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Optimality properties in estimating jumps

Emmanuelle Clément∗ Sylvain Delattre† Arnaud Gloter‡

July, 19 2011

Abstract

We study the problem of the optimal estimation of the jumps for stochastic processes.

We assume that the stochastic process (Xt)t∈[0,1] is discretely observed with a sampling step

of size 1/n. We first propose an estimator of the sequence of jumps (∆XTk
)k based on the

discrete observations. This estimator has rate
√

n and we give an explicit expression for

its asymptotic error. Next, we show some lower bounds for the estimation of the jumps.

When the marks of the underlying jump component are deterministic, we prove a LAMN

property. We deduce then some convolution theorem, in the case where the marks of the

jump component are random. Especially, this implies the optimality of our estimator.

MSC 2010. Primary: 62G20, Secondary: 60F05, 60H05.

Key words: Itô process, LAMN property, convolution theorem.

1 Introduction

The statistical study of stochastic processes with jumps, from high frequency data, has been

the subject of many recent works. A major issue is to determine if the jump part is relevant

to model the observed phenomenon. Especially, for modelling of asset prices, the assessment

of the part due to the jumps in the volatility of the price is an important question. This has

been addressed in several works, either by considering multi-power variations ([6], [7], [11]) or

by truncation methods (see [18]). Another issue is to test statistically if the stochastic process
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has continuous paths. The question has been addressed in many works (see [1], [2], [4]) and

is crucial to the hedging of options. A clearly related question is to determine the degree of

activity of the jump component of the process. Estimators of the Blumenthal-Getoor index of

the Levy measure of the process are proposed in several papers ([3], [8], [20]).

In that context, the main statistical difficulty comes from the fact that one observes a discrete

sampling of the process, and consequently, the exact values of the jumps are unobserved. As a

matter of fact, a lot of statistical procedures rely on the estimation of a functional of the jumps.

In [13], Jacod considers the estimation, from a high frequency sampling, of the functional of the

jumps
∑

0≤s≤1,∆Xs 6=0

f(∆Xs) =
∑

k

f(∆XTk
),

for a smooth function f vanishing at zero. In particular, he studies the difference between the

unobserved quantity
∑

0≤s≤1 f(∆Xs) and the observed one
∑n−1

i=0 f(X i+1
n

− X i
n
). When X is

a semi-martingale, it is shown that the difference between the two quantities goes to zero with

rate
√

n. Rescaled by this rate, the difference is asymptotically distributed as

∑

k

f ′(∆XTk
)[σTk−

√
UkN

−
k + σTk

√
1 − UkN

+
k ], (1)

where the variables Uk are uniform variables on [0, 1] and N−
k , N+

k are standard Gaussian

variables. The quantity σTk− (resp. σTk
) is the local volatility of the semi martingale X before

(resp. after) the jump at time Tk. This result serves as the basis for studying the statistical

procedures developed in [4, 15].

However, the problem of optimality in these methods seems to have never been addressed.

Motivated by these facts, we discuss, in this paper, the optimal way to estimate the exact values

of the jumps, from the discrete sampling (X i
n
)0≤i≤n.

In this paper, we restrict ourself to processes X solutions of

Xt = x0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
a(s, Xs)dWs +

∑

Tk≤t

c(XTk−,Λk),

where we assume that the number of jumps on [0, 1], denoted by K, is finite. We note J =

(∆XT1 , . . . ,∆XTK
) the vector of jumps, and Λ = (Λ1, . . . ,ΛK) the random marks. We first

construct Ĵn a consistent estimator of the vector J based on the observation of (X i
n
)i. We

prove, as a preliminary result (Theorem 1), that the rescaled error
√

n(Ĵn−J) is asymptotically
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distributed as the vector [a(Tk, XTk−)
√

UkN
−
k + a(Tk, XTk

)
√

1 − UkN
+
k ]k=1,...,K . This result is

highly connected to the expression (1) obtained in [13].

Our main result states that this estimator is optimal, and thus it precises the law of the

minimal error for the estimation of the jumps. Let us stress, that the meaning of optimality

is not straightforward here. Indeed, we are not dealing with a standard parametric statistical

problem, and it is not clear which quantity can stand for the Fisher’s information. The notion

of optimality is stated as a convolution result in Theorem 2 . More precisely, we prove that for

any estimator Ĵn such that the error
√

n(Ĵn − J) converges in law to some variable Z, the law

of Z is a convolution between the law of the vector

[a(Tk, XTk−)
√

UkN
−
k + a(Tk, XTk

)
√

1 − UkN
+
k ]k=1,...,K

and some other law. Contrarily to the standard convolution theorem, we do not need the

usual regularity assumption on the estimator. The explanation is that we are not estimating a

deterministic (unknown) parameter, but we estimate some random (unobserved) variable J .

The proof of this convolution result relies on the study of a preliminary parametric model:

we consider the parametric model where the values of the marks Λ are considered as an unknown

deterministic parameter λ ∈ R
K . The resulting model is a stochastic differential equation with

jumps, whose coefficients depend on this parameter λ. We establish then in Theorem 3, that

this parametric model satisfies the LAMN property, with rate
√

n and some explicit Fisher’s

information matrix I(λ).

By Hajeck’s theorem, it is well known that the LAMN property implies a convolution theorem

for any regular estimator of the parameter λ (see [17]). However our context differs from the

usual Hajeck’s convolution theorem on at least two points. First, the parameter λ is randomized

and second the target of the estimator J = (c(XTk−, Λk))k depends both on the randomized

parameter and on some unobserved quantities XTk−. As a result, the connection between the

minimal law of the convolution theorem and the Fisher’s information of the parametric model is

not straightforward. The proof of the convolution theorem, when c(XTk−,Λk) = c(Λk) does not

depend on XTk−, is simpler and is given in Theorem 4. The proof of the general case is given in

Proposition 8.

Remark that it is certainly possible to state a general result about the connection between the

LAMN property and convolution theorems for the estimation of unobserved random quantities.

The proof of the Proposition 3 is a step in this direction. However giving such general results is
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beyond the scope of the paper.

The outline of the paper is as follows. In Section 2, we construct an estimator of the jumps.

In Section 3, we give the statements about optimality of the estimator. The LAMN property is

enounced in Section 4. The proofs of these results are postponed to the Section 5.

2 Estimation results

Consider (Xt)t∈[0,1] an adapted c.à.d.l.à.g., one dimensional, stochastic process defined on some

filtered probability space (Ω,F , (Ft)t∈[0,1], P). We assume that the sample paths of X almost

surely admits a finite number of jumps. We denote by K the random number of jumps on [0, 1]

and 0 < T1 < · · · < TK < 1 the instants of these jumps. We assume that the process X is a

solution of the stochastic differential equation with jumps

Xt = x0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
a(s, Xs)dWs +

∑

Tk≤t

c(XTk−,Λk), (2)

where W is a standard (Ft)t Brownian motion. The vector of marks (Λk)k is random. The

Brownian motion, the jump times and the marks are independent.

It is convenient to assume that the process is realized on the canonical product space of

the Brownian part and the jumps parts Ω = Ω1 × Ω2, P = P
1 ⊗ P

2. More precisely, we note

(Ω1,F1, P1) = (C([0, 1]),B, W), the space of continuous functions endowed with the Wiener

measure on the Borelian sigma-field and (F1
t )t∈[0,1] the filtration generated by the canonical

process. We introduce (Ω2,F2, P2) = (RN×R
N,B(R)⊗N⊗B(R)⊗N, P2), where P

2 is the law of two

independent sequences of random variables (Tk)k≥1, (Λk)k≥1. We assume that, P
2-almost surely,

the sequence (Tk)k≥1 is increasing and tends to infinity. Then, ((Wt)t∈[0,1], (Tk)k≥1, (Λk)k≥1) are

the canonical variables on Ω. We assume that (Ft)t is the right continuous, completed, filtration

based on (F1
t ×F2)t and F = F1.

We make the following assumptions:

A0 (law of the jump times). We note K = card{k | Tk ∈ [0, 1]}. Conditionally on K the

law of the vector of jump times T = (T1, . . . , TK) admits a density fT .

A1 (smoothness assumption). The functions a : [0, 1] × R → R, b : [0, 1] × R → R and

c : R
2 → R are continuous.

A2 (indentifiability of the jumps). We have almost surely: c(XTk−,Λk) 6= 0, ∀k ∈
{1, . . . ,K}.
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This last condition ensures that the jump times of X are exactly the times Tk.

Remark that if Tk − Tk−1 is exponentially distributed, the jumps times are arrival times

of a Poisson process. Then, if the marks (Λk)k are i.i.d. variables, the process
∑

Tk≤t Λk is a

compound Poisson process. In this particular case, the equation (2) becomes a standard S.D.E.

with jumps based on a random Poisson measure with finite intensity.

Let us note J = (Jk)k≥1 the sequence of jumps of X (on [0, 1]): we set Jk = ∆XTk
=

XTk
− XTk− for k ≤ K and we define Jk = 0 for k > K.

We construct an estimator of J in the following way.

Let (un)n be a sequence of positive numbers tending to 0. We set în1 = inf{0 ≤ i ≤
n − 1 :

∣∣∣X i+1
n

− X i
n

∣∣∣ ≥ un} with the convention inf ∅ = +∞. We recursively define for k ≥ 2,

înk = inf {̂ink−1 < i ≤ n − 1 :
∣∣∣X i+1

n
− X i

n

∣∣∣ ≥ un}. (3)

We set K̂n = sup{k ≥ 1 : înk < ∞} the number of increments of the diffusion exceeding the

threshold un. We then define for k ≥ 1,

Ĵn
k =





X în
k

+1

n

− X în
k
n

, if k ≤ K̂n

0, if k > K̂n

(4)

The sequence (Ĵn)n is an estimator of the vector of jumps J , and (K̂n)n estimates the number

of jumps.

Proposition 1 Let us assume A0–A2 and un ∼ n−̟ with ̟ ∈ (0, 1/2). Then, we have almost

surely,

K̂n = K for n large enough

if k ≤ K, Ĵn
k

n→∞−−−→ Jk = ∆XTk
,

if k > K, Ĵn
k = 0 for n large enough.

We now describe the asymptotic law of the error between Ĵn and J . We need some more

notation. Following [13], we introduce an extension of our initial probability space. We consider

an auxiliary probability space (Ω′,F ′, P′) which contains U = (Uk)k≥1 a sequence of independent

variables with uniform law on [0, 1], and N− = (N−
k )k≥1, N+ = (N+

k )k≥1 two sequences of

independent variables with standard Gaussian law. All these variables are mutually independent.

