
− 1
)
+ 1.

Therefore, Assumption (A1) is true if we take ω = (5+2× 2.77)e−κ
2j0γ +exp (−g(ε0)n∥h∥1), with

γ > 0 and ε0 > 0. Furthermore, the threshold (2.4) that lies at the heart of the paper is achieved by
rewriting ∆ by grouping the constants into one:

∆ = d(γ, ∥ψ∥1, ∥ψ∥2, ∥ψ∥∞)

{
j202

j0/2

n
+

j0√
T

+

√
j0n

T

}
(6.15)

with

d(γ, ∥ψ∥1, ∥ψ∥2, ∥ψ∥∞)

= (1 + ε0)

{
2
√
γMψ,1 +

2
√
2

3
γMψ,1 + 2

√
2(1 + ε0)

3/2√γMψ,2 + 4(1 + ε0)
3/2√γMψ,1

+ 4η(ε0)γMψ,2 +
√
40β(ε0)γ

3/2Mψ,2 + 8γ(ε0)γ
2Mψ,∞

}
,

(6.16)

where β(ε0), γ(ε0) and η(ε0) are defined in [14] with ε0 = 1.
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6.4.2 Proof of Assumption (A2)

Let λ ∈ Γ be fixed. For any p > 1,

E(|β̂λ − βλ|2p) = E

(∣∣∣∣G(φλn )−
∫
R
φλ(x)h(x) dx

∣∣∣∣2p
)

=
1

n2p
E
(∣∣G(φλ)− E(G(φλ)|U1, . . . , Un) +W (φλ)

∣∣2p)
6 22p−1

n2p
[
E(|G(φλ)− E(G(φλ)|U1, . . . , Un)|2p) + E(|W (φλ)|2p)

]
. (6.17)

Now, let us give an upper bound of each term of the right-hand side of the previous inequality.
We first study the first term of (6.17). We have:

E(|G(φλ)− E(G(φλ)|U1, . . . , Un)|2p) = E
[
E(|G(φλ)− E(G(φλ)|U1, . . . , Un)|2p) |U1, . . . , Un)

]
and conditionally to the Ui’s, N is a Poisson process. We apply Lemma 6.2: for any p > 1, there exists
a positive constant C(p) only depending on p such that

E(|G(φλ)− E(G(φλ)|U1, . . . , Un)|2p) |U1, . . . , Un)

6 C(p)

∫
R

∣∣∣∣∣
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]∣∣∣∣∣
2p n∑

j=1

h(t− Uj) dt+ V (φλ)
p

 .
(6.18)

On the one hand, we provide a control in expectation of the first term of (6.18). We have:

E

∫
R

∣∣∣∣∣
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]∣∣∣∣∣
2p n∑

j=1

h(t− Uj) dt


= E

∫
R

n∑
j=1

∣∣∣∣∣∣φλ(t− Uj) +
∑
i ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣∣
2p

h(t− Uj) dt


6 22p−1

[
E

∫
R

n∑
j=1

|φλ(t− Uj)|2ph(t− Uj) dt


+ E

∫
R

n∑
j=1

∣∣∣∣∣∣
∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣∣
2p

h(t− Uj) dt

],
with

E

∫
R

n∑
j=1

|φλ(t− Uj)|2ph(t− Uj) dt

 = n

∫
R
|φλ(x)|2ph(x) dx 6 n

∫
R
φ2
λ(x) dx∥φλ∥2p−2

∞ ∥h∥∞

and

E

∫
R

n∑
j=1

∣∣∣∣∣∣
∑
i ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣∣
2p

h(t− Uj) dt


=

n∑
j=1

∫
R
E

∣∣∣∣∣∣
∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣∣
2pE(h(t− Uj)) dt

= n

∫
R
E

∣∣∣∣∣
n−1∑
i=1

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣
2p
Eπ(h(t− U)) dt.
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By applying Rosenthal’s inequality, there exists a positive constant C(p) only depending on p such
that

E

∣∣∣∣∣
n−1∑
i=1

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣
2p


6 C(p)
(
(n− 1)E

(∣∣φλ(t− U1)− Eπ(φλ(t− U))
∣∣2p)+ (n− 1)p

[
Varπ(φλ(t− U))

]p)
.

But,

E
(∣∣φλ(t− U1)− Eπ(φλ(t− U))

∣∣2p) 6 K
(
Eπ(|φλ(t− U)|2p) + |Eπ(φλ(t− U))|2p

)
6 K

(
1

T

∫ T

0
|φλ(t− u)|2p du+

∣∣∣∣ 1T
∫ T

0
φλ(t− u) du

∣∣∣∣2p
)

6 K

(
1

T

∫
R
φ2
λ(x) dx ∥φλ∥2p−2

∞ +
1

T 2p

(∫
R
|φλ(x)| dx

)2p
)
,

with K a positive constant only depending on p and using inequality (a) of Lemma 6.1,

Varπ(φλ(t− U)) 6 1

T

∫
R
φ2
λ(x) dx.

