

Optimality properties in estimating jumps

Emmanuelle Clement, Sylvain Delattre, Arnaud Gloter

▶ To cite this version:

Emmanuelle Clement, Sylvain Delattre, Arnaud Gloter. Optimality properties in estimating jumps. 2011. hal-00609983

HAL Id: hal-00609983 https://hal.science/hal-00609983

Preprint submitted on 20 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimality properties in estimating jumps

Emmanuelle Clément^{*}

Sylvain Delattre[†]

Arnaud Gloter[‡]

July, 19 2011

Abstract

We study the problem of the optimal estimation of the jumps for stochastic processes. We assume that the stochastic process $(X_t)_{t \in [0,1]}$ is discretely observed with a sampling step of size 1/n. We first propose an estimator of the sequence of jumps $(\Delta X_{T_k})_k$ based on the discrete observations. This estimator has rate \sqrt{n} and we give an explicit expression for its asymptotic error. Next, we show some lower bounds for the estimation of the jumps. When the marks of the underlying jump component are deterministic, we prove a LAMN property. We deduce then some convolution theorem, in the case where the marks of the jump component are random. Especially, this implies the optimality of our estimator. **MSC** 2010. Primary: 62G20, Secondary: 60F05, 60H05.

Key words: Itô process, LAMN property, convolution theorem.

1 Introduction

The statistical study of stochastic processes with jumps, from high frequency data, has been the subject of many recent works. A major issue is to determine if the jump part is relevant to model the observed phenomenon. Especially, for modelling of asset prices, the assessment of the part due to the jumps in the volatility of the price is an important question. This has been addressed in several works, either by considering multi-power variations ([6], [7], [11]) or by truncation methods (see [18]). Another issue is to test statistically if the stochastic process

^{*}Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, UMR 8050, 5 Bld Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France

[†]Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Denis Diderot, 77251 Paris Cedex 05, France

[‡]Université d'Évry Val d'Essonne, Département de Mathématiques, 91025 Évry Cedex, France

has continuous paths. The question has been addressed in many works (see [1], [2], [4]) and is crucial to the hedging of options. A clearly related question is to determine the degree of activity of the jump component of the process. Estimators of the Blumenthal-Getoor index of the Levy measure of the process are proposed in several papers ([3], [8], [20]).

In that context, the main statistical difficulty comes from the fact that one observes a discrete sampling of the process, and consequently, the exact values of the jumps are unobserved. As a matter of fact, a lot of statistical procedures rely on the estimation of a functional of the jumps. In [13], Jacod considers the estimation, from a high frequency sampling, of the functional of the jumps

$$\sum_{0 \le s \le 1, \Delta X_s \ne 0} f(\Delta X_s) = \sum_k f(\Delta X_{T_k}),$$

for a smooth function f vanishing at zero. In particular, he studies the difference between the unobserved quantity $\sum_{0 \le s \le 1} f(\Delta X_s)$ and the observed one $\sum_{i=0}^{n-1} f(X_{\frac{i+1}{n}} - X_{\frac{i}{n}})$. When X is a semi-martingale, it is shown that the difference between the two quantities goes to zero with rate \sqrt{n} . Rescaled by this rate, the difference is asymptotically distributed as

$$\sum_{k} f'(\Delta X_{T_k}) [\sigma_{T_k} - \sqrt{U_k} N_k^- + \sigma_{T_k} \sqrt{1 - U_k} N_k^+],$$
(1)

where the variables U_k are uniform variables on [0,1] and N_k^- , N_k^+ are standard Gaussian variables. The quantity σ_{T_k-} (resp. σ_{T_k}) is the local volatility of the semi martingale X before (resp. after) the jump at time T_k . This result serves as the basis for studying the statistical procedures developed in [4, 15].

However, the problem of optimality in these methods seems to have never been addressed. Motivated by these facts, we discuss, in this paper, the optimal way to estimate the exact values of the jumps, from the discrete sampling $(X_{\frac{i}{n}})_{0 \le i \le n}$.

In this paper, we restrict ourself to processes X solutions of

$$X_{t} = x_{0} + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} a(s, X_{s}) dW_{s} + \sum_{T_{k} \le t} c(X_{T_{k}-}, \Lambda_{k}),$$

where we assume that the number of jumps on [0,1], denoted by K, is finite. We note $J = (\Delta X_{T_1}, \ldots, \Delta X_{T_K})$ the vector of jumps, and $\Lambda = (\Lambda_1, \ldots, \Lambda_K)$ the random marks. We first construct \widehat{J}^n a consistent estimator of the vector J based on the observation of $(X_{\frac{i}{n}})_i$. We prove, as a preliminary result (Theorem 1), that the rescaled error $\sqrt{n}(\widehat{J}^n - J)$ is asymptotically

distributed as the vector $[a(T_k, X_{T_k-})\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1-U_k}N_k^+]_{k=1,...,K}$. This result is highly connected to the expression (1) obtained in [13].

Our main result states that this estimator is optimal, and thus it precises the law of the minimal error for the estimation of the jumps. Let us stress, that the meaning of optimality is not straightforward here. Indeed, we are not dealing with a standard parametric statistical problem, and it is not clear which quantity can stand for the Fisher's information. The notion of optimality is stated as a convolution result in Theorem 2. More precisely, we prove that for any estimator \hat{J}^n such that the error $\sqrt{n}(\hat{J}^n - J)$ converges in law to some variable Z, the law of Z is a convolution between the law of the vector

$$[a(T_k, X_{T_k-})\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+]_{k=1,\dots,K}$$

and some other law. Contrarily to the standard convolution theorem, we do not need the usual regularity assumption on the estimator. The explanation is that we are not estimating a deterministic (unknown) parameter, but we estimate some random (unobserved) variable J.

The proof of this convolution result relies on the study of a preliminary parametric model: we consider the parametric model where the values of the marks Λ are considered as an unknown deterministic parameter $\lambda \in \mathbb{R}^{K}$. The resulting model is a stochastic differential equation with jumps, whose coefficients depend on this parameter λ . We establish then in Theorem 3, that this parametric model satisfies the LAMN property, with rate \sqrt{n} and some explicit Fisher's information matrix $I(\lambda)$.

By Hajeck's theorem, it is well known that the LAMN property implies a convolution theorem for any regular estimator of the parameter λ (see [17]). However our context differs from the usual Hajeck's convolution theorem on at least two points. First, the parameter λ is randomized and second the target of the estimator $J = (c(X_{T_k-}, \Lambda_k))_k$ depends both on the randomized parameter and on some unobserved quantities X_{T_k-} . As a result, the connection between the minimal law of the convolution theorem and the Fisher's information of the parametric model is not straightforward. The proof of the convolution theorem, when $c(X_{T_k-}, \Lambda_k) = c(\Lambda_k)$ does not depend on X_{T_k-} , is simpler and is given in Theorem 4. The proof of the general case is given in Proposition 8.

Remark that it is certainly possible to state a general result about the connection between the LAMN property and convolution theorems for the estimation of unobserved random quantities. The proof of the Proposition 3 is a step in this direction. However giving such general results is

beyond the scope of the paper.

The outline of the paper is as follows. In Section 2, we construct an estimator of the jumps. In Section 3, we give the statements about optimality of the estimator. The LAMN property is enounced in Section 4. The proofs of these results are postponed to the Section 5.

2 Estimation results

Consider $(X_t)_{t \in [0,1]}$ an adapted c.à.d.l.à.g., one dimensional, stochastic process defined on some filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$. We assume that the sample paths of X almost surely admits a finite number of jumps. We denote by K the random number of jumps on [0, 1]and $0 < T_1 < \cdots < T_K < 1$ the instants of these jumps. We assume that the process X is a solution of the stochastic differential equation with jumps

$$X_t = x_0 + \int_0^t b(s, X_s) ds + \int_0^t a(s, X_s) dW_s + \sum_{T_k \le t} c(X_{T_k}, \Lambda_k),$$
(2)

where W is a standard $(\mathcal{F}_t)_t$ Brownian motion. The vector of marks $(\Lambda_k)_k$ is random. The Brownian motion, the jump times and the marks are independent.

It is convenient to assume that the process is realized on the canonical product space of the Brownian part and the jumps parts $\Omega = \Omega^1 \times \Omega^2$, $\mathbb{P} = \mathbb{P}^1 \otimes \mathbb{P}^2$. More precisely, we note $(\Omega^1, \mathcal{F}^1, \mathbb{P}^1) = (\mathcal{C}([0, 1]), \mathcal{B}, \mathbb{W})$, the space of continuous functions endowed with the Wiener measure on the Borelian sigma-field and $(\mathcal{F}^1_t)_{t \in [0,1]}$ the filtration generated by the canonical process. We introduce $(\Omega^2, \mathcal{F}^2, \mathbb{P}^2) = (\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}, \mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}} \otimes \mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}, \mathbb{P}^2)$, where \mathbb{P}^2 is the law of two independent sequences of random variables $(T_k)_{k \geq 1}, (\Lambda_k)_{k \geq 1}$. We assume that, \mathbb{P}^2 -almost surely, the sequence $(T_k)_{k \geq 1}$ is increasing and tends to infinity. Then, $((W_t)_{t \in [0,1]}, (T_k)_{k \geq 1}, (\Lambda_k)_{k \geq 1})$ are the canonical variables on Ω . We assume that $(\mathcal{F}_t)_t$ is the right continuous, completed, filtration based on $(\mathcal{F}^1_t \times \mathcal{F}^2)_t$ and $\mathcal{F} = \mathcal{F}_1$.

We make the following assumptions:

A0 (law of the jump times). We note $K = \text{card}\{k \mid T_k \in [0,1]\}$. Conditionally on K the law of the vector of jump times $T = (T_1, \ldots, T_K)$ admits a density f_T .

A1 (smoothness assumption). The functions $a : [0,1] \times \mathbb{R} \to \mathbb{R}$, $b : [0,1] \times \mathbb{R} \to \mathbb{R}$ and $c : \mathbb{R}^2 \to \mathbb{R}$ are continuous.

A2 (indentifiability of the jumps). We have almost surely: $c(X_{T_k-}, \Lambda_k) \neq 0, \forall k \in \{1, \ldots, K\}.$

This last condition ensures that the jump times of X are exactly the times T_k .

Remark that if $T_k - T_{k-1}$ is exponentially distributed, the jumps times are arrival times of a Poisson process. Then, if the marks $(\Lambda_k)_k$ are i.i.d. variables, the process $\sum_{T_k \leq t} \Lambda_k$ is a compound Poisson process. In this particular case, the equation (2) becomes a standard S.D.E. with jumps based on a random Poisson measure with finite intensity.

Let us note $J = (J_k)_{k\geq 1}$ the sequence of jumps of X (on [0,1]): we set $J_k = \Delta X_{T_k} = X_{T_k} - X_{T_k-}$ for $k \leq K$ and we define $J_k = 0$ for k > K.

We construct an estimator of J in the following way.

Let $(u_n)_n$ be a sequence of positive numbers tending to 0. We set $\hat{i}_1^n = \inf\{0 \le i \le n-1 : |X_{\frac{i+1}{n}} - X_{\frac{i}{n}}| \ge u_n\}$ with the convention $\inf \emptyset = +\infty$. We recursively define for $k \ge 2$,

$$\hat{i}_{k}^{n} = \inf\{\hat{i}_{k-1}^{n} < i \le n-1 : \left| X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right| \ge u_{n} \}.$$
(3)

We set $\hat{K}_n = \sup\{k \ge 1 : \hat{i}_k^n < \infty\}$ the number of increments of the diffusion exceeding the threshold u_n . We then define for $k \ge 1$,

$$\widehat{J}_{k}^{n} = \begin{cases} X_{\frac{\hat{i}_{k}^{n}+1}{n}} - X_{\frac{\hat{i}_{k}^{n}}{n}}, & \text{if } k \leq \widehat{K}_{n} \\ 0, & \text{if } k > \widehat{K}_{n} \end{cases}$$

$$\tag{4}$$

The sequence $(\widehat{J}^n)_n$ is an estimator of the vector of jumps J, and $(\widehat{K}_n)_n$ estimates the number of jumps.