We extend the initial probability space by setting Ω̃ = Ω × Ω′, F̃ = F ⊗ F ′, P̃ = P ⊗ P
′,

F̃t = Ft ⊗F ′.
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Theorem 1 Let us assume A0–A2 and un ∼ n−̟ with ̟ ∈ (0, 1/2). Then
√

n(Ĵn − J)

converges in law to Z = (Zk)k≥1 where the limit can be described on the extended space Ω̃ by:

Zk =
√

Uka(Tk, XTk−)N−
k +

√
1 − Uka(Tk, XTk

)N+
k , for k ≤ K,

Zk = 0, for k > K.

Moreover the convergence is stable with respect to the sigma-field F . Let us precise that, here,

the convergence in law of the infinite dimensional vector
√

n(Ĵn − J) means the convergence of

any finite dimensional marginals.

Remark 1 The Theorem 1 shows that the error for the estimation of the jump ∆XTk
is asymp-

totically conditionally Gaussian. The variance of this error is random and equal to Uka(Tk, XTk−)2+

(1 − Uk)a(Tk, XTk
)2.

3 Optimality results

We now prove that the estimator introduced in the Section 2 is optimal. We need some more

assumptions on the model. Especially, to avoid cumbersome notation we will now assume that

the number of jumps is deterministic. This is not a real restriction, since we could reformulate

our result by conditioning on the number of jumps K. The probability space Ω introduced in

Section 2 is modified accordingly, Ω = Ω1 × Ω2, Ω1 = C([0, 1]) and Ω2 = R
K × R

K . The space

Ω̃ = Ω × Ω′ with Ω′ = R
3K extends the initial space with the sequences N− = (N−

k )1≤k≤K ,

N+ = (N+
k )1≤k≤K , U = (Uk)1≤k≤K .

H0. The number of jumps K is deterministic and the law of T = (T1, . . . , TK) is absolutely

continuous with respect to the Lebesgue measure. We note fT its density.

H1 (smoothness assumption). The functions (t, x) 7→ a(t, x) and (t, x) 7→ b(t, x) are C1,2 on

[0, 1] × R. We note a′ and b′ their derivatives with respect to x and we assume that a′ and b′

are C1,2 on [0, 1]×R. Moreover the functions a, b, and their derivatives are uniformly bounded.

The function (x, θ) 7→ c(x, θ) is C2,1 on R×R, with bounded derivatives. We note c′ its derivative

with respect to x and ċ its derivative with respect to θ. We assume moreover that ċ is C1,1 with

bounded derivatives.

H2 (non-degeneracy assumption). We assume that there exist two constants a and a such

that

∀(t, x) ∈ [0, 1] × R 0 < a ≤ a(t, x) ≤ a;
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∀(x, θ) ∈ R × R |1 + c′(x, θ)| ≥ a.

H3 (”randomness” of the jump sizes). The law of Λ = (Λ1, . . . ,ΛK) is absolutely contin-

uous with respect to the Lebesgue measure and we note fΛ its density. We assume also

∀(x, θ) ∈ R × R ċ(x, θ) 6= 0.

Let us comment on these assumptions. Apart from the fact that K is deterministic, the

assumption H0 is the same as A0. The regularity conditions H1–H2 are more restrictive than

the condition A1 stated for the existence of the estimator. However, in order to find a lower

bound, we need to deal with a kind of regular model. Remark that the non degeneracy of

|1 + c′(x, θ)| is a standard assumption which implies that the equation (2) admits a flow. The

assumption H3 is more specifically related to our statistical problem. We want to prove a

lower bound for the estimation of the random jumps sizes. Hence, if these quantities do not

exhibit enough randomness, it could be possible to estimate them with a rate faster than
√

n.

For instance, the condition H3 excludes that the jump sizes do not depend on the underlying

random marks.

We can now state our main result. We recall that J = (Jk)1≤k≤K = (c(XTk−,Λk))1≤k≤K =

(∆XTk
)1≤k≤K ∈ R

K is the sequence of the jumps of the process.

We will call (J̃n)n≥1 a sequence of estimators if for each n, J̃n ∈ R
K is a measurable function

of the observations (Xi/n)i=0,...,n.

Theorem 2 Assume H0–H3. Let J̃n be any sequence of estimators such that

√
n(J̃n − J)

n→∞−−−→
law

Z̃ (5)

for some variable Z̃. Then, the law of Z̃ is necessarily a convolution,

Z̃
law
= (Iopt)−1/2N + R, (6)

where Iopt is the diagonal random matrix of size K×K defined on the extended probability space

Ω̃, with diagonal entries:

Iopt
k = [Uka(Tk, XTk−)2 + (1 − Uk)a(Tk, XTk

)2]−1, for k = 1, . . . ,K. (7)

The vector N is a standard Gaussian vector on R
K independent of Iopt, and R is some random

variable independent of N conditionally on Iopt.
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Theorem 2 states that any estimator of the jumps with rate
√

n, must have an asymptotic law

with a dispersion greater than (Iopt)−1/2N . From Theorem 1, we know that the estimator Ĵn

satisfies
√

n(Ĵn − J)
n→∞−−−→
law

Z with Z
law
= (Iopt)−1/2N . Hence, we deduce that Ĵn is optimal for

estimating the size of the jumps.

It is well known that in parametric models, the Hajek’s convolution theorem usually requires

a regularity assumption on the estimator (see [12]). Here, it seems that our theorem does not

require any assumption on the estimator, apart its convergence with rate
√

n. This comes from

the fact that the target J of the estimator is random, yielding to some additional regularity

properties, compared with the usual parametric setting (see a related situation in Jeganathan

[16]).

In Section 4, we consider a parametric model related to our model (2), and enounce the

associated LAMN property. This is the key step before proving Theorem 2. Remark that

directly considering the values of the jumps size as the parameter is not the right choice. The

reason is that the jump sizes are not independent of the Brownian motion (Wt)t. Instead, we

prefer to consider the values of the marks Λ as the statistical parameter.

4 LAMN property in the parametric case

We focus on the parametric model where the values of the marks Λ are considered as the unknown

(deterministic) parameters. This is the crucial step before proving our optimality result.

More precisely, our aim is to obtain the LAMN property for the parametric model

Xλ
t = x0 +

∫ t

0
b(s, Xλ

s )ds +

∫ t

0
a(s, Xλ

s )dWs +
K∑

k=1

c(Xλ
Tk−, λk) (8)

where the parameter λ = (λ1, . . . , λK) ∈ R
K . We note T = (T1, . . . , TK) the vector of jump

times such that 0 < T1 < . . . < TK < 1. Let us remark that, under the assumption H1, the

solutions of (8) might be defined on the probability space Ω1 × R
K endowed with the product

of the Wiener measure and the law of the jumps times. Hence, to avoid new notation, we can

assume that, for all λ ∈ R
K , the process (Xλ

t )t∈[0,1] is defined on the space (Ω,F , P) of Section

3.

We observe both the regular discretization (Xλ
i/n)1≤i≤n of the process solution of (8) on the

time interval [0, 1] and the jump times vector T .
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Under H0 and H1 the law of the observations (T, (Xλ
i/n)1≤i≤n) admits a density pn,λ. We

note pn,λ,T the density of (Xλ
i/n)1≤i≤n conditionally on T . For h = (h1, . . . , hK) ∈ R

K we

introduce the log-likelihood ratio:

Zn(λ, λ + h/
√

n, T, x1, . . . , xn) = log
pn,λ+h/

√
n

pn,λ
(T, x1, . . . , xn) (9)

Theorem 3 Assume H0, H1 and H2. Then, the statistical model (pn,λ)λ∈RK satisfies a LAMN

property. For λ ∈ R
K , h ∈ R

K we have:

Zn(λ, λ + h/
√

n, T, Xλ
1/n, . . . , Xλ

1 ) =

K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k − 1

2

K∑

k=1

h2
kIn(λ)k + o

pn,λ(1) (10)

where In(λ) is a diagonal random matrix and Nn(λ) are random vectors in R
K such that

(In(λ), Nn(λ))
n→∞−−−→
law

(I(λ), N),

with:

I(λ)k =
ċ(Xλ

Tk−, λk)
2

a2(Tk, X
λ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk, X
λ
Tk− + c(Xλ

Tk−, λk))(1 − Uk)
, (11)

where U = (U1, . . . , UK) is a vector of independent uniform laws on [0, 1] such that U , T and

(Wt)t∈[0,1] are independent, and conditionally on (U, T, (Wt)t∈[0,1]), N is a standard Gaussian

vector in R
K .

Actually, we can complete the statement of the theorem by giving explicit expressions for In(λ)

and Nn(λ):

In(λ)k =

ċ(Xλ
ik
n

, λk)
2

nDn,λk,k(Xλ
ik
n

)
, Nn(λ)k =

√
n(Xλ

ik+1

n

− Xλ
ik
n

− c(Xλ
ik
n

, λk))
√

nDn,λk,k(Xλ
ik
n

)
,

Dn,λk,k(Xλ
ik
n

) = a2(
ik
n

, Xλ
ik
n

)(1 + c′(Xλ
ik
n

, λk))
2(Tk − ik

n
) + a2(

ik
n

, Xλ
ik
n

+ c(Xλ
ik
n

, λk))(
ik + 1

n
− Tk),

where ik is the integer part of nTk.

5 Proof section

We divide the proofs into three sections. The Section 5.1 is devoted to the proof of the conver-

gence and normality of the estimator Ĵn. Then, we prove the LAMN property of the parametric

model in Section 5.2. Finally, the convolution result is established in Section 5.3
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5.1 Study of the estimator Ĵ
n: proof of Proposition 1 and Theorem 1

5.1.1 Proof of Proposition 1

For k ∈ {1, . . . ,K}, let us note ik the integer such that ik/n ≤ Tk < (ik + 1)/n. We set

I = {i1, . . . , iK} and consider a variable which counts the number of false discovery of a jump

by the estimator,

En =

n−1∑

i=0

1|X(i+1)/n−Xi/n|≥un
1i/∈I (12)

For M > 0, we define ΩM as the event ΩM = {sups∈[0,1][|b(s, Xs)| + |a(s, Xs)|] ≤ M}.
We have

P({En ≥ 1} ∩ ΩM ) ≤ E[En1ΩM
]

=
n−1∑

i=0

E[1|X(i+1)/n−Xi/n|≥un
1i/∈I1ΩM

]

≤
n−1∑

i=0

P

[{∣∣∣∣∣

∫ (i+1)/n

i/n
a(s, Xs)dWs +

∫ (i+1)/n

i/n
b(s, Xs)ds

∣∣∣∣∣ ≥ un

}
∩ ΩM

]

≤
n−1∑

i=0

P

[{∣∣∣∣∣

∫ (i+1)/n

i/n
a(s, Xs)dWs

∣∣∣∣∣ ≥ un − M

n

}
∩ ΩM

]
. (13)

With aM = (a ∧ M) ∨ (−M) one has using Markov and Burkholder-Davis-Gundy inequalities:

P

[{∣∣∣∣∣

∫ (i+1)/n

i/n
a(s, Xs)dWs

∣∣∣∣∣ ≥ un − M

n

}
∩ ΩM

]
≤ P

[∣∣∣∣∣

∫ (i+1)/n

i/n
aM (s, Xs)dWs

∣∣∣∣∣ ≥ un − M

n

]

≤ Cp(un − M

n
)−pn−p/2 ∀p > 0

= O(n−2) (14)

since un ∼ n−̟ with ̟ < 1/2.