Thus,

E

∫
R

n∑
j=1

∣∣∣∣∣∣
∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣∣
2p

h(t− Uj) dt


6 n K

(
n− 1

T
∥φλ∥22∥φλ∥2p−2

∞ +
n− 1

T 2p
∥φλ∥2p1 +

(n− 1)p

T p
∥φλ∥2p2

)∫
R
Eπ(h(t− U)) dt

6 K

(
n2

T
∥φλ∥22∥φλ∥2p−2

∞ +
n2

T 2p
∥φλ∥2p1 +

np+1

T p
∥φλ∥2p2

)
∥h∥1,

using equation (b) of Lemma 6.1.
Therefore, we have the following control of the first term of (6.18)

E

∫
R

∣∣∣∣∣
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]∣∣∣∣∣
2p n∑

j=1

h(t− Uj) dt


6 K

[
n∥φλ∥22∥φλ∥2p−2

∞ ∥h∥∞ +

(
n2

T
∥φλ∥22∥φλ∥2p−2

∞ +
n2

T 2p
∥φλ∥2p1 +

np+1

T p
∥φλ∥2p2

)
∥h∥1

]
,

(6.19)

Now let us provide a control in expectation of the second term of (6.18), i.eV (φλ)
p. First, we recall

that V (φλ) = Var(G(φλ)|U1, . . . , Un) and we remark that E(V (φλ)
p) 6

[
E(V (φλ)

2p)
]1/2 (using the

Cauchy-Schwarz inequality). So, we focus on the moments of V (φλ) of any order m > 2.
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Let m > 2. According to the expression (6.2) of V (φλ), we have:

V (φλ)

= n

∫
R
φ2
λ(x)h(x) dx+ 2

n∑
j=1

∫
R

∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
φλ(t− Uj)h(t− Uj) dt

+
n∑
j=1

∫
R

∑
i̸=j

∑
k ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
h(t− Uj) dt

= n

∫
R
φ2
λ(x)h(x) dx+ 2

n∑
j=1

∫
R

∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U))) dt

+ 2

n∑
j=1

∫
R

∑
i̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uj)h(t− Uj)− Eπ(φλ(t− U)h(t− U))

]
dt

+

n∑
j=1

∫
R

∑
i̸=j

∑
k ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

+

n∑
j=1

∫
R

∑
i̸=j

∑
k ̸=j

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
×
[
h(t− Uj)− Eπ(h(t− U))

]
dt.

This formula provides a decomposition of V (φλ) in a sum of degenerate U -statistics of order 0, 1, 2
and 3. Indeed

V (φλ) = W0(φλ) +W1(φλ) +W2(φλ) +W3(φλ),

with Wi(φλ) is a degenerate U -statistic of order i defined as follows:

W3(φλ) =
∑

16i ̸=j ̸=k6n

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
×
[
h(t− Uj)− Eπ(h(t− U))

]
dt,

W2(φλ)

= 2
∑

16i̸=j6n

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uj)h(t− Uj)− Eπ(φλ(t− U)h(t− U))

]
dt

+ (n− 2)
∑

16i̸=k6n

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

+
∑

16i̸=j6n

∫
R

[[
φλ(t− Ui)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt,

W1(φλ) = 2(n− 1)
n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

+ (n− 1)

n∑
i=1

∫
R

[[
φλ(t− Ui)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

+ (n− 1)

n∑
j=1

∫
R
Varπ(φλ(t− U))

[
h(t− Uj)− Eπ(h(t− U))

]
dt
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and

W0(φλ) = n

∫
R
φ2
λ(x)h(x) dx+ n(n− 1)

∫
R
Varπ(φλ(t− U))Eπ(h(t− U)) dt

= E(V (φλ)) 6 n

∫
R
φ2
λ(x)h(x) dx+

n(n− 1)

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx, (6.20)

by using (6.3) and (6.4).
First, we are interested in the moments of W1(φλ) that we write:

W1(φλ) = W1,1(φλ) +W1,2(φλ) +W1,3(φλ),

with:

• W1,1(φλ) = 2(n− 1)

n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt.

We have:

E(|W1,1(φλ)|m)

= 2m(n− 1)mE

(∣∣∣∣∣
n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

∣∣∣∣∣
m)

6 2m(n− 1)m × C(m)

(
nE
(∣∣∣∣∫

R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

∣∣∣∣m)

+ nm/2
[
Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

)]m/2)
,

using Rosenthal’s inequality, where C(m) is a positive constant only depending on m. But, applying
Lemma 6.1,

E
(∣∣∣∣∫

R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

∣∣∣∣m)
6 2m

Tm

(∫
R
|φλ(x)| dx

)m(∫
R
|φλ(x)|h(x) dx

)m
and

Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(φλ(t− U)h(t− U)) dt

)
= Var

(∫
R
φλ(t− U1)Eπ(φλ(t− U)h(t− U)) dt

)
6 E

[(∫
R
|φλ(t− U1)|Eπ(|φλ(t− U)|h(t− U)) dt

)2
]

6 1

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
|φλ(x)|h(x) dx

)2

.



34 Laure Sansonnet

So,

E(|W1,1(φλ)|m) 6 2m(n− 1)m × C(m)

(
2mn

Tm

(∫
R
|φλ(x)| dx

)m(∫
R
|φλ(x)|h(x) dx

)m
+
nm/2

Tm

(∫
R
|φλ(x)| dx

)m(∫
R
|φλ(x)|h(x) dx

)m)

6 K1,1
n3m/2

Tm

(∫
R
|φλ(x)| dx

)m(∫
R
|φλ(x)|h(x) dx

)m
6 K1,1

n3m/2

Tm

(∫
R
|φλ(x)| dx

)2m

∥h∥m∞, (6.21)

with K1,1 a positive constant only depending on m.