Proposition 1 Let us assume A0–A2 and $u_n \sim n^{-\varpi}$ with $\varpi \in (0, 1/2)$. Then, we have almost surely,

$$egin{aligned} & K_n = K \ for \ n \ large \ enough \ & if \ k \leq K, \ \ \widehat{J}_k^n \stackrel{n o \infty}{\longrightarrow} J_k = \Delta X_{T_k}, \ & if \ k > K, \ \ \widehat{J}_k^n = 0 \ for \ n \ large \ enough \end{aligned}$$

We now describe the asymptotic law of the error between \widehat{J}^n and J. We need some more notation. Following [13], we introduce an extension of our initial probability space. We consider an auxiliary probability space $(\Omega', \mathcal{F}', \mathbb{P}')$ which contains $U = (U_k)_{k\geq 1}$ a sequence of independent variables with uniform law on [0, 1], and $N^- = (N_k^-)_{k\geq 1}$, $N^+ = (N_k^+)_{k\geq 1}$ two sequences of independent variables with standard Gaussian law. All these variables are mutually independent. We extend the initial probability space by setting $\widetilde{\Omega} = \Omega \times \Omega'$, $\widetilde{\mathcal{F}} = \mathcal{F} \otimes \mathcal{F}'$, $\widetilde{\mathbb{P}} = \mathbb{P} \otimes \mathbb{P}'$, $\widetilde{\mathcal{F}}_t = \mathcal{F}_t \otimes \mathcal{F}'$. **Theorem 1** Let us assume A0–A2 and $u_n \sim n^{-\varpi}$ with $\varpi \in (0, 1/2)$. Then $\sqrt{n}(\widehat{J}^n - J)$ converges in law to $Z = (Z_k)_{k\geq 1}$ where the limit can be described on the extended space $\widetilde{\Omega}$ by:

$$Z_{k} = \sqrt{U_{k}}a(T_{k}, X_{T_{k}-})N_{k}^{-} + \sqrt{1 - U_{k}}a(T_{k}, X_{T_{k}})N_{k}^{+}, \text{ for } k \le K,$$
$$Z_{k} = 0, \text{ for } k > K.$$

Moreover the convergence is stable with respect to the sigma-field \mathcal{F} . Let us precise that, here, the convergence in law of the infinite dimensional vector $\sqrt{n}(\hat{J}^n - J)$ means the convergence of any finite dimensional marginals.

Remark 1 The Theorem 1 shows that the error for the estimation of the jump ΔX_{T_k} is asymptotically conditionally Gaussian. The variance of this error is random and equal to $U_k a(T_k, X_{T_k-})^2 + (1 - U_k)a(T_k, X_{T_k})^2$.

3 Optimality results

We now prove that the estimator introduced in the Section 2 is optimal. We need some more assumptions on the model. Especially, to avoid cumbersome notation we will now assume that the number of jumps is deterministic. This is not a real restriction, since we could reformulate our result by conditioning on the number of jumps K. The probability space Ω introduced in Section 2 is modified accordingly, $\Omega = \Omega^1 \times \Omega^2$, $\Omega^1 = \mathcal{C}([0,1])$ and $\Omega^2 = \mathbb{R}^K \times \mathbb{R}^K$. The space $\widetilde{\Omega} = \Omega \times \Omega'$ with $\Omega' = \mathbb{R}^{3K}$ extends the initial space with the sequences $N^- = (N_k^-)_{1 \le k \le K}$, $N^+ = (N_k^+)_{1 \le k \le K}$, $U = (U_k)_{1 \le k \le K}$.

H0. The number of jumps K is deterministic and the law of $T = (T_1, \ldots, T_K)$ is absolutely continuous with respect to the Lebesgue measure. We note f_T its density.

H1 (smoothness assumption). The functions $(t, x) \mapsto a(t, x)$ and $(t, x) \mapsto b(t, x)$ are $\mathcal{C}^{1,2}$ on $[0,1] \times \mathbb{R}$. We note a' and b' their derivatives with respect to x and we assume that a' and b' are $\mathcal{C}^{1,2}$ on $[0,1] \times \mathbb{R}$. Moreover the functions a, b, and their derivatives are uniformly bounded. The function $(x, \theta) \mapsto c(x, \theta)$ is $\mathcal{C}^{2,1}$ on $\mathbb{R} \times \mathbb{R}$, with bounded derivatives. We note c' its derivative with respect to x and \dot{c} its derivative with respect to θ . We assume moreover that \dot{c} is $\mathcal{C}^{1,1}$ with bounded derivatives.

H2 (non-degeneracy assumption). We assume that there exist two constants \underline{a} and \overline{a} such that

$$\forall (t,x) \in [0,1] \times \mathbb{R} \quad 0 < \underline{a} \le a(t,x) \le \overline{a};$$

$$\forall (x,\theta) \in \mathbb{R} \times \mathbb{R} \quad |1 + c'(x,\theta)| \ge \underline{a}.$$

H3 ("randomness" of the jump sizes). The law of $\Lambda = (\Lambda_1, \ldots, \Lambda_K)$ is absolutely continuous with respect to the Lebesgue measure and we note f_{Λ} its density. We assume also

$$\forall (x,\theta) \in \mathbb{R} \times \mathbb{R} \quad \dot{c}(x,\theta) \neq 0.$$

Let us comment on these assumptions. Apart from the fact that K is deterministic, the assumption H0 is the same as A0. The regularity conditions H1–H2 are more restrictive than the condition A1 stated for the existence of the estimator. However, in order to find a lower bound, we need to deal with a kind of regular model. Remark that the non degeneracy of $|1 + c'(x, \theta)|$ is a standard assumption which implies that the equation (2) admits a flow. The assumption H3 is more specifically related to our statistical problem. We want to prove a lower bound for the estimation of the random jumps sizes. Hence, if these quantities do not exhibit enough randomness, it could be possible to estimate them with a rate faster than \sqrt{n} . For instance, the condition H3 excludes that the jump sizes do not depend on the underlying random marks.

We can now state our main result. We recall that $J = (J_k)_{1 \le k \le K} = (c(X_{T_k}, \Lambda_k))_{1 \le k \le K} = (\Delta X_{T_k})_{1 \le k \le K} \in \mathbb{R}^K$ is the sequence of the jumps of the process.

We will call $(\tilde{J}^n)_{n\geq 1}$ a sequence of estimators if for each $n, \tilde{J}^n \in \mathbb{R}^K$ is a measurable function of the observations $(X_{i/n})_{i=0,\dots,n}$.

Theorem 2 Assume H0–H3. Let \widetilde{J}^n be any sequence of estimators such that

$$\sqrt{n}(\widetilde{J}^n - J) \xrightarrow[law]{n \to \infty} \widetilde{Z}$$
(5)

for some variable \widetilde{Z} . Then, the law of \widetilde{Z} is necessarily a convolution,

$$\widetilde{Z} \stackrel{law}{=} (I^{\text{opt}})^{-1/2} N + R, \tag{6}$$

where I^{opt} is the diagonal random matrix of size $K \times K$ defined on the extended probability space $\widetilde{\Omega}$, with diagonal entries:

$$I_k^{\text{opt}} = [U_k a(T_k, X_{T_k-})^2 + (1 - U_k)a(T_k, X_{T_k})^2]^{-1}, \quad \text{for } k = 1, \dots, K.$$
(7)

The vector N is a standard Gaussian vector on \mathbb{R}^K independent of I^{opt} , and R is some random variable independent of N conditionally on I^{opt} .

Theorem 2 states that any estimator of the jumps with rate \sqrt{n} , must have an asymptotic law with a dispersion greater than $(I^{\text{opt}})^{-1/2}N$. From Theorem 1, we know that the estimator \hat{J}^n satisfies $\sqrt{n}(\hat{J}^n - J) \xrightarrow[law]{n \to \infty} Z$ with $Z \stackrel{law}{=} (I^{\text{opt}})^{-1/2}N$. Hence, we deduce that \hat{J}^n is optimal for estimating the size of the jumps.

It is well known that in parametric models, the Hajek's convolution theorem usually requires a regularity assumption on the estimator (see [12]). Here, it seems that our theorem does not require any assumption on the estimator, apart its convergence with rate \sqrt{n} . This comes from the fact that the target J of the estimator is random, yielding to some additional regularity properties, compared with the usual parametric setting (see a related situation in Jeganathan [16]).

In Section 4, we consider a parametric model related to our model (2), and enounce the associated LAMN property. This is the key step before proving Theorem 2. Remark that directly considering the values of the jumps size as the parameter is not the right choice. The reason is that the jump sizes are not independent of the Brownian motion $(W_t)_t$. Instead, we prefer to consider the values of the marks Λ as the statistical parameter.

4 LAMN property in the parametric case

We focus on the parametric model where the values of the marks Λ are considered as the unknown (deterministic) parameters. This is the crucial step before proving our optimality result.

More precisely, our aim is to obtain the LAMN property for the parametric model

$$X_{t}^{\lambda} = x_{0} + \int_{0}^{t} b(s, X_{s}^{\lambda}) ds + \int_{0}^{t} a(s, X_{s}^{\lambda}) dW_{s} + \sum_{k=1}^{K} c(X_{T_{k}-}^{\lambda}, \lambda_{k})$$
(8)

where the parameter $\lambda = (\lambda_1, \ldots, \lambda_K) \in \mathbb{R}^K$. We note $T = (T_1, \ldots, T_K)$ the vector of jump times such that $0 < T_1 < \ldots < T_K < 1$. Let us remark that, under the assumption H1, the solutions of (8) might be defined on the probability space $\Omega^1 \times \mathbb{R}^K$ endowed with the product of the Wiener measure and the law of the jumps times. Hence, to avoid new notation, we can assume that, for all $\lambda \in \mathbb{R}^K$, the process $(X_t^{\lambda})_{t \in [0,1]}$ is defined on the space $(\Omega, \mathcal{F}, \mathbb{P})$ of Section 3.

We observe both the regular discretization $(X_{i/n}^{\lambda})_{1 \leq i \leq n}$ of the process solution of (8) on the time interval [0, 1] and the jump times vector T.