From (13) and (14) we get
∑

n≥1 P({En ≥ 1}∩ΩM ) < ∞, and by Borel Cantelli’s lemma we

deduce that P(
⋂

n≥1

⋃
p≥n({Ep ≥ 1}∩ΩM )) = 0. It immediately implies P

((⋂
n≥1

⋃
p≥n{Ep ≥ 1}

)
∩ ΩM

)
=

0 and since ∪M≥1ΩM = Ω, we easily deduce that almost surely, there exists n, such that ∀p ≥ n,

Ep = 0. Recalling the definitions (3) and (12), we conclude that almost surely, if n is large

enough, {̂in1 , . . . , în
bKn
} ⊂ I and, as a consequence, K̂n ≤ K.

Now, remark that we have almost surely the convergence, for all k ≤ K,

X(ik+1)/n − Xik/n
n→∞−−−→ XTk

− XTk− = c(XTk−,Λk). (15)
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From the assumption A2, we have c(XTk−, Λk) 6= 0 and using that un → 0, we deduce that for

n large enough, I ⊂ {̂in1 , . . . , în
bKn
}.

As a consequence, we have shown that,

almost surely, for n large enough, K̂n = K and înk = ik, ∀k ≤ K. (16)

Eventually, the proposition follows from (4), (15) and (16).

5.1.2 Proof of Theorem 1

We use the notation introduced in the proof of Proposition 1: for k ∈ {1, . . . K}, we have

ik/n ≤ Tk < (ik + 1)/n. Let us define for 1 ≤ k ≤ K, Gn
k = X(ik+1)/n − Xik/n − ∆XTk

and

Gn
k = 0 for k > K. Using (4) and (16), we see that, almost surely, for n large enough, we have

Ĵn − J = Gn. Hence it is sufficient to study the limit in law of
√

nGn.

Consider any K0 ∈ N such that P(K = K0) > 0. Actually, we will prove the convergence of
√

nGn conditionally on the event {K = K0}, to the law of Z conditional on {K = K0}. It is

easy to see that it is sufficient to prove the theorem.

For K0 ∈ N, define P̂
K0 =

1{K=K0}
P(K=K0)P, the conditional probability. Clearly P̂

K0 << P, and

(Wt)t is still a (Ft)t Brownian motion under P̂
K0 .

For k > K0 we have Gn
k = 0, hence we focus only on the components Gn

k with k ≤ K0.

Define Ω̂n = {X has at most one jumps on each interval of size 1/n}. We have limn→∞ P̂
K0(Ω̂n) =

1. On Ω̂n, the following decomposition holds true P̂
K0 almost surely, for any k ≤ K0,

√
nGn

k = a(ik/n, Xik/n)α−
k,n + a(Tk, XTk

)α+
k,n + en,k

where

α−
k,n =

√
n(WTk

− Wik/n), α+
k,n =

√
n(W(ik+1)/n − WTk

), (17)

en,k =
√

n

∫ Tk

ik/n
(a(s, Xs) − a(ik/n, Xik/n))dWs +

√
n

∫ (ik+1)/n

Tk

(a(s, Xs) − a(Tk, XTk
))dWs

+
√

n

∫ (ik+1)/n

ik/n
b(s, Xs)ds.

First, we show that en,k converges to zero in P̂
K0 probability as n → ∞. It is clear that the

ordinary integral converges almost surely to zero. It remains to see that the two stochastic

integrals converge to zero.

11



Using that the jumps times are F0-measurable, we can write the stochastic integral
√

n
∫ Tk

ik/n(a(s, Xs)−
a(ik/n, Xik/n))dWs as a local martingale increment

∫ 1
0

√
n1[ik/n,Tk](s)(a(s, Xs)−a(ik/n, Xik/n))dWs.

The bracket of this local martingale is
∫ Tk

ik/n n(a(s, Xs)− a(ik/n, Xik/n))2ds, which converges to

zero almost surely, using the right continuity of the process X. We deduce that
√

n
∫ Tk

ik/n(a(s, Xs)−
a(ik/n, Xik/n))dWs converge to zero in probability. We proceed in the same way to prove that
√

n
∫ (ik+1)/n
Tk

(a(s, Xs) − a(Tk, XTk
))dWs

n→∞−−−→ 0 in probability. This yields to the relation,

√
nGn

k = a(ik/n, Xik/n)α−
k,n + a(Tk, XTk

)α+
k,n + obPK0

(1), for k ≤ K0

Using A0, and the independence between (Wt)t∈[0,1] and T under P̂
K0 , we can apply Lemma 1

below. We get the convergence in law, under P̂
K0 ,

((Tk)k=1,...,K0 , (α
−
k,n)k=1,...,K0 , (α

+
k,n)k=1,...,K0 , (Wt)t∈[0,1])

n→∞−−−→ ((Tk)k=1,...,K0 , (
√

UkN
−
k )k=1,...,K0 , (

√
1 − UkN

+
k )k=1,...,K0 , (Wt)t∈[0,1]).

Since the marks (Λk)k, the Brownian motion, and the jump times are independent, it is easy to

deduce that, under P̂
K0 , (α−

k,n, α+
k,n)k≤K0 converges in law to (

√
UkN

−
k ,

√
1 − UkN

+
k )k≤K0 stably

with respect to the sigma-field generated by (Wt)t∈[0,1], (Tk)k and (Λk)k. The limit can be

represented on the extended space Ω̃ endowed with the probability P̃ conditional on K = K0.

But the process X is measurable with respect to F1, and we deduce the stable convergence,

√
nGn

k = a(ik/n, Xik/n)α−
k,n+a(Tk, XTk

)α+
k,n

n→∞−−−→ a(Tk, XTk−)
√

UkN
−
k +a(Tk, XTk

)
√

1 − UkN
+
k ,

for k = 1, . . . K0, under P̂
K0 .

By simple computations, this implies the convergence of (
√

nGn
k)k under P, and the theorem

is proved. ⋄

Lemma 1 Let K0 ∈ N \ {0} and consider T = (T1, . . . , TK0) a random variable on [0, 1]K0 with

density fT . For k = 1, . . . ,K0, we note ik = [nTk] the integer part of nTk. Let (Wt)t∈[0,1] be a

standard Brownian motion independent of T .

Then, we have the convergence in law of the variables

(T, (n(Tk − ik
n

))k, (
√

n(WTk
− W ik

n

))k, (
√

n(W ik+1

n

− WTk
))k, (Wt)t∈[0,1])

to

(T, (Uk)k, (
√

UkN
−
k )k, (

√
1 − UkN

+
k )k, (Wt)t∈[0,1])

12



where U = (U1, . . . , UK0) is a vector of independent uniform laws on [0, 1], N− = (N−
1 , . . . , N−

K0
)

and N+ = (N+
1 , . . . , N+

K0
) are independent standard Gaussian vectors such that T , U , N−, N+

and (Wt)t are independent.

Proof See Lemma 5.8 in [13] (or Lemma 6.2 in [14]). ⋄

5.2 LAMN property: proof of Theorem 3

We use the framework of Section 4 and we introduce some more notation. For k = 1, . . . ,K, we

note ik = [nTk] the integer part of nTk and for t ∈ [ik/n, (ik + 1)/n], we note (Xθ,k
t ) the process

solution of the following diffusion equation with only one jump at time Tk:

Xθ,k
t = X0 +

∫ t

0
b(s, Xθ,k

s )ds +

∫ t

0
a(s, Xθ,k

s )dWs + c(Xθ,k
Tk−, θ)1t≥Tk

. (18)

Under H1 and H2 and conditionally on T , this process admits a strictly positive conditional

density, which is C1 with respect to θ. We will note pθ,T ( ik
n , ik+1

n , x, y) the density of Xθ,k
ik+1

n

conditionally on T and Xθ,k
ik
n

= x and ṗθ,T ( ik
n , ik+1

n , x, y) its derivative with respect to θ.

We observe that the log-likelihood ratio Zn only involves the transition densities of Xλ on

a time interval where a jump occurs. This transition is pθ,T ( ik
n , ik+1

n , x, y) if there is exactly one

jump in the corresponding interval. Then, one can easily see that the following decomposition

holds for Zn:

Zn(λ, λ + h/
√

n, T, x1, . . . , xn)1Tn(T ) =

K∑

k=1

ln
pλk+hk/

√
n,T

pλk,T
(
ik
n

,
ik + 1

n
, xik , xik+1)1Tn(T )

=

K∑

k=1

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T
(
ik
n

,
ik + 1

n
, xik , xik+1)dθ1Tn(T )

(19)

where 1Tn(T ) is the indicator function that there is at most one jump in each time intervals

[i/n, (i + 1)/n) for i = 0, . . . , n − 1.

We have now to study the asymptotic behaviour of (19). This is divided into several lemmas.

The lemmas 2–4 give an expansion for the score function, with an uniform control in θ. We

deduce then an explicit expansion for
∫ λk+hk/

√
n

λk

ṗθ,T

pθ,T ( ik
n , ik+1

n , xik , xik+1)dθ in Lemma 5, and

conclude by passing through the limit in Lemma 6.
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We begin with a representation of ṗθ,T

pθ,T ( ik
n , ik+1

n , x, y) as a conditional expectation, using

Malliavin calculus. We refer to Nualart [19] for a detailed presentation of Malliavin calculus.

The Malliavin calculus techniques to derive LAMN properties have been introduced by Gobet

[10] in the case of multi-dimensional diffusion processes and then used by Gloter and Gobet [9]

for integrated diffusions.