• W1,2(φλ) = (n− 1)

n∑
i=1

∫
R

[[
φλ(t− Ui)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt.

We have:

E(|W1,2(φλ)|m)

= (n− 1)mE

(∣∣∣∣∣
n∑
i=1

∫
R

[[
φλ(t− Ui)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣∣
m)

6 nm × C(m)

(
nE
(∣∣∣∣∫

R

[[
φλ(t− U1)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣m)

+ nm/2
[
Var

(∫
R

[[
φλ(t− U1)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

)]m/2)
,

using Rosenthal’s inequality, where C(m) is a positive constant only depending on m. But, applying
Lemma 6.1,

E
(∣∣∣∣∫

R

[[
φλ(t− U1)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣m)
6 K1,2

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
,

with K1,2 a positive constant only depending on m and

Var

(∫
R

[[
φλ(t− U1)− Eπ(φλ(t− U))

]2 −Varπ(φλ(t− U))

]
Eπ(h(t− U)) dt

)
= Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]2Eπ(h(t− U)) dt

)
6 E

[(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]2Eπ(h(t− U)) dt

)2
]

6 1

T 2
E

[(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]2
dt

)2
](∫

R
h(x) dx

)2

6 K1,2
1

T 2

(∫
R
φ2
λ(x) dx

)2(∫
R
h(x) dx

)2
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So,

E(|W1,2(φλ)|m)

6 K1,2 n
m

(
n

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+
nm/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m)

6 K1,2
n3m/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
. (6.22)

• W1,3(φλ) = (n− 1)

n∑
j=1

∫
R
Varπ(φλ(t− U))

[
h(t− Uj)− Eπ(h(t− U))

]
dt.

We have:

E(|W1,3(φλ)|m)

= (n− 1)mE

∣∣∣∣∣∣
n∑
j=1

∫
R
Varπ(φλ(t− U))

[
h(t− Uj)− Eπ(h(t− U))

]
dt

∣∣∣∣∣∣
m

6 (n− 1)m × C(m)

(
nE
(∣∣∣∣∫

R
Varπ(φλ(t− U))

[
h(t− U1)− Eπ(h(t− U))

]
dt

∣∣∣∣m)

+ nm/2
[
Var

(∫
R
Varπ(φλ(t− U))

[
h(t− U1)− Eπ(h(t− U))

]
dt

)]m/2)
,

using Rosenthal’s inequality, where C(m) is a positive constant only depending on m. But, applying
Lemma 6.1,

E
(∣∣∣∣∫

R
Varπ(φλ(t− U))

[
h(t− U1)− Eπ(h(t− U))

]
dt

∣∣∣∣m) 6 2m

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
,

and

Var

(∫
R
Varπ(φλ(t− U))

[
h(t− U1)− Eπ(h(t− U))

]
dt

)
= Var

(∫
R
Varπ(φλ(t− U))h(t− U1) dt

)
6 E

[(∫
R
Varπ(φλ(t− U))h(t− U1) dt

)2
]

6 1

T 2

(∫
R
φ2
λ(x) dx

)2

E

[(∫
R
h(t− U1) dt

)2
]

6 1

T 2

(∫
R
φ2
λ(x) dx

)2(∫
R
h(x) dx

)2

.

So,

E(|W1,3(φλ)|m) 6 (n− 1)m × C(m)

(
2mn

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+
nm/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m)

6 K1,3
n3m/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
, (6.23)
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with K1,3 a positive constant only depending on m.
Next we deal with the moments of W2(φλ) that we write:

W2(φλ) = W2,1(φλ) +W2,2(φλ) +W2,3(φλ),

with:

• W2,1(φλ) = 2
∑

16i ̸=j6n

∫
R
[φλ(t−Ui)−Eπ(φλ(t−U))]

[
φλ(t−Uj)h(t−Uj)−Eπ(φλ(t−U)h(t−U))

]
dt.

We want to use Theorem 8.1.6 of [6] (a moment inequality for U -statistics using decoupling) so we
write:

W2,1(φλ) = 2
∑

16i̸=j6n
f(Ui, Uj),

where

f(Ui, Uj) =

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uj)h(t− Uj)− Eπ(φλ(t− U)h(t− U))

]
dt.

There exists a positive constant C2,m depending on m only such that

E

∣∣∣∣∣∣
∑

16i̸=j6n
f(Ui, Uj)

∣∣∣∣∣∣
m

6 C2,mn
mE(|f(U1, U2)|m)

6 C2,mn
mE
(∣∣∣∣∫

R
[φλ(t− U1)− Eπ(φλ(t− U))]

[
φλ(t− U2)h(t− U2)− Eπ(φλ(t− U)h(t− U))

]
dt

∣∣∣∣m)
6 C2,mn

mE

[(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]2
dt

)m/2]

× E

[(∫
R

[
φλ(t− U2)h(t− U2)− Eπ(φλ(t− U)h(t− U))

]2
dt

)m/2]

6 K2,1 n
m

(∫
R
φ2
λ(x) dx

)m/2(∫
R
φ2
λ(x)h

2(x) dx

)m/2
6 K2,1 n

m

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞,

by applying Lemma 6.1 and setting K2,1 a positive constant only depending on m. So,

E(|W2,1(f)|m) 6 K2,1 n
m

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞. (6.24)

• We may write: W2,2(φλ) = (n− 2)
∑

16i̸=k6n
f(Ui, Uk), where

f(Ui, Uk) =

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
φλ(t− Uk)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt.
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We use Theorem 8.1.6 of [6]: there exists a positive constant C2,m depending on m only such that

E

∣∣∣∣∣∣
∑

16i̸=k6n
f(Ui, Uk)

∣∣∣∣∣∣
m

6 C2,mn
mE(|f(U1, U2)|m)

6 C2,mn
mE
(∣∣∣∣∫

R

[
φλ(t− U1)− Eπ(φλ(t− U))

][
φλ(t− U2)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣m)
6 K2,2

nm

Tm

{
E

[(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]2
dt

)m/2]}2(∫
R
h(x) dx

)m
6 K2,2

nm

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
,

by applying Lemma 6.1 and setting K2,2 a positive constant only depending on m. So,

E(|W2,2(f)|m) 6 K2,2
n2m

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
. (6.25)

• We may write: W2,3(φλ) =
∑

16i ̸=j6n
f(Ui, Uj), where

f(Ui, Uj) =

∫
R

[[
φλ(t−Ui)−Eπ(φλ(t−U))

]2 −Varπ(φλ(t−U))

][
h(t−Uj)−Eπ(h(t−U))

]
dt.

We use Theorem 8.1.6 of [6]: there exists a positive constant C2,m depending on m only such that

E

∣∣∣∣∣∣
∑

16i ̸=j6n
f(Ui, Uj)

∣∣∣∣∣∣
m

6 C2,mn
mE(|f(U1, U2)|m)

6 C2,mn
mE
(∣∣∣∣∫

R
[[φλ(t− U1)− Eπ(φλ(t− U))]2 −Varπ(φλ(t− U))][h(t− U2)− Eπ(h(t− U))] dt

∣∣∣∣m)
6 K2,3 n

mE
[(∫

R

∣∣∣[φλ(t− U1)− Eπ(φλ(t− U))
]2 −Varπ(φλ(t− U))

∣∣∣ dt)m] ∥h∥m∞
6 K2,3 n

m

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞,

by applying Lemma 6.1 and setting K2,3 a positive constant only depending on m. So,

E(|W2,3(φλ)|m) 6 K2,3 n
m

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞. (6.26)

And finally, we focus on the moments of W3(φλ) that we write: W3(φλ) =
∑

16i̸=j ̸=k6n
f(Ui, Uj , Uk),

where

f(Ui, Uj , Uk) =

∫
R

[
φλ(t−Ui)−Eπ(φλ(t−U))

][
φλ(t−Uk)−Eπ(φλ(t−U))

][
h(t−Uj)−Eπ(h(t−U))

]
dt.
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We use Theorem 8.1.6 of [6]: there exists a positive constant C3,m depending on m only such that

E

∣∣∣∣∣∣
∑

16i̸=j ̸=k6n
f(Ui, Uj , Uk)

∣∣∣∣∣∣
m

6 C3,mn
3m/2E(|f(U1, U2, U3)|m)

6 C3,mn
3m/2E

(∣∣∣∣∣
∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

][
φλ(t− U2)− Eπ(φλ(t− U))

]
×
[
h(t− U3)− Eπ(h(t− U))

]
dt

∣∣∣∣∣
m)

6 K3 n
3m/2E

[(∫
R

∣∣∣[φλ(t− U1)− Eπ(φλ(t− U))
][
φλ(t− U2)− Eπ(φλ(t− U))

]∣∣∣ dt)m] ∥h∥m∞,
by applying Lemma 6.1 and setting K3 a positive constant only depending on m. Furthermore, using
the support properties of the biorthogonal wavelet bases considered in this paper, we have

E
[(∫

R

∣∣∣[φλ(t− U1)− Eπ(φλ(t− U))
][
φλ(t− U2)− Eπ(φλ(t− U))

]∣∣∣ dt)m]
= E

[(∫
R

∣∣∣φλ(t− U1)φλ(t− U2)− φλ(t− U1)Eπ(φλ(t− U))− φλ(t− U2)Eπ(φλ(t− U))

+
[
Eπ(φλ(t− U))

]2∣∣∣ dt)m]

6 K3

{
E

[(∫
R

∣∣∣φλ(t− U1)φλ(t− U2)
∣∣∣ dt)m]+ E

[(∫
R

∣∣∣φλ(t− U1)Eπ(φλ(t− U))
∣∣∣ dt)m]

+ E

[(∫
R

[
Eπ(φλ(t− U))

]2
dt

)m]}
,

with:

E

[(∫
R

∣∣∣φλ(t− U1)φλ(t− U2)
∣∣∣ dt)m] =

1

T 2

∫ T

0
du1

∫ T

0
du2

(∫
R

∣∣φλ(t− u1)φλ(t− u2)
∣∣ dt)m

6 1

T 2

∫ T

0
du1

∫ u1+2M

u1−2M
du2

(∫
R
φ2
λ(x) dx

)m
6 4M

T

(∫
R
φ2
λ(x) dx

)m
,

E

[(∫
R

∣∣∣φλ(t− U1)Eπ(φλ(t− U))
∣∣∣ dt)m] = E

[(∫
R

∣∣∣φλ(t− U1)

(
1

T

∫ T

0
φλ(t− u) du

) ∣∣∣ dt)m]