Under H0 and H1 the law of the observations $(T, (X_{i/n}^{\lambda})_{1 \leq i \leq n})$ admits a density $\mathbf{p}^{n,\lambda}$. We note $\mathbf{p}^{n,\lambda,T}$ the density of $(X_{i/n}^{\lambda})_{1 \leq i \leq n}$ conditionally on T. For $h = (h_1, \ldots, h_K) \in \mathbb{R}^K$ we introduce the log-likelihood ratio:

$$Z_n(\lambda, \lambda + h/\sqrt{n}, T, x_1, \dots, x_n) = \log \frac{\mathbf{p}^{n,\lambda+h/\sqrt{n}}}{\mathbf{p}^{n,\lambda}}(T, x_1, \dots, x_n)$$
(9)

Theorem 3 Assume H0, H1 and H2. Then, the statistical model $(\mathbf{p}^{n,\lambda})_{\lambda \in \mathbb{R}^K}$ satisfies a LAMN property. For $\lambda \in \mathbb{R}^K$, $h \in \mathbb{R}^K$ we have:

$$Z_n(\lambda, \lambda + h/\sqrt{n}, T, X_{1/n}^{\lambda}, \dots, X_1^{\lambda}) = \sum_{k=1}^K h_k I_n(\lambda)_k^{1/2} N_n(\lambda)_k - \frac{1}{2} \sum_{k=1}^K h_k^2 I_n(\lambda)_k + o_{\mathbf{p}^{n,\lambda}}(1)$$
(10)

where $I_n(\lambda)$ is a diagonal random matrix and $N_n(\lambda)$ are random vectors in \mathbb{R}^K such that

$$(I_n(\lambda), N_n(\lambda)) \xrightarrow[law]{n \to \infty} I(\lambda), N),$$

with:

$$I(\lambda)_{k} = \frac{\dot{c}(X_{T_{k}-}^{\lambda},\lambda_{k})^{2}}{a^{2}(T_{k},X_{T_{k}-}^{\lambda})[1+c'(X_{T_{k}-}^{\lambda},\lambda_{k})]^{2}U_{k}+a^{2}(T_{k},X_{T_{k}-}^{\lambda}+c(X_{T_{k}-}^{\lambda},\lambda_{k}))(1-U_{k})},$$
(11)

where $U = (U_1, \ldots, U_K)$ is a vector of independent uniform laws on [0,1] such that U, T and $(W_t)_{t \in [0,1]}$ are independent, and conditionally on $(U, T, (W_t)_{t \in [0,1]})$, N is a standard Gaussian vector in \mathbb{R}^K .

Actually, we can complete the statement of the theorem by giving explicit expressions for $I_n(\lambda)$ and $N_n(\lambda)$:

$$I_n(\lambda)_k = \frac{\dot{c}(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)^2}{nD^{n, \lambda_k, k}(X_{\frac{i_k}{n}}^{\lambda})}, \qquad N_n(\lambda)_k = \frac{\sqrt{n}(X_{\frac{i_k+1}{n}}^{\lambda} - X_{\frac{i_k}{n}}^{\lambda} - c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))}{\sqrt{nD^{n, \lambda_k, k}(X_{\frac{i_k}{n}}^{\lambda})}},$$
$$D^{n, \lambda_k, k}(X_{\frac{i_k}{n}}^{\lambda}) = a^2(\frac{i_k}{n}, X_{\frac{i_k}{n}}^{\lambda})(1 + c'(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))^2(T_k - \frac{i_k}{n}) + a^2(\frac{i_k}{n}, X_{\frac{i_k}{n}}^{\lambda} + c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))(\frac{i_k+1}{n} - T_k),$$

where i_k is the integer part of nT_k .

5 Proof section

We divide the proofs into three sections. The Section 5.1 is devoted to the proof of the convergence and normality of the estimator \hat{J}^n . Then, we prove the LAMN property of the parametric model in Section 5.2. Finally, the convolution result is established in Section 5.3

5.1 Study of the estimator \hat{J}^n : proof of Proposition 1 and Theorem 1

5.1.1 Proof of Proposition 1

For $k \in \{1, \ldots, K\}$, let us note i_k the integer such that $i_k/n \leq T_k < (i_k + 1)/n$. We set $\mathcal{I} = \{i_1, \ldots, i_K\}$ and consider a variable which counts the number of false discovery of a jump by the estimator,

$$E_n = \sum_{i=0}^{n-1} 1_{|X_{(i+1)/n} - X_{i/n}| \ge u_n} 1_{i \notin \mathcal{I}}$$
(12)

For M > 0, we define Ω_M as the event $\Omega_M = \{\sup_{s \in [0,1]} [|b(s, X_s)| + |a(s, X_s)|] \le M\}$. We have

$$\mathbb{P}(\{E_n \ge 1\} \cap \Omega_M) \le \mathbb{E}[E_n 1_{\Omega_M}] \\
= \sum_{i=0}^{n-1} \mathbb{E}[1_{|X_{(i+1)/n} - X_{i/n}| \ge u_n} 1_{i \notin \mathcal{I}} 1_{\Omega_M}] \\
\le \sum_{i=0}^{n-1} \mathbb{P}\left[\left\{ \left| \int_{i/n}^{(i+1)/n} a(s, X_s) dW_s + \int_{i/n}^{(i+1)/n} b(s, X_s) ds \right| \ge u_n \right\} \cap \Omega_M \right] \\
\le \sum_{i=0}^{n-1} \mathbb{P}\left[\left\{ \left| \int_{i/n}^{(i+1)/n} a(s, X_s) dW_s \right| \ge u_n - \frac{M}{n} \right\} \cap \Omega_M \right].$$
(13)

With $a_M = (a \land M) \lor (-M)$ one has using Markov and Burkholder-Davis-Gundy inequalities:

$$\mathbb{P}\left[\left\{\left|\int_{i/n}^{(i+1)/n} a(s, X_s) dW_s\right| \ge u_n - \frac{M}{n}\right\} \cap \Omega_M\right] \le \mathbb{P}\left[\left|\int_{i/n}^{(i+1)/n} a_M(s, X_s) dW_s\right| \ge u_n - \frac{M}{n}\right] \le C_p(u_n - \frac{M}{n})^{-p} n^{-p/2} \quad \forall p > 0$$
$$= O(n^{-2}) \qquad (14)$$

since $u_n \sim n^{-\varpi}$ with $\varpi < 1/2$.

From (13) and (14) we get $\sum_{n\geq 1} \mathbb{P}(\{E_n\geq 1\}\cap\Omega_M)<\infty$, and by Borel Cantelli's lemma we deduce that $\mathbb{P}(\bigcap_{n\geq 1}\bigcup_{p\geq n}(\{E_p\geq 1\}\cap\Omega_M))=0$. It immediately implies $\mathbb{P}\left(\left(\bigcap_{n\geq 1}\bigcup_{p\geq n}\{E_p\geq 1\}\right)\cap\Omega_M\right)=0$ and since $\bigcup_{M\geq 1}\Omega_M=\Omega$, we easily deduce that almost surely, there exists n, such that $\forall p\geq n$, $E_p=0$. Recalling the definitions (3) and (12), we conclude that almost surely, if n is large enough, $\{\hat{i}_1^n,\ldots,\hat{i}_{\hat{K}_n}^n\}\subset\mathcal{I}$ and, as a consequence, $\hat{K}_n\leq K$.

Now, remark that we have almost surely the convergence, for all $k \leq K$,

$$X_{(i_k+1)/n} - X_{i_k/n} \xrightarrow{n \to \infty} X_{T_k} - X_{T_{k-1}} = c(X_{T_{k-1}}, \Lambda_k).$$

$$(15)$$

From the assumption A2, we have $c(X_{T_k-}, \Lambda_k) \neq 0$ and using that $u_n \to 0$, we deduce that for n large enough, $\mathcal{I} \subset {\hat{i}_1^n, \ldots, \hat{i}_{\hat{K}_n}^n}$.

As a consequence, we have shown that,

almost surely, for *n* large enough,
$$\hat{K}_n = K$$
 and $\hat{i}_k^n = i_k$, $\forall k \le K$. (16)

Eventually, the proposition follows from (4), (15) and (16).

5.1.2 Proof of Theorem 1

We use the notation introduced in the proof of Proposition 1: for $k \in \{1, \ldots, K\}$, we have $i_k/n \leq T_k < (i_k+1)/n$. Let us define for $1 \leq k \leq K$, $G_k^n = X_{(i_k+1)/n} - X_{i_k/n} - \Delta X_{T_k}$ and $G_k^n = 0$ for k > K. Using (4) and (16), we see that, almost surely, for n large enough, we have $\hat{J}^n - J = G^n$. Hence it is sufficient to study the limit in law of $\sqrt{n}G^n$.

Consider any $K_0 \in \mathbb{N}$ such that $\mathbb{P}(K = K_0) > 0$. Actually, we will prove the convergence of $\sqrt{n}G^n$ conditionally on the event $\{K = K_0\}$, to the law of Z conditional on $\{K = K_0\}$. It is easy to see that it is sufficient to prove the theorem.

For $K_0 \in \mathbb{N}$, define $\widehat{\mathbb{P}}^{K_0} = \frac{1_{\{K=K_0\}}}{\mathbb{P}(K=K_0)}\mathbb{P}$, the conditional probability. Clearly $\widehat{\mathbb{P}}^{K_0} << \mathbb{P}$, and $(W_t)_t$ is still a $(\mathcal{F}_t)_t$ Brownian motion under $\widehat{\mathbb{P}}^{K_0}$.

For $k > K_0$ we have $G_k^n = 0$, hence we focus only on the components G_k^n with $k \le K_0$. Define $\widehat{\Omega}^n = \{X \text{ has at most one jumps on each interval of size <math>1/n\}$. We have $\lim_{n\to\infty} \widehat{\mathbb{P}}^{K_0}(\widehat{\Omega}^n) = 1$. On $\widehat{\Omega}^n$, the following decomposition holds true $\widehat{\mathbb{P}}^{K_0}$ almost surely, for any $k \le K_0$,

$$\sqrt{n}G_k^n = a(i_k/n, X_{i_k/n})\alpha_{k,n}^- + a(T_k, X_{T_k})\alpha_{k,n}^+ + e_{n,k}$$

where

$$\alpha_{k,n}^{-} = \sqrt{n}(W_{T_{k}} - W_{i_{k}/n}), \quad \alpha_{k,n}^{+} = \sqrt{n}(W_{(i_{k}+1)/n} - W_{T_{k}}), \quad (17)$$

$$e_{n,k} = \sqrt{n} \int_{i_{k}/n}^{T_{k}} (a(s, X_{s}) - a(i_{k}/n, X_{i_{k}/n})) dW_{s} + \sqrt{n} \int_{T_{k}}^{(i_{k}+1)/n} (a(s, X_{s}) - a(T_{k}, X_{T_{k}})) dW_{s} + \sqrt{n} \int_{i_{k}/n}^{(i_{k}+1)/n} b(s, X_{s}) ds.$$

First, we show that $e_{n,k}$ converges to zero in $\widehat{\mathbb{P}}^{K_0}$ probability as $n \to \infty$. It is clear that the ordinary integral converges almost surely to zero. It remains to see that the two stochastic integrals converge to zero.

Using that the jumps times are \mathcal{F}_0 -measurable, we can write the stochastic integral $\sqrt{n} \int_{i_k/n}^{T_k} (a(s, X_s) - a(i_k/n, X_{i_k/n})) dW_s$ as a local martingale increment $\int_0^1 \sqrt{n} \mathbb{1}_{[i_k/n, T_k]}(s)(a(s, X_s) - a(i_k/n, X_{i_k/n})) dW_s$. The bracket of this local martingale is $\int_{i_k/n}^{T_k} n(a(s, X_s) - a(i_k/n, X_{i_k/n}))^2 ds$, which converges to zero almost surely, using the right continuity of the process X. We deduce that $\sqrt{n} \int_{i_k/n}^{T_k} (a(s, X_s) - a(i_k/n, X_{i_k/n})) dW_s$ converge to zero in probability. We proceed in the same way to prove that $\sqrt{n} \int_{T_k}^{(i_k+1)/n} (a(s, X_s) - a(T_k, X_{T_k})) dW_s \xrightarrow{n \to \infty} 0$ in probability. This yields to the relation,

$$\sqrt{n}G_k^n = a(i_k/n, X_{i_k/n})\alpha_{k,n}^- + a(T_k, X_{T_k})\alpha_{k,n}^+ + o_{\widehat{\mathbb{P}}^{K_0}}(1), \quad \text{for } k \le K_0$$

Using A0, and the independence between $(W_t)_{t \in [0,1]}$ and T under $\widehat{\mathbb{P}}^{K_0}$, we can apply Lemma 1 below. We get the convergence in law, under $\widehat{\mathbb{P}}^{K_0}$,

$$((T_k)_{k=1,\dots,K_0}, (\alpha_{k,n}^-)_{k=1,\dots,K_0}, (\alpha_{k,n}^+)_{k=1,\dots,K_0}, (W_t)_{t\in[0,1]}) \xrightarrow{n\to\infty} ((T_k)_{k=1,\dots,K_0}, (\sqrt{U_k}N_k^-)_{k=1,\dots,K_0}, (\sqrt{1-U_k}N_k^+)_{k=1,\dots,K_0}, (W_t)_{t\in[0,1]}).$$

Since the marks $(\Lambda_k)_k$, the Brownian motion, and the jump times are independent, it is easy to deduce that, under $\widehat{\mathbb{P}}^{K_0}$, $(\alpha_{k,n}^-, \alpha_{k,n}^+)_{k \leq K_0}$ converges in law to $(\sqrt{U_k}N_k^-, \sqrt{1-U_k}N_k^+)_{k \leq K_0}$ stably with respect to the sigma-field generated by $(W_t)_{t \in [0,1]}$, $(T_k)_k$ and $(\Lambda_k)_k$. The limit can be represented on the extended space $\widetilde{\Omega}$ endowed with the probability $\widetilde{\mathbb{P}}$ conditional on $K = K_0$.