Lemma 2 Assuming H1 and H2, we have ∀(x, y) ∈ R
2:

ṗθ,T

pθ,T
(
ik
n

,
ik + 1

n
, x, y) = Ex,T,k

(
δ(Pn,θ,k)|Xθ,k

ik+1

n

= y

)
,

where Ex,T,k is the conditional expectation on T and Xθ,k
ik
n

= x and Pn,θ,k is the process given

on [ ik
n , ik+1

n ] by

Pn,θ,k
s =

(Y θ,k
Tk

Y θ,k
s )−1(1 + c′(Xθ,k

Tk−, θ)1s<Tk
)a(s, Xθ,k

s )ċ(Xθ,k
Tk−, θ)

∫ (ik+1)/n
ik/n (Y θ,k

u )−2a2(u, Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u<Tk
)2du

where (Y θ,k
t )t is the process solution of

Y θ,k
t = 1 +

∫ t

0
b′(s, Xθ,k

s )Y θ,k
s ds +

∫ t

0
a′(s, Xθ,k

s )Y θ,k
s dWs. (20)

We remark that under H1, the process (Y θ,k
t )t and its inverse satisfy ∀p ≥ 1,

(E( sup
0≤t≤1

|Y θ,k
t |p))1/p ≤ Cp (E( sup

0≤t≤1
|Y θ,k

t |−p))1/p ≤ Cp.

Proof The proof of Lemma 2 is based on Malliavin calculus on the time interval [ik/n, (ik+1)/n],

conditionally on T and (Wt)t≤ik/n. We first observe that under H1 and H2, the process (Xθ,k
t )

solution of (18) admits a derivative with respect to θ that we will denote by (Ẋθ,k
t ). Moreover

(Xθ,k
t ) and (Ẋθ,k

t ) belong respectively to the Malliavin spaces D
2,p and D

1,p, ∀p ≥ 1. Now, let ϕ

be a smooth function with compact support, we have :

∂

∂θ
Ex,T,kϕ(Xθ,k

ik+1

n

) = Ex,T,kϕ′(Xθ,k
ik+1

n

)Ẋθ,k
ik+1

n

.

Using the integration by part formula, we can write

Ex,T,kϕ′(Xθ,k
ik+1

n

)Ẋθ,k
ik+1

n

= Ex,T,kϕ(Xθ,k
ik+1

n

)H(Xθ,k
ik+1

n

, Ẋθ,k
ik+1

n

)

where the weight H can be expressed in terms of the Malliavin derivative of Xθ,k
ik+1

n

, the inverse

of its Malliavin variance-covariance matrix and the divergence operator as follows:

H(Xθ,k
ik+1

n

, Ẋθ,k
ik+1

n

) = δ

(
Ẋθ,k

ik+1

n

γθ,kDXθ,k
ik+1

n

)
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where

γθ,k =

(∫ (ik+1)/n

ik/n
Du(Xθ,k

ik+1

n

)2du

)−1

. (21)

On the other hand, from Lebesgue derivative theorem, we have:

∂

∂θ
Ex,T,kϕ(Xθ,k

ik+1

n

) =

∫
ϕ(y)ṗθ,T (

ik
n

,
ik + 1

n
, x, y)dy,

this leads to the following representation

ṗθ,T (
ik
n

,
ik + 1

n
, x, y) = Ex,T,k(δ(Ẋθ,k

ik+1

n

γθ,kDXθ,k
ik+1

n

)|Xθ,k
ik+1

n

= y)pθ,T (
ik
n

,
ik + 1

n
, x, y).

It remains to give a more tractable expression of Ẋθ,k
ik+1

n

γθ,kDXθ,k
ik+1

n

. We first observe that:

Ẋθ,k
ik+1

n

= ċ(Xθ,k
Tk−, θ) +

∫ (ik+1)/n

Tk

b′(u, Xθ,k
u )Ẋθ,k

u du +

∫ (ik+1)/n

Tk

a′(u, Xθ,k
u )Ẋθ,k

u dWu,

and consequently

Ẋθ,k
ik+1

n

= Y θ,k
ik+1

n

(Y θ,k
Tk

)−1ċ(Xθ,k
Tk−, θ), (22)

where (Y θ,k
t ) is solution of (20). Turning to the Malliavin derivative of Xθ,k

ik+1

n

, we have for

s ∈ [ik/n, (ik + 1)/n]:

DsX
θ,k
ik+1

n

= a(s, Xθ,k
s )1s≤(ik+1)/n + c′(Xθ,k

Tk−, θ)DsX
θ,k
Tk−

+

∫ (ik+1)/n

s
b′(u, Xθ,k

u )DsX
θ,k
u du +

∫ (ik+1)/n

s
a′(u, Xθ,k

u )DsX
θ,k
u dWu,

and it follows that

DsX
θ,k
ik+1

n

= Y θ,k
ik+1

n

(1 + c′(Xθ,k
Tk−, θ)1s<Tk

)(Y θ,k
s )−1a(s, Xθ,k

s ). (23)

From (22) and (23), we obtain

Ẋθ,k
ik+1

n

γθ,kDsX
θ,k
ik+1

n

=
(Y θ,k

Tk
Y θ,k

s )−1(1 + c′(Xθ,k
Tk−, θ)1s<Tk

)a(s, Xθ,k
s )ċ(Xθ,k

Tk−, θ)
∫ (ik+1)/n
ik/n (Y θ,k

u )−2a2(u, Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u<Tk
)2du

= Pn,θ,k
s , (24)

and the Lemma 2 is proved. ⋄

In the next Lemma, we explicit the conditional expectation appearing in the decomposition

of ṗθ,T

pθ,T ( ik
n , ik+1

n , x, y).
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Lemma 3 Assuming H1 and H2, we have

Ex,T,k

(
δ(Pn,θ,k)|Xθ,k

ik+1

n

= y

)
=

(y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
+ Ex,T,k(Qn,θ,k|Xθ,k

ik+1

n

= y), (25)

with

Dn,θ,k(x) = a2(
ik
n

, x)(1 + c′(x, θ))2(Tk − ik
n

) + a2(
ik
n

, x + c(x, θ))(
ik + 1

n
− Tk) (26)

and where Qn,θ,k satisfies

∀p ≥ 1 (Ex,T,k|Qn,θ,k|p)1/p ≤ Cp,

for a constant Cp independent of x, n and θ.

The first term in the right hand side of (25) is the main term and we will prove later that the

contribution of the conditional expectation of Qn,θ,k is negligible.

Proof We first give an approximation of the process Pn,θ,k which depends on the position of s

with respect to the jump time Tk. We have:

Pn,θ,k
s =

(
(1 + c′(Xθ,k

ik
n

, θ))a( ik
n , Xθ,k

ik
n

)1
[
ik
n

,Tk)
(s) + a( ik

n , Xθ,k
ik
n

+ c(Xθ,k
ik
n

, θ))1
[Tk,

ik+1

n
]
(s)

)
ċ(Xθ,k

ik
n

, θ)

Dn,θ,k(Xθ,k
ik
n

)

+Un,θ,k
s , (27)

where Dn,θ,k(Xθ,k
ik
n

) is defined by (26) and Un,θ,k
s is a remainder term. We deduce then that

δ(Pn,θ,k) =

(
(1 + c′(Xθ,k

ik
n

, θ))a( ik
n , Xθ,k

ik
n

)(WTk
− W ik

n

) + a( ik
n , Xθ,k

ik
n

+ c(Xθ,k
ik
n

, θ))(W ik+1

n

− WTk
)

)
ċ(Xθ,k

ik
n

, θ)

Dn,θ,k(Xθ,k
ik
n

)

+δ(Un,θ,k). (28)

Now, we can approximate Xθ,k
ik+1

n

on the following way:

Xθ,k
ik+1

n

= Xθ,k
ik
n

+c(Xθ,k
Tk−, θ)+a(

ik
n

, Xθ,k
ik
n

)(WTk
−W ik

n

)+a(
ik
n

, Xθ,k
ik
n

+c(Xθ,k
ik
n

, θ))(W ik+1

n

−WTk
)+Rn,θ,k

1 ,

but observing that

c(Xθ,k
Tk−, θ) = c(Xθ,k

ik
n

, θ) + c′(Xθ,k
ik
n

, θ)a(
ik
n

, Xθ,k
ik
n

)(WTk
− W ik

n

) + Rn,θ,k
2 ,

we finally obtain

Xθ,k
ik+1

n

= Xθ,k
ik
n

+ c(Xθ,k
ik
n

, θ) + (1 + c′(Xθ,k
ik
n

, θ))a(
ik
n

, Xθ,k
ik
n

)(WTk
− W ik

n

)

+a(
ik
n

, Xθ,k
ik
n

+ c(Xθ,k
ik
n

, θ))(W ik+1

n

− WTk
) + Rn,θ,k. (29)
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Putting together (28) and (29), this yields

δ(Pn,θ,k) =

(Xθ,k
ik+1

n

− Xθ,k
ik
n

− c(Xθ,k
ik
n

, θ))ċ(Xθ,k
ik
n

, θ)

Dn,θ,k(Xθ,k
ik
n

)
− Rn,θ,k

ċ(Xθ,k
ik
n

, θ)

Dn,θ,k(Xθ,k
ik
n

)
+ δ(Un,θ,k). (30)

Letting Qn,θ,k be the random variable defined by

Qn,θ,k = δ(Un,θ,k) − Rn,θ,k
ċ(Xθ,k

ik
n

, θ)

Dn,θ,k(Xθ,k
ik
n

)
, (31)

where Un,θ,k and Rn,θ,k are respectively defined by (27) and (29), we deduce easily the first part

of Lemma 3. It remains to bound Ex,T,k|Qn,θ,k|p, ∀p ≥ 1.