6 1

Tm
E

[(∫ T

0
du

∫
R

∣∣φλ(t− U1)φλ(t− u)
∣∣ dt)m]

6 1

Tm+1

∫ T

0
du1

(∫ T

0
du

∫
R

∣∣φλ(t− u1)φλ(t− u)
∣∣ dt)m

6 1

Tm+1

∫ T

0
du1

(∫ u1+2M

u1−2M
du

∫
R
φ2
λ(x) dx

)m
6 (4M)m

Tm

(∫
R
φ2
λ(x) dx

)m
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and ∫
R

[
Eπ(φλ(t− U))

]2
dt =

1

T 2

∫
R
dt

∫ T

0
duφλ(t− u)

∫ T

0
dv φλ(t− v)

=
1

T 2

∫ T

0
du

∫ T

0
dv

∫
R
φλ(t− u)φλ(t− v) dt

6 1

T 2

∫ T

0
du

∫ u+2M

u−2M
dv

∫
R
φ2
λ(x) dx

6 4M

T

∫
R
φ2
λ(x) dx.

So,

E(|W3(φλ)|m) 6 K ′
3 n

3m/2

[
1

T

(∫
R
φ2
λ(x) dx

)m
+

1

Tm

(∫
R
φ2
λ(x) dx

)m ]
∥h∥m∞, (6.27)

with K ′
3 a positive constant only depending on m and the compact support of ψ. Note that if we had

used the same method as for the control of the moments of W2,2(φλ), we would not get the correct rate
of convergence. We obtain a better rate of convergence thanks to the properties of the biorthogonal
wavelet bases used here.

Thus, combining inequalities (6.20), (6.21), (6.22), (6.23), (6.24), (6.25), (6.26) and (6.27) yields

E(V (φλ)
m)

6 K

{
nm
(∫

R
φ2
λ(x) dx

)m
∥h∥m∞ +

n2m

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+

n3m/2

Tm

(∫
R
|φλ(x)| dx

)2m

∥h∥m∞ +
n3m/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+
n3m/2

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+ nm

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞

+
n2m

Tm

(∫
R
φ2
λ(x) dx

)m(∫
R
h(x) dx

)m
+ nm

(∫
R
φ2
λ(x) dx

)m
∥h∥m∞

+ n3m/2

[
1

T

(∫
R
φ2
λ(x) dx

)m
+

1

Tm

(∫
R
φ2
λ(x) dx

)m ]
∥h∥m∞

}

6 K

{
n3m/2

Tm
∥φλ∥2m1 ∥h∥m∞ +

n2m

Tm
∥φλ∥2m2 ∥h∥m1 +

[
nm +

n3m/2

T

]
∥φλ∥2m2 ∥h∥m∞

}
,

with K a positive constant only depending on m and the compact support of ψ. So, we obtain

E(V (φλ)
p) 6 K

{
n3p/2

T p
∥φλ∥2p1 ∥h∥p∞ +

n2p

T p
∥φλ∥2p2 ∥h∥p1 +

[
np +

n3p/2

T

]
∥φλ∥2p2 ∥h∥p∞

}
, (6.28)

with K a positive constant only depending on p and the compact support of ψ.

To conclude for the first term of (6.17), using inequalities (6.19) and (6.28) in (6.18), we have

E(|G(φλ)− E(G(φλ)|U1, . . . , Un)|2p)

6 K

{
n2

T 2p
∥φλ∥2p1 ∥h∥1 +

np+1

T p
∥φλ∥2p2 ∥h∥1 +

n2

T
∥φλ∥22∥φλ∥2p−2

∞ ∥h∥1 + n∥φλ∥22∥φλ∥2p−2
∞ ∥h∥∞

+
n3p/2

T p
∥φλ∥2p1 ∥h∥p∞ +

n2p

T p
∥φλ∥2p2 ∥h∥p1 +

[
np +

n3p/2

T

]
∥φλ∥2p2 ∥h∥p∞

}
.

(6.29)
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Now, we have to focus on the second term of (6.17). Recall the definition (6.5) of W (φλ)

W (φλ) =W1(φλ) +W2(φλ),

with

W1(φλ) = (n− 1)
n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt,

and
W2(φλ) =

∑
16i ̸=j6n

g(Ui, Uj),

where
g(Ui, Uj) =

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt.

So,
E(|W (φλ)|2p) 6 22p−1

[
E(|W1(φλ)|2p) + E(|W2(φλ)|2p)

]
.

On the one hand, we have to control E(|W1(φλ)|2p). We use Rosenthal’s inequality: there exists a
positive constant C(p) only depending on p such that

E(|W1(φλ)|2p)

= (n− 1)2pE

∣∣∣∣∣
n∑
i=1

∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣∣
2p


6 (n− 1)2p × C(p)

(
nE

(∣∣∣∣∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣2p
)

+ np
[
Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

)]p)
.