But the process X is measurable with respect to \mathcal{F}_1 , and we deduce the stable convergence,

$$\sqrt{n}G_k^n = a(i_k/n, X_{i_k/n})\alpha_{k,n}^- + a(T_k, X_{T_k})\alpha_{k,n}^+ \xrightarrow{n \to \infty} a(T_k, X_{T_k-})\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+$$
for $k = 1$, V_k under $\widehat{\mathbb{D}}_k^{K_0}$

for $k = 1, \ldots K_0$, under \mathbb{P}^{K_0} .

By simple computations, this implies the convergence of $(\sqrt{n}G_k^n)_k$ under \mathbb{P} , and the theorem is proved.

Lemma 1 Let $K_0 \in \mathbb{N} \setminus \{0\}$ and consider $T = (T_1, \ldots, T_{K_0})$ a random variable on $[0, 1]^{K_0}$ with density f_T . For $k = 1, \ldots, K_0$, we note $i_k = [nT_k]$ the integer part of nT_k . Let $(W_t)_{t \in [0,1]}$ be a standard Brownian motion independent of T.

Then, we have the convergence in law of the variables

$$(T, (n(T_k - \frac{i_k}{n}))_k, (\sqrt{n}(W_{T_k} - W_{\frac{i_k}{n}}))_k, (\sqrt{n}(W_{\frac{i_k+1}{n}} - W_{T_k}))_k, (W_t)_{t \in [0,1]})$$

to

$$(T, (U_k)_k, (\sqrt{U_k}N_k^-)_k, (\sqrt{1-U_k}N_k^+)_k, (W_t)_{t \in [0,1]})$$

where $U = (U_1, \ldots, U_{K_0})$ is a vector of independent uniform laws on [0, 1], $N^- = (N_1^-, \ldots, N_{K_0}^-)$ and $N^+ = (N_1^+, \ldots, N_{K_0}^+)$ are independent standard Gaussian vectors such that T, U, N^-, N^+ and $(W_t)_t$ are independent.

Proof See Lemma 5.8 in [13] (or Lemma 6.2 in [14]).

5.2 LAMN property: proof of Theorem 3

We use the framework of Section 4 and we introduce some more notation. For k = 1, ..., K, we note $i_k = [nT_k]$ the integer part of nT_k and for $t \in [i_k/n, (i_k + 1)/n]$, we note $(X_t^{\theta,k})$ the process solution of the following diffusion equation with only one jump at time T_k :

$$X_t^{\theta,k} = X_0 + \int_0^t b(s, X_s^{\theta,k}) ds + \int_0^t a(s, X_s^{\theta,k}) dW_s + c(X_{T_k}^{\theta,k}, \theta) \mathbf{1}_{t \ge T_k}.$$
 (18)

 \diamond

Under H1 and H2 and conditionally on T, this process admits a strictly positive conditional density, which is C^1 with respect to θ . We will note $p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y)$ the density of $X_{\frac{i_k+1}{n}}^{\theta,k}$ conditionally on T and $X_{\frac{i_k}{n}}^{\theta,k} = x$ and $\dot{p}^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y)$ its derivative with respect to θ .

We observe that the log-likelihood ratio Z_n only involves the transition densities of X^{λ} on a time interval where a jump occurs. This transition is $p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y)$ if there is exactly one jump in the corresponding interval. Then, one can easily see that the following decomposition holds for Z_n :

$$Z_{n}(\lambda,\lambda+h/\sqrt{n},T,x_{1},\ldots,x_{n})1_{\mathcal{T}_{n}}(T) = \sum_{k=1}^{K} \ln \frac{p^{\lambda_{k}+h_{k}/\sqrt{n},T}}{p^{\lambda_{k},T}} (\frac{i_{k}}{n},\frac{i_{k}+1}{n},x_{i_{k}},x_{i_{k}+1})1_{\mathcal{T}_{n}}(T)$$
$$= \sum_{k=1}^{K} \int_{\lambda_{k}}^{\lambda_{k}+h_{k}/\sqrt{n}} \frac{\dot{p}^{\theta,T}}{p^{\theta,T}} (\frac{i_{k}}{n},\frac{i_{k}+1}{n},x_{i_{k}},x_{i_{k}+1}) d\theta 1_{\mathcal{T}_{n}}(T)$$
(19)

where $1_{\mathcal{T}_n}(T)$ is the indicator function that there is at most one jump in each time intervals [i/n, (i+1)/n) for $i = 0, \ldots, n-1$.

We have now to study the asymptotic behaviour of (19). This is divided into several lemmas. The lemmas 2–4 give an expansion for the score function, with an uniform control in θ . We deduce then an explicit expansion for $\int_{\lambda_k}^{\lambda_k+h_k} \sqrt{n} \frac{\dot{p}^{\theta,T}}{p^{\theta,T}} (\frac{i_k}{n}, \frac{i_k+1}{n}, x_{i_k}, x_{i_k+1}) d\theta$ in Lemma 5, and conclude by passing through the limit in Lemma 6. We begin with a representation of $\frac{p^{\theta,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)$ as a conditional expectation, using Malliavin calculus. We refer to Nualart [19] for a detailed presentation of Malliavin calculus. The Malliavin calculus techniques to derive LAMN properties have been introduced by Gobet [10] in the case of multi-dimensional diffusion processes and then used by Gloter and Gobet [9] for integrated diffusions.

Lemma 2 Assuming H1 and H2, we have $\forall (x, y) \in \mathbb{R}^2$:

$$\frac{\dot{p}^{\theta,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,y) = E^{x,T,k}\left(\delta(P^{n,\theta,k})|X_{\frac{i_k+1}{n}}^{\theta,k} = y\right),$$

where $E^{x,T,k}$ is the conditional expectation on T and $X_{\frac{i_k}{n}}^{\theta,k} = x$ and $P^{n,\theta,k}$ is the process given on $[\frac{i_k}{n}, \frac{i_k+1}{n}]$ by

$$P_s^{n,\theta,k} = \frac{(Y_{T_k}^{\theta,k} Y_s^{\theta,k})^{-1} (1 + c'(X_{T_k-}^{\theta,k}, \theta) \mathbf{1}_{s < T_k}) a(s, X_s^{\theta,k}) \dot{c}(X_{T_k-}^{\theta,k}, \theta)}{\int_{i_k/n}^{(i_k+1)/n} (Y_u^{\theta,k})^{-2} a^2(u, X_u^{\theta,k}) (1 + c'(X_{T_k-}^{\theta,k}, \theta) \mathbf{1}_{u < T_k})^2 du}$$

where $(Y_t^{\theta,k})_t$ is the process solution of

$$Y_t^{\theta,k} = 1 + \int_0^t b'(s, X_s^{\theta,k}) Y_s^{\theta,k} ds + \int_0^t a'(s, X_s^{\theta,k}) Y_s^{\theta,k} dW_s.$$
(20)

We remark that under H1, the process $(Y_t^{\theta,k})_t$ and its inverse satisfy $\forall p \ge 1$,

$$(E(\sup_{0 \le t \le 1} |Y_t^{\theta,k}|^p))^{1/p} \le C_p \quad (E(\sup_{0 \le t \le 1} |Y_t^{\theta,k}|^{-p}))^{1/p} \le C_p.$$

Proof The proof of Lemma 2 is based on Malliavin calculus on the time interval $[i_k/n, (i_k+1)/n]$, conditionally on T and $(W_t)_{t \leq i_k/n}$. We first observe that under H1 and H2, the process $(X_t^{\theta,k})$ solution of (18) admits a derivative with respect to θ that we will denote by $(\dot{X}_t^{\theta,k})$. Moreover $(X_t^{\theta,k})$ and $(\dot{X}_t^{\theta,k})$ belong respectively to the Malliavin spaces $\mathbb{D}^{2,p}$ and $\mathbb{D}^{1,p}$, $\forall p \geq 1$. Now, let φ be a smooth function with compact support, we have :

$$\frac{\partial}{\partial \theta} E^{x,T,k} \varphi(X_{\frac{i_k+1}{n}}^{\theta,k}) = E^{x,T,k} \varphi'(X_{\frac{i_k+1}{n}}^{\theta,k}) \dot{X}_{\frac{i_k+1}{n}}^{\theta,k}.$$

Using the integration by part formula, we can write

$$E^{x,T,k}\varphi'(X_{\frac{i_k+1}{n}}^{\theta,k})\dot{X}_{\frac{i_k+1}{n}}^{\theta,k} = E^{x,T,k}\varphi(X_{\frac{i_k+1}{n}}^{\theta,k})H(X_{\frac{i_k+1}{n}}^{\theta,k},\dot{X}_{\frac{i_k+1}{n}}^{\theta,k})$$

where the weight H can be expressed in terms of the Malliavin derivative of $X_{\frac{i_k+1}{n}}^{\theta,k}$, the inverse of its Malliavin variance-covariance matrix and the divergence operator as follows:

$$H(X_{\frac{i_k+1}{n}}^{\theta,k}, \dot{X}_{\frac{i_k+1}{n}}^{\theta,k}) = \delta\left(\dot{X}_{\frac{i_k+1}{n}}^{\theta,k}\gamma^{\theta,k}DX_{\frac{i_k+1}{n}}^{\theta,k}\right)$$

where

$$\gamma^{\theta,k} = \left(\int_{i_k/n}^{(i_k+1)/n} D_u(X^{\theta,k}_{\frac{i_k+1}{n}})^2 du \right)^{-1}.$$
 (21)

On the other hand, from Lebesgue derivative theorem, we have:

$$\frac{\partial}{\partial \theta} E^{x,T,k} \varphi(X_{\frac{i_k+1}{n}}^{\theta,k}) = \int \varphi(y) \dot{p}^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y) dy,$$

this leads to the following representation

$$\dot{p}^{\theta,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y) = E^{x,T,k}(\delta(\dot{X}^{\theta,k}_{\frac{i_k+1}{n}}\gamma^{\theta,k}DX^{\theta,k}_{\frac{i_k+1}{n}})|X^{\theta,k}_{\frac{i_k+1}{n}} = y)p^{\theta,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y).$$