We remark that from H1 and H2

0 ≤
|ċ(Xθ,k

ik
n

, θ)|

Dn,θ,k(Xθ,k
ik
n

)
≤ nC, (32)

for a constant C independent on n, k and θ. Moreover, we have

(E sup
ik
n
≤s≤Tk−

|Xθ,k
s − Xθ,k

ik
n

|p)1/p ≤ Cp√
n

and (E sup
Tk≤s≤ ik+1

n

|Xθ,k
s − Xθ,k

Tk
|p)1/p ≤ Cp√

n
(33)

So, one can easily deduce that, assuming H1,

(Ex,T,k|Rn,θ,k|p)1/p ≤ Cp/n,

and combining this with (32), we derive

Ex,T,k


|Rn,θ,k|

|ċ(Xθ,k
ik
n

, θ)|

Dn,θ,k(Xθ,k
ik
n

)




p

≤ Cp

Turning to δ(Un,θ,k), we first recall that, from the continuity property of the divergence operator

(see Nualart [19]), we have

(Ex,T,k|δ(Un,θ,k)|p)1/p ≤ Cp(||Un,θ,k||p + ||DUn,θ,k||p), (34)

where

||Un,θ,k||pp = Ex,T,k(

∫ (ik+1)/n

ik/n
|Un,θ,k

s |2ds)p/2, (35)

||DUn,θ,k||pp = Ex,T,k(

∫ (ik+1)/n

ik/n

∫ (ik+1)/n

ik/n
|DvU

n,θ,k
s |2dsdv)p/2. (36)
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To bound Un,θ,k, we first observe that

(E sup
ik
n
≤s,u≤ ik+1

n

|Y θ,k
Tk

Y θ,k
s (Y θ,k

u )−2 − 1|p)1/p ≤ Cp√
n

. (37)

Now, combining (32), (33) and (37) in the expression of Un,θ,k given by (27), we can prove

(Ex,T,k sup
ik
n
≤s≤ ik+1

n

|Un,θ,k
s |p)1/p ≤ Cp

√
n,

and consequently

||Un,θ,k||p ≤ Cp. (38)

It remains to bound the Malliavin derivative of Un,θ,k. From (27) and (24), we have

DvU
n,θ,k
s = DvP

n,θ,k
s = Dv(Ẋ

θ,k
ik+1

n

γθ,kDsX
θ,k
ik+1

n

).

Under H1, the Malliavin derivatives of Ẋθ,k
ik+1

n

and DsX
θ,k
ik+1

n

are bounded in Lp and with the non-

degeneracy assumption H2, it is easy to see that the inverse of the Malliavin variance-covariance

matrix γθ,k, given by (21), satisfies

(Ex,T,k|γθ,k|p)1/p ≤ nCp and (Ex,T,k sup
ik
n
≤v≤ ik+1

n

|Dvγ
θ,k|p)1/p ≤ nCp. (39)

Putting this together, we obtain

(Ex,T,k sup
ik
n
≤s,v≤ ik+1

n

|DvU
n,θ,k
s |p)1/p ≤ nCp,

and then

||DUn,θ,k||p ≤ Cp. (40)

From (34), (38) and (40), we deduce

(Ex,T,k|δ(Un,θ,k)|p)1/p ≤ Cp,

and Lemma 3 is proved. ⋄

The bound on Qn,θ,k given in Lemma 3 is not sufficient, since to obtain the LAMN property,

we have to compute the conditional expectation with x = Xλ
ik
n

and y = Xλ
ik+1

n

. So we complete

the Lemma 3 with the following bound.
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Lemma 4 With the assumptions and notations of Lemma 3, we have for θ such that |θ−λk| ≤
C/

√
n

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
ik+1

n

= Xλ
ik+1

n

)| ≤ C ′,

where the constant C ′ is independent of x, n and θ.

Proof We first remark that

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
ik+1

n

= Xλ
ik+1

n

)| ≤ Ex,T,k|Qn,θ,k|p
λk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

). (41)

From Hölder’s inequality and Lemma 3, we obtain for p > 1, q > 1 such that 1/p + 1/q = 1

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
ik+1

n

= Xλ
ik+1

n

)| ≤ Cp

(
Ex,T,k

(
pλk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

)

)q)1/q

, (42)

and the result of Lemma 4 reduces to prove that there exists q0 > 1 such that

Ex,T,k

(
pλk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

)

)q0

≤ C (43)

where C is independent of n, x and θ. We can write:

Ex,T,k

(
pλk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

)

)q0

=

∫
pλk,T (

ik
n

,
ik + 1

n
, x, y)q0pθ,T (

ik
n

,
ik + 1

n
, x, y)1−q0dy,

(44)

and we can express the transition pθ,T ( ik
n , ik+1

n , x, y) by decomposing it in terms on the transitions

of a diffusion without jump on the time intervals ( ik
n , Tk) and (Tk,

ik+1
n )

pθ,T (
ik
n

,
ik + 1

n
, x, y) =

∫
pθ,T (

ik
n

, Tk, x, z)pθ,T (Tk,
ik + 1

n
, z + c(z, θ), y)dz. (45)

Now, assuming H1 and H2, we have the following classical estimates of the transition probabilities

of a diffusion process (see Azencott [5]), for some constants C1, C2:

C1G(x, a2(Tk − ik
n

), z) ≤ pθ,T (
ik
n

, Tk, x, z) ≤ C2G(x, a2(Tk − ik
n

), z),

C1G(z+c(z, θ), a2(
ik + 1

n
−Tk), y) ≤ pθ,T (Tk,

ik + 1

n
, z+c(z, θ), y) ≤ C2G(z+c(z, θ), a2(

ik + 1

n
−Tk), y)

where G(m, σ2, y) denotes the density of the Gaussian law with mean m and variance σ2. To

simplify the notation, we note σ−
k,n = Tk − ik

n and σ+
k,n = ik+1

n − Tk. Plugging this in (45), we

obtain

pθ,T (
ik
n

,
ik + 1

n
, x, y) ≥ C1

∫
G(x, a2σ−

k,n, z)G(z + c(z, θ), a2σ+
k,n, y)dz := I1. (46)
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We get analogously,

pλk,T (
ik
n

,
ik + 1

n
, x, y) ≤ C2

∫
G(x, a2σ−

k,n, z)G(z + c(z, λk), a
2σ+

k,n, y)dz := I2. (47)

Observe that, in order to bound (44), we have to compute an upper bound for pλk,T ( ik
n , ik+1

n , x, y)

and a lower bound for pθ,T ( ik
n , ik+1

n , x, y), since 1 − q0 < 0.

Our aim now is to give more tractable bounds for the transition density pθ,T ( ik
n , ik+1

n , x, y).

For this, we make the following change of variables in the integrals I1 and I2 defined in (47) and

(46). We put u = ϕ(z) = z + c(z, θ) − x − c(x, θ). We observe that ϕ(x) = 0. Moreover, from

H1 and H2, ϕ is invertible and its derivative satisfies, for some constant c0 :

0 < a ≤ |ϕ′(z)| ≤ c0,

and consequently
1

c0
|z| ≤ |ϕ−1(z) − ϕ−1(0)| ≤ 1

a
|z|.

So we obtain, for some constant C1

I1 ≥ C1

∫
G(0, a2σ−

k,n, ϕ−1(u) − ϕ−1(0))G(u + x + c(x, θ), a2σ+
k,n, y)du,

≥ C1

∫
G(0, a4σ−

k,n, u)G(x + c(x, θ), a2σ+
k,n, y − u)du,

= C1G(x + c(x, θ), a4σ−
k,n + a2σ+

k,n, y). (48)

Proceding similarly,

I2 ≤ C2G(x + c(x, λk), c
2
0a

2σ−
k,n + a2σ+

k,n, y). (49)

Turning back to (44), it follows that

Ex,T,k

(
pλk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

)

)q0

≤ C

∫
Gq0(x+c(x, λk), σ

1
k,n, y)G1−q0(x+c(x, θ), σ2

k,n, y)dy,

(50)

where σ1
k,n = c2

0a
2σ−

k,n + a2σ+
k,n and σ2

k,n = a4σ−
k,n + a2σ+

k,n. We check easily that σ1
k,n and σ2

k,n

are upper and lower bounded by 1/n and satisfy 0 < σ2
k,n/σ1

k,n < 1.

Finally, choosing q0 such that 1 < q0 < σ1
k,n/(σ1

k,n−σ2
k,n) and assuming that |θ−λk| ≤ C/

√
n,

we get after some calculus

Ex,T,k

(
pλk,T

pθ,T
(
ik
n

,
ik + 1

n
, x,Xθ,k

ik+1

n

)

)q0

≤ C ′,

for a constant C ′ independent on x, n and θ and the Lemma 4 is proved. ⋄
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Lemma 5 Assuming H1 and H2, we have:

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T
(
ik
n

,
ik + 1

n
, Xλ

ik
n

, Xλ
ik+1

n

)dθ = hk

√
n(Xλ

ik+1

n

− Xλ
ik
n

− c(Xλ
ik
n

, λk))ċ(X
λ
ik
n

, λk)

nDn,λk,k(Xλ
ik
n

)

−h2
k

2

ċ(Xλ
ik
n

, λk)
2

nDn,λk,k(Xλ
ik
n

)
+ o

pn,λ(1).

Proof We deduce easily from Lemmas 2 and 3 that

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T
(
ik
n

,
ik + 1

n
, x, y)dθ =

∫ λk+hk/
√

n

λk

(y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
dθ

+

∫ λk+hk/
√

n

λk

Ex,T,k(Qn,θ,k|Xθ,k
ik+1

n

= y)dθ

with (x, y) = (Xλ
ik+1

n

, Xλ
ik
n

). From Lemma 4, the second term on the right hand side of the

preceding equation tends to zero in probability. Now, from a taylor expansion of c, we have the

approximation for θ ∈ [λk, λk + hk/
√

n]

(y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
=

(y − x − c(x, λk) − (θ − λk)ċ(x, λk))ċ(x, λk)

Dn,λk,k(x)

+εn,θ,λk(x, y). (51)

From H1, and using (32), we have ∀θ ∈ [λk, λk + hk/
√

n]

| ċ(x, θ)

Dn,θ,k(x)
− ċ(x, λk)

Dn,λk,k(x)
| ≤ C

√
n, (52)

where C does not depend on x. So we deduce that ∀θ ∈ [λk, λk + hk/
√

n]

|εn,θ,λk(x, y)| ≤ C(1 +
√

n(y − x − c(x, λk)),

for a constant C independent on x and y. Consequently, it follows that
∫ λk+hk/

√
n

λk
εn,θ,λk(Xλ

ik
n

, Xλ
ik+1

n

)dθ

goes to zero in probability as n goes to infinity. ⋄

Lemma 6 Let us assume H0–H2. Let In(λ) be the diagonal matrix of size K × K, and Nn(λ)

be the random vector of size K,defined by the entries,

In(λ)k =

ċ(Xλ
ik
n

, λk)
2

nDn,λk,k(Xλ
ik
n

)
, Nn(λ)k =

√
n(Xλ

ik+1

n

− Xλ
ik
n

− c(Xλ
ik
n

, λk))
√

nDn,λk,k(Xλ
ik
n

)
. (53)
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Then, we have,

(In(λ), Nn(λ))
n→∞−−−→
law

(I(λ), N),

with I(λ) the diagonal matrix,

I(λ)k =
ċ(Xλ

Tk−, λk)
2

a2(Tk, X
λ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk, X
λ
Tk− + c(Xλ

Tk−, λk))(1 − Uk)
,

and U = (U1, . . . , UK) is a vector of independent uniform laws on [0, 1] such that U , T and

(Wt)t∈[0,1] are independent, and conditionally on (U, T, (Wt)t∈[0,1]), N is a standard Gaussian

vector in R
K .