But, applying Lemma 6.1,

E

(∣∣∣∣∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

∣∣∣∣2p
)

6 1

T 2p
E

(∣∣∣∣∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
dt

∣∣∣∣2p
)(∫

R
h(x) dx

)2p

6 22p

T 2p

(∫
R
|φλ(x)| dx

)2p(∫
R
h(x) dx

)2p

and

Var

(∫
R

[
φλ(t− U1)− Eπ(φλ(t− U))

]
Eπ(h(t− U)) dt

)
= Var

(∫
R
φλ(t− U1)Eπ(h(t− U)) dt

)
6 E

[(∫
R
|φλ(t− U1)|Eπ(h(t− U)) dt

)2
]

6 1

T 2
E

[(∫
R
|φλ(t− U1)| dt

)2
](∫

R
h(x) dx

)2

6 1

T 2

(∫
R
|φλ(x)| dx

)2(∫
R
h(x) dx

)2

.
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So,

E(|W1(φλ)|2p) 6 K1 n
2p

[
n

T 2p

(∫
R
|φλ(x)| dx

)2p

+
np

T 2p

(∫
R
|φλ(x)| dx

)2p
](∫

R
h(x) dx

)2p

, (6.30)

with K1 a positive constant only depending on p.

And on the other hand, we have to control E(|W2(φλ)|2p). We have:

W2(φλ) =
∑

16i ̸=j6n
g(Ui, Uj).

We use Theorem 3.3 of [11] associated with Theorem 1 of [7] (we keep the same notations of [11]). We

set hi,j =
{

0 if i = j
g otherwise and we consider (U

(1)
i , i = 1 . . . n) and (U

(2)
i , i = 1 . . . n) two independent

copies of (Ui, i = 1 . . . n). With Theorem 3.3 of [11], there exists an universal constant K such that

E

∣∣∣∣∣∣
∑

16i,j6n
hi,j(U

(1)
i , U

(2)
j )

∣∣∣∣∣∣
2p 6 K2p

[
(2p)pC2p + (2p)2pD2p + (2p)3pB2p + (2p)4pA2p

]
,

where

• A = max
i,j

∥hi,j∥∞ = ∥g∥∞. But, for all (x, y) ∈ R2,

|g(x, y)| =
∣∣∣∣∫

R

[
φλ(t− x)− Eπ(φλ(t− U))

][
h(t− y)− Eπ(h(t− U))

]
dt

∣∣∣∣
6 4

∫
R
|φλ(x)| dx∥h∥∞,

using equality (b) of Lemma 6.1 with f = φλ. So,

A 6 4

∫
R
|φλ(x)| dx∥h∥∞, (6.31)

• C2 =
∑
i,j

E(h2i,j(U
(1)
i , U

(2)
j )) =

∑
i ̸=j

E(g2(Ui, Uj)). But, for all i ̸= j,

E(g2(Ui, Uj))

6 E

[(∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

][
h(t− Uj)− Eπ(h(t− U))

]
dt

)2
]

6 E
[∫

R
[φλ(t− Ui)− Eπ(φλ(t− U))]2|h(t− Uj)− Eπ(h(t− U))| dt

∫
R
|h(t− Uj)− Eπ(h(t− U))| dt

]
6 2E

[∫
R

[
φλ(t− Ui)− Eπ(φλ(t− U))

]2∣∣h(t− Uj)− Eπ(h(t− U))
∣∣ dt] ∫

R
h(x) dx

6 4

T

∫
R
E
([
φλ(t− Ui)− Eπ(φλ(t− U))

]2)
dt

(∫
R
h(x) dx

)2

6 4

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

,

using Lemma 6.1. So,

C2 6 4n(n− 1)

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

, (6.32)
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• B2 = max

∥∥∥∥∑
i

E1(h
2
i,j(Ui, y))

∥∥∥∥
∞
,

∥∥∥∥∑
j

E2(h
2
i,j(x,Uj))

∥∥∥∥
∞

, with

E1(h
2
i,j(Ui, y)) =

{
Eπ(g2(U, y)) if i ̸= j

0 otherwise 6 4

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

and

E1(h
2
i,j(x,Uj)) =

{
Eπ(g2(x,U)) if i ̸= j

0 otherwise 6 16

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

,

using established inequalities to get equation (6.14) in the proof of the assumption (A1). So,

B2 6 16n

T

∫
R
φ2
λ(x) dx

(∫
R
h(x) dx

)2

, (6.33)

• D = sup

E
(∑

i,j

hi,j(U
(1)
i , U

(2)
j )ai(U

(1)
i )bj(U

(2)
j )

)
: E
(∑

i

a2i (Ui)

)
6 1,E

(∑
j

b2j (Uj)

)
6 1

.

By using established inequalities to get equation (6.13) in the proof of the assumption (A1), we
obtain

D 6 2n

√
1

T

∫
R
φ2
λ(x) dx

∫
R
h(x) dx. (6.34)

Moreover, we use the equivalence of Theorem 3.3 of [11] and the decoupling inequality provided in
Theorem 1 of [7] to obtain the following upper bound of E(|W2(φλ)|2p):

E(|W2(φλ)|2p) 6 K2

[
n2p

T p

(∫
R
φ2
λ(x) dx

)p(∫
R
h(x) dx

)2p

+
np

T p

(∫
R
φ2
λ(x) dx

)p(∫
R
h(x) dx

)2p

+

(∫
R
|φλ(x)| dx

)2p

∥h∥2p∞

]
,

(6.35)

with K2 a positive constant only depending on p.