It remains to give a more tractable expression of $\dot{X}_{\frac{i_k+1}{n}}^{\theta,k}\gamma^{\theta,k}DX_{\frac{i_k+1}{n}}^{\theta,k}$. We first observe that:

$$\dot{X}_{\frac{i_{k}+1}{n}}^{\theta,k} = \dot{c}(X_{T_{k}-}^{\theta,k},\theta) + \int_{T_{k}}^{(i_{k}+1)/n} b'(u,X_{u}^{\theta,k}) \dot{X}_{u}^{\theta,k} du + \int_{T_{k}}^{(i_{k}+1)/n} a'(u,X_{u}^{\theta,k}) \dot{X}_{u}^{\theta,k} dW_{u},$$

and consequently

$$\dot{X}_{\frac{i_{k}+1}{n}}^{\theta,k} = Y_{\frac{i_{k}+1}{n}}^{\theta,k} (Y_{T_{k}}^{\theta,k})^{-1} \dot{c}(X_{T_{k}-}^{\theta,k},\theta),$$
(22)

where $(Y_t^{\theta,k})$ is solution of (20). Turning to the Malliavin derivative of $X_{\frac{i_k+1}{n}}^{\theta,k}$, we have for $s \in [i_k/n, (i_k+1)/n]$:

$$D_{s}X_{\frac{i_{k}+1}{n}}^{\theta,k} = a(s, X_{s}^{\theta,k}) 1_{s \le (i_{k}+1)/n} + c'(X_{T_{k}-}^{\theta,k}, \theta) D_{s}X_{T_{k}-}^{\theta,k} + \int_{s}^{(i_{k}+1)/n} b'(u, X_{u}^{\theta,k}) D_{s}X_{u}^{\theta,k} du + \int_{s}^{(i_{k}+1)/n} a'(u, X_{u}^{\theta,k}) D_{s}X_{u}^{\theta,k} dW_{u},$$

and it follows that

$$D_s X_{\frac{i_k+1}{n}}^{\theta,k} = Y_{\frac{i_k+1}{n}}^{\theta,k} (1 + c'(X_{T_k-}^{\theta,k}, \theta) \mathbf{1}_{s < T_k}) (Y_s^{\theta,k})^{-1} a(s, X_s^{\theta,k}).$$
(23)

From (22) and (23), we obtain

$$\dot{X}_{\frac{i_{k}+1}{n}}^{\theta,k}\gamma^{\theta,k}D_{s}X_{\frac{i_{k}+1}{n}}^{\theta,k} = \frac{(Y_{T_{k}}^{\theta,k}Y_{s}^{\theta,k})^{-1}(1+c'(X_{T_{k}-}^{\theta,k},\theta)\mathbf{1}_{s< T_{k}})a(s,X_{s}^{\theta,k})\dot{c}(X_{T_{k}-}^{\theta,k},\theta)}{\int_{i_{k}/n}^{(i_{k}+1)/n}(Y_{u}^{\theta,k})^{-2}a^{2}(u,X_{u}^{\theta,k})(1+c'(X_{T_{k}-}^{\theta,k},\theta)\mathbf{1}_{u< T_{k}})^{2}du} = P_{s}^{n,\theta,k}, \quad (24)$$

and the Lemma 2 is proved.

In the next Lemma, we explicit the conditional expectation appearing in the decomposition of $\frac{\dot{p}^{\theta,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)$.

 \diamond

Lemma 3 Assuming H1 and H2, we have

$$E^{x,T,k}\left(\delta(P^{n,\theta,k})|X_{\frac{i_k+1}{n}}^{\theta,k} = y\right) = \frac{(y - x - c(x,\theta))\dot{c}(x,\theta)}{D^{n,\theta,k}(x)} + E^{x,T,k}(Q^{n,\theta,k}|X_{\frac{i_k+1}{n}}^{\theta,k} = y), \quad (25)$$

with

$$D^{n,\theta,k}(x) = a^2(\frac{i_k}{n}, x)(1 + c'(x,\theta))^2(T_k - \frac{i_k}{n}) + a^2(\frac{i_k}{n}, x + c(x,\theta))(\frac{i_k + 1}{n} - T_k)$$
(26)

and where $Q^{n,\theta,k}$ satisfies

$$\forall p \ge 1 \quad (E^{x,T,k} | Q^{n,\theta,k} |^p)^{1/p} \le C_p,$$

for a constant C_p independent of x, n and θ .

The first term in the right hand side of (25) is the main term and we will prove later that the contribution of the conditional expectation of $Q^{n,\theta,k}$ is negligible.

Proof We first give an approximation of the process $P^{n,\theta,k}$ which depends on the position of s with respect to the jump time T_k . We have:

$$P_{s}^{n,\theta,k} = \frac{\left((1+c'(X_{\frac{i_{k}}{n}}^{\theta,k},\theta))a(\frac{i_{k}}{n},X_{\frac{i_{k}}{n}}^{\theta,k})1_{[\frac{i_{k}}{n},T_{k})}(s) + a(\frac{i_{k}}{n},X_{\frac{i_{k}}{n}}^{\theta,k} + c(X_{\frac{i_{k}}{n}}^{\theta,k},\theta))1_{[T_{k},\frac{i_{k}+1}{n}]}(s)\right)\dot{c}(X_{\frac{i_{k}}{n}}^{\theta,k},\theta)}{D^{n,\theta,k}(X_{\frac{i_{k}}{n}}^{\theta,k})} + U_{s}^{n,\theta,k},$$
(27)

where $D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})$ is defined by (26) and $U_s^{n,\theta,k}$ is a remainder term. We deduce then that

$$\delta(P^{n,\theta,k}) = \frac{\left((1+c'(X_{\frac{i_k}{n}}^{\theta,k},\theta))a(\frac{i_k}{n},X_{\frac{i_k}{n}}^{\theta,k})(W_{T_k}-W_{\frac{i_k}{n}})+a(\frac{i_k}{n},X_{\frac{i_k}{n}}^{\theta,k}+c(X_{\frac{i_k}{n}}^{\theta,k},\theta))(W_{\frac{i_k+1}{n}}-W_{T_k})\right)\dot{c}(X_{\frac{i_k}{n}}^{\theta,k},\theta)}{D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})} +\delta(U^{n,\theta,k}).$$

$$(28)$$

Now, we can approximate $X_{\frac{i_k+1}{n}}^{\theta,k}$ on the following way:

$$X_{\frac{i_{k}+1}{n}}^{\theta,k} = X_{\frac{i_{k}}{n}}^{\theta,k} + c(X_{T_{k}-}^{\theta,k},\theta) + a(\frac{i_{k}}{n}, X_{\frac{i_{k}}{n}}^{\theta,k})(W_{T_{k}} - W_{\frac{i_{k}}{n}}) + a(\frac{i_{k}}{n}, X_{\frac{i_{k}}{n}}^{\theta,k} + c(X_{\frac{i_{k}}{n}}^{\theta,k},\theta))(W_{\frac{i_{k}+1}{n}} - W_{T_{k}}) + R_{1}^{n,\theta,k},$$

but observing that

$$c(X_{T_k-}^{\theta,k},\theta) = c(X_{\frac{i_k}{n}}^{\theta,k},\theta) + c'(X_{\frac{i_k}{n}}^{\theta,k},\theta)a(\frac{i_k}{n},X_{\frac{i_k}{n}}^{\theta,k})(W_{T_k}-W_{\frac{i_k}{n}}) + R_2^{n,\theta,k},$$

we finally obtain

$$X_{\frac{i_{k}+1}{n}}^{\theta,k} = X_{\frac{i_{k}}{n}}^{\theta,k} + c(X_{\frac{i_{k}}{n}}^{\theta,k},\theta) + (1 + c'(X_{\frac{i_{k}}{n}}^{\theta,k},\theta))a(\frac{i_{k}}{n},X_{\frac{i_{k}}{n}}^{\theta,k})(W_{T_{k}} - W_{\frac{i_{k}}{n}}) + a(\frac{i_{k}}{n},X_{\frac{i_{k}}{n}}^{\theta,k} + c(X_{\frac{i_{k}}{n}}^{\theta,k},\theta))(W_{\frac{i_{k}+1}{n}} - W_{T_{k}}) + R^{n,\theta,k}.$$
(29)

Putting together (28) and (29), this yields

$$\delta(P^{n,\theta,k}) = \frac{\left(X_{\frac{i_k+1}{n}}^{\theta,k} - X_{\frac{i_k}{n}}^{\theta,k} - c(X_{\frac{i_k}{n}}^{\theta,k},\theta)\right)\dot{c}(X_{\frac{i_k}{n}}^{\theta,k},\theta)}{D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})} - R^{n,\theta,k}\frac{\dot{c}(X_{\frac{i_k}{n}}^{\theta,k},\theta)}{D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})} + \delta(U^{n,\theta,k}).$$
(30)

Letting $Q^{n,\theta,k}$ be the random variable defined by

$$Q^{n,\theta,k} = \delta(U^{n,\theta,k}) - R^{n,\theta,k} \frac{\dot{c}(X^{\theta,k}_{\frac{i_k}{n}}, \theta)}{D^{n,\theta,k}(X^{\theta,k}_{\frac{i_k}{n}})},$$
(31)

where $U^{n,\theta,k}$ and $R^{n,\theta,k}$ are respectively defined by (27) and (29), we deduce easily the first part of Lemma 3. It remains to bound $E^{x,T,k}|Q^{n,\theta,k}|^p, \forall p \ge 1$.

We remark that from H1 and H2 $\,$

$$0 \le \frac{\left|\dot{c}(X_{\frac{i_k}{n}}^{\theta,k},\theta)\right|}{D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})} \le nC,\tag{32}$$

for a constant C independent on n, k and θ . Moreover, we have

$$(E \sup_{\frac{i_k}{n} \le s \le T_k -} |X_s^{\theta,k} - X_{\frac{i_k}{n}}^{\theta,k}|^p)^{1/p} \le \frac{C_p}{\sqrt{n}} \quad \text{and} \quad (E \sup_{T_k \le s \le \frac{i_k + 1}{n}} |X_s^{\theta,k} - X_{T_k}^{\theta,k}|^p)^{1/p} \le \frac{C_p}{\sqrt{n}}$$
(33)

So, one can easily deduce that, assuming H1,

$$(E^{x,T,k}|R^{n,\theta,k}|^p)^{1/p} \le C_p/n,$$

and combining this with (32), we derive

$$E^{x,T,k}\left(|R^{n,\theta,k}|\frac{|\dot{c}(X_{\frac{i_k}{n}}^{\theta,k},\theta)|}{D^{n,\theta,k}(X_{\frac{i_k}{n}}^{\theta,k})}\right)^p \le C_p$$

Turning to $\delta(U^{n,\theta,k})$, we first recall that, from the continuity property of the divergence operator (see Nualart [19]), we have

$$(E^{x,T,k}|\delta(U^{n,\theta,k})|^p)^{1/p} \le C_p(||U^{n,\theta,k}||_p + ||DU^{n,\theta,k}||_p),$$
(34)

where

$$||U^{n,\theta,k}||_p^p = E^{x,T,k} \left(\int_{i_k/n}^{(i_k+1)/n} |U_s^{n,\theta,k}|^2 ds\right)^{p/2},\tag{35}$$

$$||DU^{n,\theta,k}||_p^p = E^{x,T,k} \left(\int_{i_k/n}^{(i_k+1)/n} \int_{i_k/n}^{(i_k+1)/n} |D_v U_s^{n,\theta,k}|^2 ds dv\right)^{p/2}.$$
(36)

To bound $U^{n,\theta,k}$, we first observe that

$$(E \sup_{\frac{i_k}{n} \le s, u \le \frac{i_k+1}{n}} |Y_{T_k}^{\theta,k} Y_s^{\theta,k} (Y_u^{\theta,k})^{-2} - 1|^p)^{1/p} \le \frac{C_p}{\sqrt{n}}.$$
(37)