Proof We just have to prove the weak convergence of the couple (nDn,λk,k(Xλ
ik
n

),
√

n(Xλ
ik+1

n

−
Xλ

ik
n

− c(Xλ
ik
n

, λk))). We have from (26)

Dn,λk,k(Xλ
ik
n

) = a2(
ik
n

, Xλ
ik
n

)(1 + c′(Xλ
ik
n

, λk))
2(Tk − ik

n
) + a2(

ik
n

, x + c(Xλ
ik
n

, λk))(
ik + 1

n
− Tk)

and from (29)

Xλ
ik+1

n

= Xλ
ik
n

+ c(Xλ
ik
n

, λk) + (1 + c′(Xλ
ik
n

, λk))a(
ik
n

, Xλ
ik
n

)(WTk
− W ik

n

)

+a(
ik
n

, Xλ
ik
n

+ c(Xλ
ik
n

, λk))(W ik+1

n

− WTk
) + Rn,λ,k,

where Rn,λ,k is bounded in Lp by C/n (see the proof of Lemma 3). So as a straightforward con-

sequence of Lemma 1, we obtain that (nDn,λk,k(Xλ
ik
n

),
√

n(Xλ
ik+1

n

−Xλ
ik
n

− c(Xλ
ik
n

, λk))) converges

in law to

(Dλk,k(Xλ
Tk−), (1 + c′(Xλ

Tk−, λk))a(Tk, X
λ
Tk−)

√
UkN

−
k + a(Tk, X

λ
Tk− + c(Xλ

Tk−, λk))
√

1 − UkN
+
k ),

with

Dλk,k(Xλ
Tk−) = a2(Tk, X

λ
Tk−)[1 + c′(Xλ

Tk−, λk)]
2Uk + a2(Tk, X

λ
Tk− + c(Xλ

Tk−, λk))(1 − Uk).

This gives the result of Lemma 6. ⋄

As noticed earlier, the proof of Theorem 3 follows from the decomposition (19) with P(T ∈
Tn)

n→∞−−−→ 1, and Lemmas 5 and 6.
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5.3 Proof of the convolution theorem

In this section, we prove the Theorem 2 and some related results.

We recall the framework described in Section 3. (Ω,F , P) is the canonical product space,

on which are defined the independent variables (Wt)t∈[0,1], T = (T1, . . . , TK), Λ = (Λ1, . . . ,ΛK).

The probability P is the simple product of the corresponding probabilities. From this simple

disintegration of the measure P as a product, we can introduce P
λ the probability P conditional

on Λ = λ ∈ R
K . The process X is solution of (2), and we may assume that for any λ ∈ R

K the

law of X under P
λ is equal to the law of Xλ solution of (8). We recall that Ω̃ is the extension

of Ω which contains the uniform variables U1, . . . , UK , and the Gaussian variables, N−
1 , . . . , N−

K ,

N+
1 , . . . , N+

K .

With these notations, the LAMN expansion of Theorem 3 writes,

Zn(λ, λ + h/
√

n, T, X1/n, . . . , X1) =

K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k − 1

2

K∑

k=1

h2
kIn(λ)k + oPλ(1) (54)

with

In(λ)k =
ċ(X ik

n

, λk)
2

nDn,λk,k(X ik
n

)
, Nn(λ)k =

√
n(X ik+1

n

− X ik
n

− c(X ik
n

, λk))
√

nDn,λk,k(X ik
n

)
, (55)

Dn,λk,k(X ik
n

) = a2(
ik
n

, X ik
n

)(1 + c′(X ik
n

, λk))
2(Tk − ik

n
) + a2(

ik
n

, X ik
n

+ c(X ik
n

, λk))(
ik + 1

n
− Tk)

The Theorem 3 states the convergence in law of (In(λ), Nn(λ)) to (I(λ), N) under P
λ. Actually,

from the proof of Lemma 6, we get the following convergence result under P.

Proposition 2 Assuming H0–H2, we have the convergence

((nTk − ik)k=1,...,K , (
√

n(WTk
− Wik/n))k=1,...,K , (

√
n(W(ik+1)/n − WTk

))k=1,...,K , In(Λ), Nn(Λ))

n→∞−−−→
law

((Uk)k=1,...,K , (
√

UkN
−
k )k=1,...,K , (

√
1 − UkN

+
k )k=1,...,K , I(Λ), N(Λ))

(56)

where N(Λ) is distributed as a standard Gaussian variable in R
K . Moreover this convergence

is stable with respect to F , and the last two limit variables can be represented on the extended

space Ω̃ as,

I(Λ)k =
ċ(XTk−,Λk)

2

a2(Tk, XTk−)(1 + c′(XTk−,Λk))2Uk + a2(Tk, XTk
)(1 − Uk)

, (57)

N(Λ)k =
a(Tk, XTk−)(1 + c′(XTk−,Λk))

√
UkN

−
k + a(Tk, XTk

)
√

1 − UkN
+
k

[a2(Tk, XTk−)(1 + c′(XTk−,Λk))2Uk + a2(Tk, XTk
)(1 − Uk)]

1/2
. (58)
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Remark that the matrix I(Λ) is not equal to the matrix Iopt appearing in the statement

of the convolution Theorem 2. Comparing the expression (7) of Iopt with the expression (11)

of I(λ), we see that in the parametric case, the information is proportional to (ċ(XTk−, λk))
2.

This is quite natural. If instead of estimating the ”mark” λk we estimate the jump, equal to

c(XTk−, λk) in the parametric model, we can expect that the effect of (ċ(XTk−, λk))
2 vanishes

(by a simple first order expansion of the error of estimation). This give some insight on why

ċ(XTk−,Λk)
2 disappears in the expression of Iopt.

On the other hand, it is not clear why the expression of the parametric information involves

the quantity c′(XTk−, λk), which is not present in the expression of Iopt. We will see that it

is due to the fact that the value of the jump c(XTk−, λk) depends on the unobserved quantity

XTk− and thus is not a simple functional of the parameter λk.

If c does not depend on X, the situation is simpler and the proof of Theorem 2 is much easier.

For this reason, in the next Section we prove the convolution theorem in this easier setting. The

general proof is given in Section 5.3.3 and some intermediate results are stated in Section 5.3.2.

5.3.1 Proof of Theorem 2 when c(x, θ) = c(θ)

We start with a simple lemma.

Lemma 7 Assume H0–H2 then for all λ, h ∈ R
K ,

In(λ +
h√
n

) − In(λ)
n→∞−−−→ 0, in P

λ probability,

Nn(λ +
h√
n

) − Nn(λ) + In(λ)1/2h
n→∞−−−→ 0, in P

λ probability.

Proof This follows easily from the expressions (55). ⋄

Assume that J̃n is a sequence of estimator (based on (Xi/n)i=0,...,n) such that
√

n(J̃n −
J)

n→∞−−−→ Z̃ in law under P.

Then, the Theorem 2 is an immediate consequence of the following result.

Theorem 4 Assume H0–H3 and that c(x, θ) = c(θ). Denote Ċ(Λ) the diagonal matrix of size

K × K such that Ċ(Λ)k = ċ(Λk).

Then, we have the decomposition for all n,

√
n(J̃n − J) = Ċ(Λ)In(Λ)−1/2Nn(Λ) + Rn, (59)
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for (Rn)n some sequence of random variables with values in R
K .

Along some subsequence (n) we have the convergence in law,

(Ċ(Λ)In(Λ)−1/2Nn(Λ), Rn)
(n)→∞−−−−−→ (Ċ(Λ)I(Λ)−1/2N(Λ), R) = ((Iopt)−1/2N, R) (60)

where N = N(Λ) is Gaussian, and R is independent of N conditionally on Iopt.

Especially, we have Z̃ = lim(n)

√
n(J̃n − J) = (Iopt)−1/2N + R.

Proof We set Rn =
√

n(J̃n − J) − Ċ(Λ)In(Λ)−1/2Nn(Λ) and define,

Rn(λ) =
√

n(J̃n − c(λk)k) − Ċ(λ)In(λ)−1/2Nn(λ), (61)

so that Rn = Rn(Λ). Since J̃n is a measurable function of the (Xi/n)i, J = (c(Λk))k and

Ċ(Λ) are measurable functions of the marks, and from the expression (55), we deduce that

Rn = fn((Xi/n)i, T, Λ) for some borelian function fn.

Using Lemma 7 and the expression (61), we easily get:

Rn(λ +
h√
n

) − Rn(λ)
n→∞−−−→ 0, in P

λ probability for any λ, h ∈ R
K .

Remark now that by Proposition 2 and the convergence of
√

n(J̃n − J), we get that (Rn)n

is a tight sequence of variables.

Hence, we can apply Proposition 3 below. We deduce that,

(In(Λ), Nn(Λ), Rn)
n→∞−−−→
law

(I(Λ), N(Λ), R),

where the limit can be represented on an extension Ω̃×R
K of the space Ω̃, and the convergence

is stable with respect to (T, Λ, (Wt)t∈[0,1]). On this extension, the variable R is independent of

N(Λ) conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k). This implies (60), and thus the theorem. ⋄

Proposition 3 Assume H0–H3. Let Rn = fn((Xi/n)i, T, Λ)) ∈ R
K where (fn)n is a sequence

of borelian functions. Set Rn(λ) = fn((Xi/n)i, T, λ), and assume:

• Rn(λ + h√
n
) − Rn(λ)

n→∞−−−→ 0, in P
λ probability for any λ, h ∈ R

K ,

• the sequence (Rn)n is tight.
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Then, one has the convergence in law, along a subsequence,

((nTk−ik)k=1,...,K , (
√

n(WTk
−Wik/n))k=1,...,K , (

√
n(W(ik+1)/n−WTk

))k=1,...,K , In(Λ), Nn(Λ), Rn)

(n)→∞−−−−−→
law

((Uk)k=1,...,K , (
√

UkN
−
k )k=1,...,K , (

√
1 − UkN

+
k )k=1,...,K , I(Λ), N(Λ), R). (62)

The limit can be represented on a extension Ω̃ × R
K of the space Ω̃. On this space, the variable

R is independent of N(Λ) conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k). Moreover the convergence

(62) is stable with respect to (T, Λ, (Wt)t∈[0,1]).