Finally, by using inequalities (6.29), (6.30) and (6.35) in (6.17), we obtain:

E(|β̂λ − βλ|2p)

6 K

{
1

n2p−2T 2p
∥φλ∥2p1 ∥h∥1 +

1

np−1T p
∥φλ∥2p2 ∥h∥1 +

1

n2p−2T
∥φλ∥22∥φλ∥2p−2

∞ ∥h∥1

+
1

n2p−1
∥φλ∥22∥φλ∥2p−2

∞ ∥h∥∞ +
1

np/2T p
∥φλ∥2p1 ∥h∥p∞ +

1

T p
∥φλ∥2p2 ∥h∥p1

+
1

np
∥φλ∥2p2 ∥h∥p∞ +

1

np/2T
∥φλ∥2p2 ∥h∥p∞ +

n

T 2p
∥φλ∥2p1 ∥h∥2p1 +

np

T 2p
∥φλ∥2p1 ∥h∥2p1

+
1

T p
∥φλ∥2p2 ∥h∥2p1 +

1

npT p
∥φλ∥2p2 ∥h∥2p1 +

1

n2p
∥φλ∥2p1 ∥h∥2p∞

}
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and so,[
E
(
|β̂λ − βλ|2p

)] 1
p

6 K

{
1

n2−2/pT 2
∥φλ∥21∥h∥

1/p
1 +

n

T 2
∥φλ∥21∥h∥21 +

1

n1/2T
∥φλ∥21∥h∥∞ +

1

n2
∥φλ∥21∥h∥2∞

+
1

n1−1/pT
∥φλ∥22∥h∥

1/p
1 +

1

T
∥φλ∥22∥h∥1 +

1

T
∥φλ∥22∥h∥21 +

[
1

n
+

1

n1/2T 1/p

]
∥φλ∥22∥h∥∞

+

[
1

n2−2/pT 1/p
+

1

n2−1/p

]
∥φλ∥

2/p
2 ∥φλ∥2−2/p

∞ ∥h∥1/p∞

}
,

with K a positive constant only depending on p and the compact support of ψ.
Recall that for any λ = (j, k) ∈ Λ, we have:

∥φλ∥1 6 2−j/2Mψ,1, ∥φλ∥2 6Mψ,2 and ∥φλ∥∞ 6 2j/2Mψ,∞

We consider 1 < p <∞ and we fix 1 < q <∞ such that 1
p +

1
q = 1, so that

[
E
(
|β̂λ − βλ|2p

)] 1
p 6 K

{
n

T 2
∥h∥21 +

1

n2
∥h∥2∞ +

1

n1/qT
∥h∥1/p1 +

1

T
∥h∥1 +

1

T
∥h∥21

+

[
1

n
+

1

n1/2T 1/p

]
∥h∥∞ +

[
1

n2/qT 1/p
+

1

n1+1/q

]
2j0/q∥h∥1/p∞

}
,

with K a positive constant depending on p, ∥ψ∥1, ∥ψ∥2, ∥ψ∥∞ and the compact support of ψ.

Finally, choosing p = 2, Assumption (A2) is fulfilled with

R = CR

{
1

n
+

2j0/2

n3/2
+

2j0/2

nT 1/2
+

n

T 2

}
,

where CR is a positive constant depending on ∥h∥1, ∥h∥∞, ∥ψ∥1, ∥ψ∥2, ∥ψ∥∞ and the compact support
of ψ,

Hλ = 1λ∈Γ

and ε = 1.

6.4.3 Proof of Assumption (A3)

To shorten mathematical expressions, we denote ηλ = ηλ(γ,∆) in the sequel. The following inequality:

P
(
|β̂λ − βλ| > κηλ, |β̂λ| > ηλ

)
6 Hλζ

is obvious with ζ = ω, which proves Assumption (A3) choosing θ = 1+ε
ε .

6.4.4 Completion of the proof of Theorem 3

Therefore we can apply Theorem 2: the estimator β̃ =
(
β̂λ1|β̂λ|>ηλ1λ∈Γ

)
λ∈Λ

satisfies

1− κ2

1 + κ2
E
(
∥β̃ − β∥2ℓ2

)
6 E

 inf
m⊂Γ

1 + κ2

1− κ2

∑
λ̸∈m

β2λ +
1− κ2

κ2

∑
λ∈m

(β̂λ − βλ)
2 +

∑
λ∈m

η2λ


+ LD

∑
λ∈Γ

Hλ

6 inf
m⊂Γ

1 + κ2

1− κ2

∑
λ̸∈m

β2λ +
1− κ2

κ2

∑
λ∈m

E((β̂λ − βλ)
2) +

∑
λ∈m

E(η2λ)

+ LD
∑
λ∈Γ

Hλ,

with
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• for all λ = (j, k) in Γ,

E((β̂λ − βλ)
2) = Var(β̂λ) 6 K

{
1

n
+

1

T
+

2−jn

T 2

}
,

where K is a positive constant depending on ∥h∥1, ∥h∥∞, ∥ψ∥1 and ∥ψ∥2 (see Lemma 2.1);

• for all λ = (j, k) in Γ,

ηλ 6 K

(√
j0Ṽ

(φλ
n

)
+ j0B

(φλ
n

)
+ ∆̃

NR
n

)
where K depends on ε, κ, γ, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞ and

∆̃ =
j202

j0/2

n
+

j0√
T

+

√
j0n

T
;

• LD = R
κ2

(
(1 + θ−1/2)ω1/2 + (1 + θ1/2)ε1/2ζ1/2

)
6 K R

(
e−κ

2j0γ/2 + exp (−g(ε0)n∥h∥1/2)
)
, where

K is a positive constant depending only on ε and κ,

•
∑
λ∈Γ

Hλ = |Γ|, where |Γ| is the cardinal of the set Γ. So, we can upper bound this quantity by

K 2j0 , where K is a positive constant depending only on the compact support of h and the
compact support of ψ.