Now, combining (32), (33) and (37) in the expression of $U^{n,\theta,k}$ given by (27), we can prove

$$(E^{x,T,k} \sup_{\substack{\frac{i_k}{n} \le s \le \frac{i_k+1}{n}}} |U_s^{n,\theta,k}|^p)^{1/p} \le C_p \sqrt{n},$$

and consequently

$$||U^{n,\theta,k}||_p \le C_p. \tag{38}$$

It remains to bound the Malliavin derivative of $U^{n,\theta,k}$. From (27) and (24), we have

$$D_v U_s^{n,\theta,k} = D_v P_s^{n,\theta,k} = D_v (\dot{X}_{\frac{i_k+1}{n}}^{\theta,k} \gamma^{\theta,k} D_s X_{\frac{i_k+1}{n}}^{\theta,k}).$$

Under H1, the Malliavin derivatives of $\dot{X}_{\frac{i_k+1}{n}}^{\theta,k}$ and $D_s X_{\frac{i_k+1}{n}}^{\theta,k}$ are bounded in L^p and with the nondegeneracy assumption H2, it is easy to see that the inverse of the Malliavin variance-covariance matrix $\gamma^{\theta,k}$, given by (21), satisfies

$$(E^{x,T,k}|\gamma^{\theta,k}|^p)^{1/p} \le nC_p \quad \text{and} \quad (E^{x,T,k} \sup_{\substack{\frac{i_k}{n} \le v \le \frac{i_k+1}{n}}} |D_v\gamma^{\theta,k}|^p)^{1/p} \le nC_p.$$
 (39)

Putting this together, we obtain

$$(E^{x,T,k} \sup_{\frac{i_k}{n} \le s, v \le \frac{i_k+1}{n}} |D_v U_s^{n,\theta,k}|^p)^{1/p} \le nC_p$$

and then

$$||DU^{n,\theta,k}||_p \le C_p. \tag{40}$$

From (34), (38) and (40), we deduce

$$(E^{x,T,k}|\delta(U^{n,\theta,k})|^p)^{1/p} \le C_p,$$

and Lemma 3 is proved.

The bound on $Q^{n,\theta,k}$ given in Lemma 3 is not sufficient, since to obtain the LAMN property, we have to compute the conditional expectation with $x = X_{\frac{i_k}{n}}^{\lambda}$ and $y = X_{\frac{i_k+1}{n}}^{\lambda}$. So we complete the Lemma 3 with the following bound.

 \diamond

Lemma 4 With the assumptions and notations of Lemma 3, we have for θ such that $|\theta - \lambda_k| \leq C/\sqrt{n}$

$$E^{x,T,k}|E^{x,T,k}(Q^{n,\theta,k}|X_{\frac{i_k+1}{n}}^{\theta,k} = X_{\frac{i_k+1}{n}}^{\lambda})| \le C',$$

where the constant C' is independent of x, n and θ .

Proof We first remark that

$$E^{x,T,k}|E^{x,T,k}(Q^{n,\theta,k}|X_{\frac{i_k+1}{n}}^{\theta,k} = X_{\frac{i_k+1}{n}}^{\lambda})| \le E^{x,T,k}|Q^{n,\theta,k}|\frac{p^{\lambda_k,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,X_{\frac{i_k+1}{n}}^{\theta,k}).$$
(41)

From Hölder's inequality and Lemma 3, we obtain for p > 1, q > 1 such that 1/p + 1/q = 1

$$E^{x,T,k}|E^{x,T,k}(Q^{n,\theta,k}|X_{\frac{i_k+1}{n}}^{\theta,k} = X_{\frac{i_k+1}{n}}^{\lambda})| \le C_p \left(E^{x,T,k} \left(\frac{p^{\lambda_k,T}}{p^{\theta,T}} (\frac{i_k}{n}, \frac{i_k+1}{n}, x, X_{\frac{i_k+1}{n}}^{\theta,k}) \right)^q \right)^{1/q}, \quad (42)$$

and the result of Lemma 4 reduces to prove that there exists $q_0 > 1$ such that

$$E^{x,T,k}\left(\frac{p^{\lambda_k,T}}{p^{\theta,T}}\left(\frac{i_k}{n},\frac{i_k+1}{n},x,X^{\theta,k}_{\frac{i_k+1}{n}}\right)\right)^{q_0} \le C$$

$$(43)$$

where C is independent of n, x and θ . We can write:

$$E^{x,T,k}\left(\frac{p^{\lambda_k,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,X_{\frac{i_k+1}{n}}^{\theta,k})\right)^{q_0} = \int p^{\lambda_k,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)^{q_0}p^{\theta,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)^{1-q_0}dy,$$
(44)

and we can express the transition $p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y)$ by decomposing it in terms on the transitions of a diffusion without jump on the time intervals $(\frac{i_k}{n}, T_k)$ and $(T_k, \frac{i_k+1}{n})$

$$p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y) = \int p^{\theta,T}(\frac{i_k}{n}, T_k, x, z) p^{\theta,T}(T_k, \frac{i_k+1}{n}, z+c(z, \theta), y) dz.$$
(45)

Now, assuming H1 and H2, we have the following classical estimates of the transition probabilities of a diffusion process (see Azencott [5]), for some constants C_1 , C_2 :

$$C_1 G(x, \underline{a}^2 (T_k - \frac{i_k}{n}), z) \le p^{\theta, T} (\frac{i_k}{n}, T_k, x, z) \le C_2 G(x, \overline{a}^2 (T_k - \frac{i_k}{n}), z),$$

$$C_1 G(z + c(z, \theta), \underline{a}^2 (\frac{i_k + 1}{n} - T_k), y) \le p^{\theta, T} (T_k, \frac{i_k + 1}{n}, z + c(z, \theta), y) \le C_2 G(z + c(z, \theta), \overline{a}^2 (\frac{i_k + 1}{n} - T_k), y)$$

where $G(m, \sigma^2, y)$ denotes the density of the Gaussian law with mean m and variance σ^2 . To simplify the notation, we note $\sigma_{k,n}^- = T_k - \frac{i_k}{n}$ and $\sigma_{k,n}^+ = \frac{i_k+1}{n} - T_k$. Plugging this in (45), we obtain

$$p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y) \ge C_1 \int G(x, \underline{a}^2 \sigma_{k,n}^-, z) G(z + c(z, \theta), \underline{a}^2 \sigma_{k,n}^+, y) dz := I_1.$$
(46)

We get analogously,

$$p^{\lambda_k,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y) \le C_2 \int G(x, \overline{a}^2 \sigma_{k,n}^-, z) G(z + c(z, \lambda_k), \overline{a}^2 \sigma_{k,n}^+, y) dz := I_2.$$
(47)

Observe that, in order to bound (44), we have to compute an upper bound for $p^{\lambda_k,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)$ and a lower bound for $p^{\theta,T}(\frac{i_k}{n},\frac{i_k+1}{n},x,y)$, since $1-q_0 < 0$.

Our aim now is to give more tractable bounds for the transition density $p^{\theta,T}(\frac{i_k}{n}, \frac{i_k+1}{n}, x, y)$. For this, we make the following change of variables in the integrals I_1 and I_2 defined in (47) and (46). We put $u = \varphi(z) = z + c(z, \theta) - x - c(x, \theta)$. We observe that $\varphi(x) = 0$. Moreover, from H1 and H2, φ is invertible and its derivative satisfies, for some constant c_0 :

$$0 < \underline{a} \le |\varphi'(z)| \le c_0,$$

and consequently

$$\frac{1}{c_0}|z| \le |\varphi^{-1}(z) - \varphi^{-1}(0)| \le \frac{1}{\underline{a}}|z|.$$

So we obtain, for some constant C_1

$$I_{1} \geq C_{1} \int G(0, \underline{a}^{2} \sigma_{k,n}^{-}, \varphi^{-1}(u) - \varphi^{-1}(0)) G(u + x + c(x, \theta), \underline{a}^{2} \sigma_{k,n}^{+}, y) du,$$

$$\geq C_{1} \int G(0, \underline{a}^{4} \sigma_{k,n}^{-}, u) G(x + c(x, \theta), \underline{a}^{2} \sigma_{k,n}^{+}, y - u) du,$$

$$= C_{1} G(x + c(x, \theta), \underline{a}^{4} \sigma_{k,n}^{-} + \underline{a}^{2} \sigma_{k,n}^{+}, y).$$
(48)

Proceeding similarly,

$$I_2 \leq C_2 G(x + c(x, \lambda_k), c_0^2 \overline{a}^2 \sigma_{k,n}^- + \overline{a}^2 \sigma_{k,n}^+, y).$$

$$\tag{49}$$

Turning back to (44), it follows that

$$E^{x,T,k}\left(\frac{p^{\lambda_k,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,X_{\frac{i_k+1}{n}}^{\theta,k})\right)^{q_0} \le C\int G^{q_0}(x+c(x,\lambda_k),\sigma_{k,n}^1,y)G^{1-q_0}(x+c(x,\theta),\sigma_{k,n}^2,y)dy,$$
(50)

where $\sigma_{k,n}^1 = c_0^2 \overline{a}^2 \sigma_{k,n}^- + \overline{a}^2 \sigma_{k,n}^+$ and $\sigma_{k,n}^2 = \underline{a}^4 \sigma_{k,n}^- + \underline{a}^2 \sigma_{k,n}^+$. We check easily that $\sigma_{k,n}^1$ and $\sigma_{k,n}^2$ are upper and lower bounded by 1/n and satisfy $0 < \sigma_{k,n}^2 / \sigma_{k,n}^1 < 1$.

Finally, choosing q_0 such that $1 < q_0 < \sigma_{k,n}^1 / (\sigma_{k,n}^1 - \sigma_{k,n}^2)$ and assuming that $|\theta - \lambda_k| \leq C / \sqrt{n}$, we get after some calculus

$$E^{x,T,k}\left(\frac{p^{\lambda_k,T}}{p^{\theta,T}}(\frac{i_k}{n},\frac{i_k+1}{n},x,X_{\frac{i_k+1}{n}}^{\theta,k})\right)^{q_0} \le C',$$

for a constant C' independent on x, n and θ and the Lemma 4 is proved.