Proof Consider the joint law of the random variables,

(T, Λ, (Wt)t∈[0,1], (nTk − ik)k=1,...,K , (
(WTk

− Wik/n)
√

Tk − ik/n
)k=1,...,K ,

(
(W(ik+1)/n − WTk

)
√

(ik + 1)/n − Tk

)k=1,...,K , In(Λ), Nn(Λ), Rn) (63)

defined on the corresponding canonical product space, endowed with the usual product topology.

From the assumption, all the components of this vector are tight, and thus the joint law is tight.

Along some subsequence, it converges in law to some limit, and thus (62) holds true. The stability

of the convergence with respect to T, Λ, (Wt)t∈[0,1] is immediate. Remark that from Proposition

2, the law of the limit (T, Λ, (Wt)t∈[0,1], (Uk)k=1,...,K , (N−
k )k=1,...,K , (N+

k )k=1,...,K , I(Λ), N(Λ), R)

is known, apart for the last component R. It can be clearly represented on an extension Ω̃×R
K

of Ω̃

To determine some information on the law of R, we use techniques inspired from the proof

of convolution theorems in [17].

Consider the following set of random variables defined on the space Ω,

G = g(Xs1 , . . . , Xsr), with r ≥ 1 and (s1, . . . , sr) ∈ [0, 1]r,

Gn = g(X [ns1]
n

, . . . , X [nsr ]
n

),

K = k(T1, . . . , TK),

Ln = l(nT1 − i1, . . . , nTK − iK),

M = m(Λ1, . . . ,ΛK),





(64)

where g, k, l, m are bounded continuous functions.
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For (µ1, µ2) ∈ R
2K we set

ϕn(µ1, µ2) = E

[
eiµ1·Rneiµ2·Nn(Λ)GnKLnM

]
.

Clearly Gn → G in probability, and from the convergence, along a subsequence, of (63), it is

simple to show

ϕn(µ1, µ2)
(n)→∞−−−−−→ E

[
eiµ1·Reiµ2·N(Λ)GKl(U1, . . . , UK)M

]
. (65)

By conditioning on the variable Λ, whose law admits a density, we have

ϕn(µ1, µ2) =

∫

RK

E
λ
[
eiµ1·Rn(λ)eiµ2·Nn(λ)GnKLnm(λ)

]
fΛ(λ)dλ,

For h ∈ R
K , we make a simple change of variable in the integral,

ϕn(µ1, µ2) =

∫

RK

E
λ+h/

√
n
[
eiµ1·Rn(λ+h/

√
n)eiµ2·Nn(λ+h/

√
n)GnKLn

]
m(λ+h/

√
n)fΛ(λ+h/

√
n)dλ.

Now the translation is a continuous operator in L1(R) and by assumption λ 7→ m(λ)fΛ(λ) is

integrable. Thus, we easily deduce,

ϕn(µ1, µ2) =

∫

RK

E
λ+h/

√
n
[
eiµ1·Rn(λ+h/

√
n)eiµ2·Nn(λ+h/

√
n)GnKLn

]
m(λ)fΛ(λ)dλ + o(1)

From the assumptions, we know the expansion Rn(λ+h/
√

n) = Rn(λ)+oPλ(1), and from Lemma

7, we have the expansion Nn(λ + h√
n
) = Nn(λ) − In(λ)1/2h + oPλ(1). In these expansions, all

the random variables are only depending on ((Xi/n)i, T ). But, from the LAMN property, we

know that the measures P
λ and P

λ+h/
√

n, restricted to ((Xi/n)i, T ), are contiguous. Hence, in

these expansions, one can replace oPλ(1) with o
Pλ+h/

√
n(1). Then, using dominated convergence

Theorem, one can get,

ϕn(µ1, µ2) =

∫

RK

E
λ+h/

√
n
[
eiµ1·Rn(λ)eiµ2·(Nn(λ)−In(λ)1/2h)GnKLn

]
l(λ)mΛ(λ)dλ + o(1).

Remark that the random variables appearing in the inner expectation only depends on the

observations ((Xi/n)i, T ), and thus the likelihood ratio p
n,λ+h/

√
n

pn,λ (T, (Xi/n)i) = exp(Zn(λ, λ +

h/
√

n, T, (Xi/n)i) might be used to change the measure,

ϕn(µ1, µ2) =

∫

RK

E
λ
[
eiµ1·Rn(λ)eiµ2·(Nn(λ)−In(λ)1/2h)eZn(λ,λ+h/

√
n,T,(Xi/n)i)GnKLn

]

m(λ)fΛ(λ)dλ + o(1).

(66)
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We deduce,

ϕn(µ1, µ2) = E

[
eiµ1·Rneiµ2·(Nn(Λ)−In(Λ)1/2h)eZn(Λ,Λ+h/

√
n,T,(Xi/n)i)GnKLnM

]
+ o(1).

But from the LAMN expansion (54), one can easily get Zn(Λ,Λ+h/
√

n, T, (Xi/n)i) = h∗In(Λ)1/2Nn(Λ)−
1
2h∗In(Λ)h + oP(1). Hence, using the convergence in law of (63), and uniform integrability of

the sequence Zn(Λ,Λ + h/
√

n, T, (Xi/n)i), it can be seen that

ϕn(µ1, µ2)
(n)→∞−−−−−→

E
[
eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh∗I(Λ)1/2N(Λ)− 1

2
h∗I(Λ)hGKl(U1, . . . , UK)M

]
. (67)

Comparing the expressions (65) and (67), it comes ∀µ1, µ2, h,

E
[
eiµ1·Reiµ2·N(Λ)GKl(U1, . . . , UK)M

]
=

E
[
eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh∗I(Λ)1/2N(Λ)− 1

2
h∗I(Λ)hGKl(U1, . . . , UK)M

]
.

We deduce that ∀µ1, µ2, h, the two following conditional expectations are almost surely equal,

E
[
eiµ1·Reiµ2·N(Λ) | X, T, (Uk)k, Λ

]
=

E
[
eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh∗I(Λ)1/2N(Λ)− 1

2
h∗I(Λ)h | X, T, (Uk)k, Λ

]
.

But from continuity and analyticity arguments, it can be seen that this equality holds, almost

surely, for any µ1 ∈ R
K , µ2 ∈ R

K , h ∈ C
K .

Hence, we can set h = −iI(Λ)−1/2µ2 in the above relation, and find

E
[
eiµ1·Reiµ2·N(Λ) | X,T, (Uk)k,Λ

]
= E

[
eiµ1·R | X,T, (Uk)k,Λ

]
e−µ∗

2µ2/2.

This precisely states that, conditionally on (X, T, (Uk)k,Λ), the random variables R and N(Λ)

are independent. The theorem is proved after remarking that the Brownian motion (Wt)t can

be recovered as a measurable functional of X, T, Λ. ⋄

5.3.2 Intermediate results

The assumption c(x, θ) = c(θ) is crucial for the proof of Theorem 4. Indeed if c depends

on the diffusion, then Jk = c(XTk−, λk), and instead of (61), we have Rn(λ) =
√

n(J̃n −
c(XTk−, λk)k) − Ċ(λ)In(λ)−1/2Nn(λ). This quantity depends on XTk− which is unobserved.
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However, the assumption that Rn(λ) is only function of ((Xi/n)i, T ) is essential in the Proposition

3 (at the step just before equation (66)).

But if instead of Rn(λ) we consider Robs
n (λ) =

√
n(J̃n−c(Xik/n, λk)k)−Ċobs

n (λ)In(λ)−1/2Nn(λ),

where Ċobs
n (λ) = diag(ċ(Xik/n, λk)k). Then, the Proposition 3 can be applied, and we can prove

the following modification of Theorem 4.

Theorem 5 Let J̃n be any sequence of estimators such that
√

n(J̃n−(c(Xik/n,Λk))k)
(n)→∞−−−−−→

law

Z̃

for some variable Z̃. Then, the law of Z̃ is necessarily a convolution, Z̃
law
= Ċ(Λ)I(Λ)−1/2N(Λ)+

R, where N(Λ) is a standard Gaussian vector independent of Ċ(Λ)−2I(Λ), and R is some random

variable independent of N(Λ) conditionally on Ċ(Λ)−2I(Λ). A simple expression for the entries

of the diagonal matrix Ċ(Λ)−2I(Λ) is

Ik = [Uka(Tk, XTk−)2(1 + c′(Tk, XTk−))2 + (1 − Uk)a(Tk, XTk
)2]−1, for k = 1, . . . ,K. (68)

Actually, to prove the convolution theorem when the coefficient c(x, θ) depends on x, we

need a strengthened version of the Proposition 3. Indeed, we will show that the variable R, in

the statement of Proposition 3, is independent of N conditionally on any variable that can be

obtained as a limit of the observations. This yield some additional knowledge on the dependence

between the variable R and the other variables.

Proposition 4 Let us make the same assumptions as in Proposition 3. Assume furthermore

that there exist a continuous function Ψ with value in R
K and (An)n a sequence of random

variables depending on the observations (T, (Xi/n)i), such that

An − Ψ((nTk − ik)k=1,...,K , (
√

n(WTk
− Wik/n))k=1,...,K , (

√
n(W(ik+1)/n − WTk

))k=1,...,K)

n→∞−−−→ 0, in P probability.

Then, in the description of the limit (62), the variable R is independent of N(Λ) conditionally

on (T, Λ, (Wt)t∈[0,1], (Uk)k) and Ψ((Uk)k, (
√

UkN
−
k )k, ((

√
1 − UkN

+
k )k).

Proof The proof is a slight modification of the proof of Proposition 3. We simply add to the

list of random variables (64), the new one Sn = s(An), with s being any continuous bounded

function. Accordingly, we set ϕn(µ1, µ2) = E
[
eiµ1·Rneiµ2·Nn(Λ)SnGnKLnM

]
. Then, the proof

follows the same lines as the proof of Proposition 3. ⋄
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5.3.3 Proof of Theorem 2. The general case

We prove the Theorem 2 in the general situation where c(x, θ) depends on x.

As seen in the previous section, a difficulty comes from the fact that the target of the

estimator J = (∆XTk
)k = (c(XTk−,Λk))k depends on the unobserved value XTk−. We introduce

J
n

= (c(X ik
n

, Λk))k, and with simple computations, one can write the following expansion, for

any sequence of estimators J̃n,

√
n(J̃n

k − Jk) =
√

n(J̃n
k − J

n
k) − c′(X ik

n

,Λk)
√

n(XTk− − X ik
n

) + oP(1).