Recall that ε = 1, κ ∈]0; 1[ will be fixed in the sequel and γ > 0, according Assumption (A1).

It remains to compute E(η2λ). Let λ ∈ Γ. We have:

E(η2λ) 6 K

(
j0
n2

E(Ṽ (φλ)) +
j20
n2

E(B2(φλ)) +

{
j0n

T 2
+
j20
T

+
2j0j40
n2

}
E(N2

R)

n2

)
,

with K depending on ε, κ, γ, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞ and E(N2
R) = n∥h∥1 + n2∥h∥21 6 2n2M2

h,1.
We control Ṽ (φλ) in expectation and we recall that α = κ2j0γ.

E(Ṽ (φλ)) 6 E(V̂ (φλ)) +

√
2αE(V̂ (φλ))E(B2(φλ)) + 3αE(B2(φλ)), (6.36)

with using inequality (6.4),

E(V̂ (φλ)) = E(V (φλ)) 6 K

{
n∥h∥∞ +

n2

T
∥h∥1

}
,

where K is a positive constant depending only on ∥ψ∥2.
Now, we focus on E(B2(φλ)) where

B(φλ) = B(φλ) =

∥∥∥∥∥
n∑
i=1

[
φλ(· − Ui)−

n− 1

n
Eπ(φλ(· − U))

]∥∥∥∥∥
∞

= sup
t∈R

∣∣∣∣∣
n∑
i=1

[
φλ(t− Ui)−

n− 1

n
Eπ(φλ(t− U))

]∣∣∣∣∣
6 B̃(φλ) +

1

T
∥φλ∥1,

with B̃(φλ) = sup
t∈R

∣∣∣∣∣
n∑
i=1

[
φλ(t− Ui)− Eπ(φλ(t− U))

]∣∣∣∣∣.
Then, we have to control E(B̃(φλ)). Since it is a decomposition biorthogonal wavelet, φλ is a piecewise
constant function and we can write:

φλ =
N∑
l=1

cl1[al;bl],
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where N ∈ N∗ and for any l ∈ {1, . . . , N}, al, bl, cl ∈ R and al < bl. It is easy to see that

B̃(φλ) 6
N∑
l=1

B̃(cl1[al;bl]) =
N∑
l=1

|cl|B̃(1[al;bl]).

It remains to compute E(B̃(1[a;b])) for some interval [a; b].

B̃(1[a;b]) = sup
t∈R

∣∣∣∣∣
n∑
i=1

[
1[a;b](t− Ui)− Eπ(1[a;b](t− U))

]∣∣∣∣∣
6 sup

Bt,t∈R

∣∣∣∣∣
n∑
i=1

[
1Bt(Ui)− Eπ(1Bt(U))

]∣∣∣∣∣ ,
where for any t ∈ R, Bt = [t− b; t− a].
We set B = {Bt, t ∈ R} and for every integer n, mn(B) = sup

A⊂R,|A|=n
|{A ∩Bt, t ∈ R}|. It is easy to see

that
mn(B) 6 1 +

n(n+ 1)

2

and so, the VC-dimension of B defined by sup{n > 0,mn(B) = 2n} is bounded by 2 (see Definition 6.2
of [20]).
By applying Lemma 6.4 of [20], we obtain:

√
nE(B̃(1[a;b])) 6

K

2

√
2,

where K is an absolute constant. So, for any λ in Γ,

E(B̃(φλ)) 6
K√
n
.

But, we want an upper bound of E(B̃2(φλ)). For this, we use Theorem 11 of [1]:[
E(B̃2(φλ))

]1/2 6 K

{
E(B̃(φλ)) + ∥M∥2

}
,

where
M = max

16i6n
sup
t∈R

∣∣φλ(t− Ui)− Eπ(φλ(t− U))
∣∣.

Hence,
∥M∥22 6 4∥φλ∥2∞ 6 K 2j ,

with K a constant only depending on ∥ψ∥∞.
Finally,

E(B2(φλ)) 6 K

{
E(B̃2(φλ)) +

2−j

T 2

}
6 K

{[
E(B̃(φλ))

]2
+ 2j +

2−j

T 2

}
6 K

{
1

n
+ 2j +

2−j

T 2

}
, (6.37)

with K a constant only depending on ∥ψ∥1 and ∥ψ∥∞.
Then combining (6.36) and (6.37) yields

E(η2λ) 6 K

{
j0
n

+
j
3/2
0 2j0/2

n3/2
+
j202

j0

n2
+
j402

j0

n2
+
j0
T

+
j20
T

+
j
3/2
0 2j0/2

nT 1/2
+
j0n

T 2

}
,
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where K is a constant depending on γ, ∥h∥1, ∥h∥∞, ∥ψ∥1, ∥ψ∥2 and ∥ψ∥∞, which concludes the proof
of Theorem 3 by setting

F (j0, n, T ) =
j0
n

+
j
3/2
0 2j0/2

n3/2
+
j402

j0

n2
+
j20
T

+
j
3/2
0 2j0/2

nT 1/2
+
j0n

T 2
.