Lemma 5 Assuming H1 and H2, we have:

$$\int_{\lambda_k}^{\lambda_k + h_k/\sqrt{n}} \frac{\dot{p}^{\theta,T}}{p^{\theta,T}} (\frac{\dot{i}_k}{n}, \frac{\dot{i}_k + 1}{n}, X_{\frac{i_k}{n}}^{\lambda}, X_{\frac{i_k+1}{n}}^{\lambda}) d\theta = h_k \frac{\sqrt{n} (X_{\frac{i_k+1}{n}}^{\lambda} - X_{\frac{i_k}{n}}^{\lambda} - c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)) \dot{c}(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)}{nD^{n,\lambda_k,k} (X_{\frac{i_k}{n}}^{\lambda})} - \frac{h_k^2}{2} \frac{\dot{c}(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)^2}{nD^{n,\lambda_k,k} (X_{\frac{i_k}{n}}^{\lambda})} + o_{\mathbf{p}^{n,\lambda}}(1).$$

Proof We deduce easily from Lemmas 2 and 3 that

$$\begin{split} \int_{\lambda_k}^{\lambda_k + h_k/\sqrt{n}} \frac{\dot{p}^{\theta,T}}{p^{\theta,T}} (\frac{i_k}{n}, \frac{i_k + 1}{n}, x, y) d\theta &= \int_{\lambda_k}^{\lambda_k + h_k/\sqrt{n}} \frac{(y - x - c(x, \theta))\dot{c}(x, \theta)}{D^{n,\theta,k}(x)} d\theta \\ &+ \int_{\lambda_k}^{\lambda_k + h_k/\sqrt{n}} E^{x,T,k} (Q^{n,\theta,k} | X_{\frac{i_k + 1}{n}}^{\theta,k} = y) d\theta \end{split}$$

with $(x, y) = (X_{\frac{i_k+1}{n}}^{\lambda}, X_{\frac{i_k}{n}}^{\lambda})$. From Lemma 4, the second term on the right hand side of the preceding equation tends to zero in probability. Now, from a taylor expansion of c, we have the approximation for $\theta \in [\lambda_k, \lambda_k + h_k/\sqrt{n}]$

$$\frac{(y-x-c(x,\theta))\dot{c}(x,\theta)}{D^{n,\theta,k}(x)} = \frac{(y-x-c(x,\lambda_k)-(\theta-\lambda_k)\dot{c}(x,\lambda_k))\dot{c}(x,\lambda_k)}{D^{n,\lambda_k,k}(x)} + \varepsilon^{n,\theta,\lambda_k}(x,y).$$
(51)

From H1, and using (32), we have $\forall \theta \in [\lambda_k, \lambda_k + h_k/\sqrt{n}]$

$$\left|\frac{\dot{c}(x,\theta)}{D^{n,\theta,k}(x)} - \frac{\dot{c}(x,\lambda_k)}{D^{n,\lambda_k,k}(x)}\right| \le C\sqrt{n},\tag{52}$$

where C does not depend on x. So we deduce that $\forall \theta \in [\lambda_k, \lambda_k + h_k/\sqrt{n}]$

$$|\varepsilon^{n,\theta,\lambda_k}(x,y)| \le C(1+\sqrt{n}(y-x-c(x,\lambda_k))),$$

for a constant C independent on x and y. Consequently, it follows that $\int_{\lambda_k}^{\lambda_k + h_k/\sqrt{n}} \varepsilon^{n,\theta,\lambda_k} (X_{\frac{i_k}{n}}^{\lambda}, X_{\frac{i_k+1}{n}}^{\lambda}) d\theta$ goes to zero in probability as n goes to infinity.

Lemma 6 Let us assume H0–H2. Let $I_n(\lambda)$ be the diagonal matrix of size $K \times K$, and $N_n(\lambda)$ be the random vector of size K, defined by the entries,

$$I_n(\lambda)_k = \frac{\dot{c}(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)^2}{nD^{n,\lambda_k,k}(X_{\frac{i_k}{n}}^{\lambda})}, \qquad N_n(\lambda)_k = \frac{\sqrt{n}(X_{\frac{i_k+1}{n}}^{\lambda} - X_{\frac{i_k}{n}}^{\lambda} - c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))}{\sqrt{nD^{n,\lambda_k,k}(X_{\frac{i_k}{n}}^{\lambda})}}.$$
(53)

Then, we have,

$$(I_n(\lambda), N_n(\lambda)) \xrightarrow[law]{n \to \infty} (I(\lambda), N),$$

with $I(\lambda)$ the diagonal matrix,

$$I(\lambda)_{k} = \frac{\dot{c}(X_{T_{k}-}^{\lambda},\lambda_{k})^{2}}{a^{2}(T_{k},X_{T_{k}-}^{\lambda})[1+c'(X_{T_{k}-}^{\lambda},\lambda_{k})]^{2}U_{k}+a^{2}(T_{k},X_{T_{k}-}^{\lambda}+c(X_{T_{k}-}^{\lambda},\lambda_{k}))(1-U_{k})}$$

and $U = (U_1, \ldots, U_K)$ is a vector of independent uniform laws on [0,1] such that U, T and $(W_t)_{t \in [0,1]}$ are independent, and conditionally on $(U, T, (W_t)_{t \in [0,1]})$, N is a standard Gaussian vector in \mathbb{R}^K .

Proof We just have to prove the weak convergence of the couple $(nD^{n,\lambda_k,k}(X_{\frac{i_k}{n}}^{\lambda}), \sqrt{n}(X_{\frac{i_k+1}{n}}^{\lambda} - X_{\frac{i_k}{n}}^{\lambda} - c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)))$. We have from (26)

$$D^{n,\lambda_k,k}(X_{\frac{i_k}{n}}^{\lambda}) = a^2(\frac{i_k}{n}, X_{\frac{i_k}{n}}^{\lambda})(1 + c'(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))^2(T_k - \frac{i_k}{n}) + a^2(\frac{i_k}{n}, x + c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))(\frac{i_k + 1}{n} - T_k)$$

and from (29)

$$X_{\frac{i_k+1}{n}}^{\lambda} = X_{\frac{i_k}{n}}^{\lambda} + c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k) + (1 + c'(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))a(\frac{i_k}{n}, X_{\frac{i_k}{n}}^{\lambda})(W_{T_k} - W_{\frac{i_k}{n}}) + a(\frac{i_k}{n}, X_{\frac{i_k}{n}}^{\lambda} + c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k))(W_{\frac{i_k+1}{n}} - W_{T_k}) + R^{n,\lambda,k},$$

where $R^{n,\lambda,k}$ is bounded in L^p by C/n (see the proof of Lemma 3). So as a straightforward consequence of Lemma 1, we obtain that $(nD^{n,\lambda_k,k}(X_{\frac{i_k}{n}}^{\lambda}), \sqrt{n}(X_{\frac{i_k+1}{n}}^{\lambda} - X_{\frac{i_k}{n}}^{\lambda} - c(X_{\frac{i_k}{n}}^{\lambda}, \lambda_k)))$ converges in law to

$$(D^{\lambda_k,k}(X_{T_k-}^{\lambda}), (1+c'(X_{T_k-}^{\lambda},\lambda_k))a(T_k,X_{T_k-}^{\lambda})\sqrt{U_k}N_k^- + a(T_k,X_{T_k-}^{\lambda}+c(X_{T_k-}^{\lambda},\lambda_k))\sqrt{1-U_k}N_k^+),$$

with

$$D^{\lambda_k,k}(X_{T_k-}^{\lambda}) = a^2(T_k, X_{T_k-}^{\lambda})[1 + c'(X_{T_k-}^{\lambda}, \lambda_k)]^2 U_k + a^2(T_k, X_{T_k-}^{\lambda} + c(X_{T_k-}^{\lambda}, \lambda_k))(1 - U_k).$$

 \diamond

This gives the result of Lemma 6.

As noticed earlier, the proof of Theorem 3 follows from the decomposition (19) with $\mathbb{P}(T \in \mathcal{T}_n) \xrightarrow{n \to \infty} 1$, and Lemmas 5 and 6.

5.3 Proof of the convolution theorem

In this section, we prove the Theorem 2 and some related results.

We recall the framework described in Section 3. $(\Omega, \mathcal{F}, \mathbb{P})$ is the canonical product space, on which are defined the independent variables $(W_t)_{t \in [0,1]}$, $T = (T_1, \ldots, T_K)$, $\Lambda = (\Lambda_1, \ldots, \Lambda_K)$. The probability \mathbb{P} is the simple product of the corresponding probabilities. From this simple disintegration of the measure \mathbb{P} as a product, we can introduce \mathbb{P}^{λ} the probability \mathbb{P} conditional on $\Lambda = \lambda \in \mathbb{R}^K$. The process X is solution of (2), and we may assume that for any $\lambda \in \mathbb{R}^K$ the law of X under \mathbb{P}^{λ} is equal to the law of X^{λ} solution of (8). We recall that $\widetilde{\Omega}$ is the extension of Ω which contains the uniform variables U_1, \ldots, U_K , and the Gaussian variables, N_1^-, \ldots, N_K^- , N_1^+, \ldots, N_K^+ .

With these notations, the LAMN expansion of Theorem 3 writes,

$$Z_n(\lambda, \lambda + h/\sqrt{n}, T, X_{1/n}, \dots, X_1) = \sum_{k=1}^K h_k I_n(\lambda)_k^{1/2} N_n(\lambda)_k - \frac{1}{2} \sum_{k=1}^K h_k^2 I_n(\lambda)_k + o_{\mathbb{P}^\lambda}(1)$$
(54)

with

$$I_{n}(\lambda)_{k} = \frac{\dot{c}(X_{\frac{i_{k}}{n}}, \lambda_{k})^{2}}{nD^{n,\lambda_{k},k}(X_{\frac{i_{k}}{n}})}, \qquad N_{n}(\lambda)_{k} = \frac{\sqrt{n}(X_{\frac{i_{k}+1}{n}} - X_{\frac{i_{k}}{n}} - c(X_{\frac{i_{k}}{n}}, \lambda_{k}))}{\sqrt{nD^{n,\lambda_{k},k}(X_{\frac{i_{k}}{n}})}}, \tag{55}$$

$$D^{n,\lambda_k,k}(X_{\frac{i_k}{n}}) = a^2(\frac{i_k}{n}, X_{\frac{i_k}{n}})(1 + c'(X_{\frac{i_k}{n}}, \lambda_k))^2(T_k - \frac{i_k}{n}) + a^2(\frac{i_k}{n}, X_{\frac{i_k}{n}} + c(X_{\frac{i_k}{n}}, \lambda_k))(\frac{i_k + 1}{n} - T_k)$$

The Theorem 3 states the convergence in law of $(I_n(\lambda), N_n(\lambda))$ to $(I(\lambda), N)$ under \mathbb{P}^{λ} . Actually, from the proof of Lemma 6, we get the following convergence result under \mathbb{P} .

Proposition 2 Assuming H0–H2, we have the convergence

$$((nT_{k} - i_{k})_{k=1,...,K}, (\sqrt{n}(W_{T_{k}} - W_{i_{k}/n}))_{k=1,...,K}, (\sqrt{n}(W_{(i_{k}+1)/n} - W_{T_{k}}))_{k=1,...,K}, I_{n}(\Lambda), N_{n}(\Lambda)) \xrightarrow{n \to \infty}_{law} ((U_{k})_{k=1,...,K}, (\sqrt{U_{k}}N_{k}^{-})_{k=1,...,K}, (\sqrt{1 - U_{k}}N_{k}^{+})_{k=1,...,K}, I(\Lambda), N(\Lambda))$$
(56)

where $N(\Lambda)$ is distributed as a standard Gaussian variable in \mathbb{R}^{K} . Moreover this convergence is stable with respect to \mathcal{F} , and the last two limit variables can be represented on the extended space $\widetilde{\Omega}$ as,

$$I(\Lambda)_k = \frac{\dot{c}(X_{T_k}, \Lambda_k)^2}{a^2(T_k, X_{T_k})(1 + c'(X_{T_k}, \Lambda_k))^2 U_k + a^2(T_k, X_{T_k})(1 - U_k)},$$
(57)

$$N(\Lambda)_{k} = \frac{a(T_{k}, X_{T_{k}-})(1 + c'(X_{T_{k}-}, \Lambda_{k}))\sqrt{U_{k}}N_{k}^{-} + a(T_{k}, X_{T_{k}})\sqrt{1 - U_{k}}N_{k}^{+}}{\left[a^{2}(T_{k}, X_{T_{k}-})(1 + c'(X_{T_{k}-}, \Lambda_{k}))^{2}U_{k} + a^{2}(T_{k}, X_{T_{k}})(1 - U_{k})\right]^{1/2}}.$$
(58)

Remark that the matrix $I(\Lambda)$ is not equal to the matrix I^{opt} appearing in the statement of the convolution Theorem 2. Comparing the expression (7) of I^{opt} with the expression (11) of $I(\lambda)$, we see that in the parametric case, the information is proportional to $(\dot{c}(X_{T_{k-}}, \lambda_k))^2$. This is quite natural. If instead of estimating the "mark" λ_k we estimate the jump, equal to $c(X_{T_{k-}}, \lambda_k)$ in the parametric model, we can expect that the effect of $(\dot{c}(X_{T_{k-}}, \lambda_k))^2$ vanishes (by a simple first order expansion of the error of estimation). This give some insight on why $\dot{c}(X_{T_{k-}}, \Lambda_k)^2$ disappears in the expression of I^{opt} .