If
√

n(J̃n
k − J

n
k) is tight we can use Theorem 5 and deduce, lim(n)

√
n(J̃n

k − Jk) = Z̃k =

Ċ(Λ)I(Λ)
−1/2
k N(Λ)k − c′(XTk−,Λk)a(Tk, XTk−)

√
U−

k N−
k + Rk. After a few algebra, involving

the expressions (57)–(58), it could be seen that this reduces to the algebric relation (6), with N

being some standard normal variable. However by this method, we can not deduce the condi-

tional independence of R with N . Indeed, only the conditional independence of R with N(Λ) is

known, and we have no information about the joint law of R and N−.

To solve this problem, we consider two new statistical experiments where we add the obser-

vation of the diffusion just before (or just after) the jump. We first state the LAMN properties

for these new experiments. We omit the proof, which is similar to the proof of Theorem 3.

Proposition 5 (LAMN property adding the observations before the jumps.) Assume

H0, H1 and H2. Denote (pn,λ,aug−) the density on R
n+2K of the augmented vector of observa-

tions Oaug− = ((Xi/n)i, (Tk)k, (XTk−)k) under P
λ. For λ ∈ R

K , h ∈ R
K , define the log-likelihood

ratio Zaug−
n (λ, λ + h/

√
n,Oaug−) = ln p

n,λ+h/
√

n,aug− (Oaug− )

pn,λ,aug− (Oaug− )
.

We have the expansion:

Zn(λ, λ + h/
√

n,Oaug−) =
K∑

k=1

hkI
aug−
n (λ)

1/2
k Naug−

n (λ)k − 1

2

K∑

k=1

h2
kI

aug−
n (λ)k + oPλ(1) (69)

where

Iaug−
n (λ)k =

ċ(XTk−, λk)
2

nDn,λk,k,aug−(XTk−)
, Naug−

n (λ)k =

√
n(X ik+1

n

− XTk− − c(XTk−, λk))
√

nDn,λk,k,aug−(XTk−)
, (70)

Dn,λk,k,aug−(XTk−) = a2(Tk, XTk− + c(XTk−, λk))(
ik + 1

n
− Tk).

Moreover

(Iaug−
n (λ), Naug−

n (λ))
n→∞−−−→
law

(Iaug−(λ), Naug−)
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where Iaug−(λ) is the diagonal information matrix whose entries are

Iaug−(λ)k =
ċ(XTk−, λk)

2

a2(Tk, XTk
)(1 − Uk)

.

and Naug− is a standard Gaussian vector in R
K .

Proposition 6 (LAMN property adding the observations after the jumps.) Assume H0,

H1 and H2. Denote (pn,λ,aug+
) the density on R

n+2K of the augmented vector of observations

Oaug+
= ((Xi/n)i, (Tk)k, (XTk

)k) under P
λ. For λ ∈ R

K , h ∈ R
K , define the log-likelihood ratio

Zaug+

n (λ, λ + h/
√

n,Oaug+
) = ln p

n,λ+h/
√

n,aug+ (Oaug+ )

pn,λ,aug+ (Oaug+ )
.

We have the expansion:

Zn(λ, λ + h/
√

n,Oaug+
) =

K∑

k=1

hkI
aug+

n (λ)
1/2
k Naug+

n (λ)k − 1

2

K∑

k=1

h2
kI

aug+

n (λ)k + oPλ(1) (71)

where

Iaug+

n (λ)k =
ċ(X ik

n

, λk)
2

nDn,λk,k,aug+(X ik
n

)
, Naug+

n (λ)k =

√
n(XTk

− X ik
n

− c(X ik
n

, λk))
√

nDn,λk,k,aug+(X ik
n

)
, (72)

Dn,λk,k,aug+
(X ik

n

) = a2(
ik
n

, X ik
n

)(1 + c′(X ik
n

, λk))
2(Tk − ik

n
).

Moreover

(Iaug+

n (λ), Naug+

n (λ))
n→∞−−−→
law

(Iaug+
(λ), Naug+

),

where Iaug+
(λ) is the diagonal information matrix whose entries are

Iaug+
(λ)k =

ċ(XTk−, λk)
2

a2(Tk, XTk−)(1 + c′(XTk−, λk))2Uk

and Naug+
is a standard Gaussian vector in R

K .

We now deduce convolution results from these LAMN properties.

Proposition 7 Let J̃n be a sequence of estimator based on the observations of (Xi/n)i and

denote J
n

= (c(X ik
n

,Λ))k. Suppose that the sequence
√

n(J̃n−J
n
) is tight and define Raug−

n and

Raug+

n by the following expansions

√
n(J̃n − J

n
) = Ċobs

n (Λ)Iaug−
n (Λ)−1/2Naug−

n (Λ) + Raug−
n , (73)

= [
√

n(X ik+1

n

− XTk− − c(XTk−,Λk))]k + Raug−
n , (74)
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√
n(J̃n − J

n
) = Ċobs

n (Λ)Iaug+

n (Λ)−1/2Naug+

n (Λ) + Raug+

n , (75)

= [
√

n(XTk
− X ik

n

− c(X ik
n

,Λk))]k + Raug+

n , (76)

where Iaug−
n (Λ) (resp. Iaug+

n (Λ)) is the diagonal matrix with entries (Iaug−
n (Λ)k) (resp. (Iaug+

n (Λ)k))

and Ċobs
n (Λ) is diagonal with entries ċ(X ik

n

,Λk).

Then, we have the convergence in law

[
√

n(X ik+1

n

− XTk− − c(XTk−, Λk))k,
√

n(XTk
− X ik

n

− c(X ik
n

, Λk))k, R
aug−
n , Raug+

n ]
(n)→∞−−−−−→

[(a(Tk, XTk
)
√

1 − UkN
+
k )k, (a(Tk, XTk−)(1 + c′(XTk−))

√
UkN

−
k )k, R

aug− , Raug+
].

(77)

This convergence holds jointly with (56) and the limit variables can be represented on an exten-

sion of Ω̃. On this space, one has

Raug+

k = Raug−

k −a(Tk, XTk−)(1+c′(XTk−))
√

UkN
−
k +a(Tk, XTk

)
√

1 − UkN
+
k , ∀k ∈ {1, . . . ,K}.

(78)

Moreover, the variable Raug− is independent of (N+
k )k conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (N

−
k )k).

In a symmetric way, the variable Raug+
is independent of (N−

k )k conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (N
+
k )k).

Proof The variable Raug−
n and Raug+

n are defined by the relations (73) and (75). The relations

(74) and (76) are immediate by (70) and (72).

By a tightness argument the joint convergence, along a subsequence, of (56) and (77) is

clear. The relation (78) is a consequence of the equality between the quantities (74) and (76).

Now, we can deduce, from the LAMN property (Proposition 5), a result analogous to

the Proposition 3. Hence Raug− is independent of the limit of Naug−
n (Λ), conditionally on

(T, Λ, (Wt)t∈[0,1], (Uk)k). Moreover, remark that in the experiment Oaug− , the sequence of vari-

ables

An =

√
n(XTk− − X ik

n

)

a2(Tk, X ik
n

)

is observed. But An − √
n(BTk− − B ik

n

) converges to zero in P-probability. Showing a result

analogous to the Proposition 4, we deduce that Raug− is independent of the limit of Naug−
n (Λ),

conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (
√

UkN
−
k )k). After a few computations, it shows that

Raug− is independent of (N+
k ) conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (N

−
k )k).
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The conditional independence between Raug+
and (N−

k )k is obtained in a symmetric way:

one uses the LAMN property of Proposition 6, and the fact that the sequence

A′
n =

√
n(X ik+1

n

− XTk
)

a2(Tk, XTk
)

is observed in the experiment based on Oaug+
. ⋄

Finally, the Theorem 2 is an immediate consequence of the following result.

Proposition 8 Let J̃n be a sequence of estimator based on the observations of (Xi/n)i such that
√

n(J̃n − J)
n→∞−−−→
law

Z̃. Then,

Z̃
law
= [a(Tk, XTk−)

√
UkN

−
k + a(Tk, XTk

)
√

1 − UkN
+
k ]k + R̃,

where R̃ is independent of (N−
k , N+

k )k conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k).

Proof First, we write

√
n(J̃n

k − Jk) =
√

n(J̃n
k − J

n
k) −√

n(Jk − J
n
k)

=
√

n(J̃n
k − J

n
k) − c′(X ik

n

, Λk)
√

n(XTk− − X ik
n

) + oP(1). (79)

But the sequence
√

n(J̃n − J
n
) is tight, and we can apply the Proposition 7. Using (74), (77),

and (79) we deduce

√
n(J̃n

k − Jk)
n→∞−−−→
law

−a(Tk, XTk−)c′(XTk−,Λk)
√

UkN
−
k + a(Tk, XTk

)
√

1 − UkN
+
k + Raug−

k .

We write the last equation as

√
n(J̃n

k − Jk)
n→∞−−−→
law

a(Tk, XTk−)
√

UkN
−
k + a(Tk, XTk

)
√

1 − UkN
+
k + R̃k,

where R̃k = Raug−

k − (a(Tk, XTk−)(1 + c′(XTk−,Λk))
√

UkN
−
k ). Using Proposition 7, we deduce

that R̃ is independent of N+ conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (N
−
k )k).

From (78), we have R̃k = Raug+

k + (a(Tk, XTk
)
√

1 − UkN
+
k )k and we deduce that R̃ is inde-

pendent of N− conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k, (N
+
k )k).

Remarking that N− and N+ are independent conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k), we

deduce that R̃ is independent of (N−, N+) conditionally on (T, Λ, (Wt)t∈[0,1], (Uk)k).

The proposition is proved. ⋄

33



References

[1] Yacine Aı̈t-Sahalia. Telling from discrete data whether the underlying continuous-time

model is a diffusion. J. Finance, 57:2075–2112, 2002.

[2] Yacine Aı̈t-Sahalia, Jianqing Fan, and Heng Peng. Nonparametric transition-based tests

for jump diffusions. J. Amer. Statist. Assoc., 104(487):1102–1116, 2009.

[3] Yacine Aı̈t-Sahalia and Jean Jacod. Estimating the degree of activity of jumps in high

frequency data. Ann. Statist., 37(5A):2202–2244, 2009.

[4] Yacine Aı̈t-Sahalia and Jean Jacod. Testing for jumps in a discretely observed process.

Ann. Statist., 37(1):184–222, 2009.
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