On the other hand, it is not clear why the expression of the parametric information involves the quantity $c'(X_{T_{k-}}, \lambda_k)$, which is not present in the expression of I^{opt} . We will see that it is due to the fact that the value of the jump $c(X_{T_{k-}}, \lambda_k)$ depends on the unobserved quantity $X_{T_{k-}}$ and thus is not a simple functional of the parameter λ_k .

If c does not depend on X, the situation is simpler and the proof of Theorem 2 is much easier. For this reason, in the next Section we prove the convolution theorem in this easier setting. The general proof is given in Section 5.3.3 and some intermediate results are stated in Section 5.3.2.

5.3.1 Proof of Theorem 2 when $c(x, \theta) = c(\theta)$

We start with a simple lemma.

Lemma 7 Assume H0–H2 then for all $\lambda, h \in \mathbb{R}^K$,

$$I_n(\lambda + \frac{h}{\sqrt{n}}) - I_n(\lambda) \xrightarrow{n \to \infty} 0, \text{ in } \mathbb{P}^{\lambda} \text{ probability,}$$
$$N_n(\lambda + \frac{h}{\sqrt{n}}) - N_n(\lambda) + I_n(\lambda)^{1/2}h \xrightarrow{n \to \infty} 0, \text{ in } \mathbb{P}^{\lambda} \text{ probability.}$$

Proof This follows easily from the expressions (55).

Assume that \widetilde{J}^n is a sequence of estimator (based on $(X_{i/n})_{i=0,...,n}$) such that $\sqrt{n}(\widetilde{J}^n - J) \xrightarrow{n \to \infty} \widetilde{Z}$ in law under \mathbb{P} .

Then, the Theorem 2 is an immediate consequence of the following result.

Theorem 4 Assume H0–H3 and that $c(x, \theta) = c(\theta)$. Denote $\dot{C}(\Lambda)$ the diagonal matrix of size $K \times K$ such that $\dot{C}(\Lambda)_k = \dot{c}(\Lambda_k)$.

Then, we have the decomposition for all n,

$$\sqrt{n}(\widetilde{J}^n - J) = \dot{C}(\Lambda)I_n(\Lambda)^{-1/2}N_n(\Lambda) + R_n,$$
(59)

 \diamond

for $(R_n)_n$ some sequence of random variables with values in \mathbb{R}^K .

Along some subsequence (n) we have the convergence in law,

$$(\dot{C}(\Lambda)I_n(\Lambda)^{-1/2}N_n(\Lambda), R_n) \xrightarrow{(n) \to \infty} (\dot{C}(\Lambda)I(\Lambda)^{-1/2}N(\Lambda), R) = ((I^{\text{opt}})^{-1/2}N, R)$$
(60)

where $N = N(\Lambda)$ is Gaussian, and R is independent of N conditionally on I^{opt} .

Especially, we have $\widetilde{Z} = \lim_{(n)} \sqrt{n} (\widetilde{J}^n - J) = (I^{\text{opt}})^{-1/2} N + R.$

Proof We set $R_n = \sqrt{n}(\widetilde{J}^n - J) - \dot{C}(\Lambda)I_n(\Lambda)^{-1/2}N_n(\Lambda)$ and define,

$$R_n(\lambda) = \sqrt{n}(\widetilde{J}^n - c(\lambda_k)_k) - \dot{C}(\lambda)I_n(\lambda)^{-1/2}N_n(\lambda),$$
(61)

so that $R_n = R_n(\Lambda)$. Since \tilde{J}^n is a measurable function of the $(X_{i/n})_i$, $J = (c(\Lambda_k))_k$ and $\dot{C}(\Lambda)$ are measurable functions of the marks, and from the expression (55), we deduce that $R_n = f_n((X_{i/n})_i, T, \Lambda)$ for some borelian function f_n .

Using Lemma 7 and the expression (61), we easily get:

$$R_n(\lambda + \frac{h}{\sqrt{n}}) - R_n(\lambda) \xrightarrow{n \to \infty} 0$$
, in \mathbb{P}^{λ} probability for any $\lambda, h \in \mathbb{R}^K$.

Remark now that by Proposition 2 and the convergence of $\sqrt{n}(\tilde{J}^n - J)$, we get that $(R_n)_n$ is a tight sequence of variables.

Hence, we can apply Proposition 3 below. We deduce that,

$$(I_n(\Lambda), N_n(\Lambda), R_n) \xrightarrow[law]{n \to \infty} (I(\Lambda), N(\Lambda), R),$$

where the limit can be represented on an extension $\widetilde{\Omega} \times \mathbb{R}^K$ of the space $\widetilde{\Omega}$, and the convergence is stable with respect to $(T, \Lambda, (W_t)_{t \in [0,1]})$. On this extension, the variable R is independent of $N(\Lambda)$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$. This implies (60), and thus the theorem.

Proposition 3 Assume H0–H3. Let $R_n = f_n((X_{i/n})_i, T, \Lambda)) \in \mathbb{R}^K$ where $(f_n)_n$ is a sequence of borelian functions. Set $R_n(\lambda) = f_n((X_{i/n})_i, T, \lambda)$, and assume:

- $R_n(\lambda + \frac{h}{\sqrt{n}}) R_n(\lambda) \xrightarrow{n \to \infty} 0$, in \mathbb{P}^{λ} probability for any $\lambda, h \in \mathbb{R}^K$,
- the sequence $(R_n)_n$ is tight.

Then, one has the convergence in law, along a subsequence,

$$((nT_{k}-i_{k})_{k=1,\dots,K}, (\sqrt{n}(W_{T_{k}}-W_{i_{k}/n}))_{k=1,\dots,K}, (\sqrt{n}(W_{(i_{k}+1)/n}-W_{T_{k}}))_{k=1,\dots,K}, I_{n}(\Lambda), N_{n}(\Lambda), R_{n})$$

$$\xrightarrow{(n)\to\infty}_{law} ((U_{k})_{k=1,\dots,K}, (\sqrt{U_{k}}N_{k}^{-})_{k=1,\dots,K}, (\sqrt{1-U_{k}}N_{k}^{+})_{k=1,\dots,K}, I(\Lambda), N(\Lambda), R).$$
(62)

The limit can be represented on a extension $\widetilde{\Omega} \times \mathbb{R}^K$ of the space $\widetilde{\Omega}$. On this space, the variable *R* is independent of $N(\Lambda)$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$. Moreover the convergence (62) is stable with respect to $(T, \Lambda, (W_t)_{t \in [0,1]})$.

Proof Consider the joint law of the random variables,

$$(T, \Lambda, (W_t)_{t \in [0,1]}, (nT_k - i_k)_{k=1,...,K}, (\frac{(W_{T_k} - W_{i_k/n})}{\sqrt{T_k - i_k/n}})_{k=1,...,K}, (\frac{(W_{(i_k+1)/n} - W_{T_k})}{\sqrt{(i_k+1)/n - T_k}})_{k=1,...,K}, I_n(\Lambda), N_n(\Lambda), R_n)$$
(63)

defined on the corresponding canonical product space, endowed with the usual product topology. From the assumption, all the components of this vector are tight, and thus the joint law is tight. Along some subsequence, it converges in law to some limit, and thus (62) holds true. The stability of the convergence with respect to $T, \Lambda, (W_t)_{t \in [0,1]}$ is immediate. Remark that from Proposition 2, the law of the limit $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_{k=1,...,K}, (N_k^-)_{k=1,...,K}, (N_k^+)_{k=1,...,K}, I(\Lambda), N(\Lambda), R)$ is known, apart for the last component R. It can be clearly represented on an extension $\widetilde{\Omega} \times \mathbb{R}^K$ of $\widetilde{\Omega}$

To determine some information on the law of R, we use techniques inspired from the proof of convolution theorems in [17].

Consider the following set of random variables defined on the space Ω ,

$$G = g(X_{s_1}, \dots, X_{s_r}), \text{ with } r \ge 1 \text{ and } (s_1, \dots, s_r) \in [0, 1]^r,$$

$$G_n = g(X_{\frac{[ns_1]}{n}}, \dots, X_{\frac{[ns_r]}{n}}),$$

$$K = k(T_1, \dots, T_K),$$

$$L_n = l(nT_1 - i_1, \dots, nT_K - i_K),$$

$$M = m(\Lambda_1, \dots, \Lambda_K),$$
(64)

where g, k, l, m are bounded continuous functions.

For $(\mu_1, \mu_2) \in \mathbb{R}^{2K}$ we set

$$\varphi_n(\mu_1,\mu_2) = \mathbb{E}\left[e^{i\mu_1 \cdot R_n} e^{i\mu_2 \cdot N_n(\Lambda)} G_n K L_n M\right].$$

Clearly $G_n \to G$ in probability, and from the convergence, along a subsequence, of (63), it is simple to show

$$\varphi_n(\mu_1,\mu_2) \xrightarrow{(n)\to\infty} \mathbb{E}\left[e^{i\mu_1 \cdot R} e^{i\mu_2 \cdot N(\Lambda)} GKl(U_1,\ldots,U_K)M\right].$$
(65)

By conditioning on the variable Λ , whose law admits a density, we have

$$\varphi_n(\mu_1,\mu_2) = \int_{\mathbb{R}^K} \mathbb{E}^{\lambda} \left[e^{i\mu_1 \cdot R_n(\lambda)} e^{i\mu_2 \cdot N_n(\lambda)} G_n K L_n m(\lambda) \right] f_{\Lambda}(\lambda) d\lambda,$$

For $h \in \mathbb{R}^{K}$, we make a simple change of variable in the integral,

$$\varphi_n(\mu_1,\mu_2) = \int_{\mathbb{R}^K} \mathbb{E}^{\lambda+h/\sqrt{n}} \left[e^{i\mu_1 \cdot R_n(\lambda+h/\sqrt{n})} e^{i\mu_2 \cdot N_n(\lambda+h/\sqrt{n})} G_n K L_n \right] m(\lambda+h/\sqrt{n}) f_\Lambda(\lambda+h/\sqrt{n}) d\lambda$$

Now the translation is a continuous operator in $\mathbf{L}^1(\mathbb{R})$ and by assumption $\lambda \mapsto m(\lambda)f_{\Lambda}(\lambda)$ is integrable. Thus, we easily deduce,

$$\varphi_n(\mu_1,\mu_2) = \int_{\mathbb{R}^K} \mathbb{E}^{\lambda+h/\sqrt{n}} \left[e^{i\mu_1 \cdot R_n(\lambda+h/\sqrt{n})} e^{i\mu_2 \cdot N_n(\lambda+h/\sqrt{n})} G_n K L_n \right] m(\lambda) f_\Lambda(\lambda) d\lambda + o(1)$$

From the assumptions, we know the expansion $R_n(\lambda + h/\sqrt{n}) = R_n(\lambda) + o_{\mathbb{P}^{\lambda}}(1)$, and from Lemma 7, we have the expansion $N_n(\lambda + \frac{h}{\sqrt{n}}) = N_n(\lambda) - I_n(\lambda)^{1/2}h + o_{\mathbb{P}^{\lambda}}(1)$. In these expansions, all the random variables are only depending on $((X_{i/n})_i, T)$. But, from the LAMN property, we know that the measures \mathbb{P}^{λ} and $\mathbb{P}^{\lambda + h/\sqrt{n}}$, restricted to $((X_{i/n})_i, T)$, are contiguous. Hence, in these expansions, one can replace $o_{\mathbb{P}^{\lambda}}(1)$ with $o_{\mathbb{P}^{\lambda + h/\sqrt{n}}}(1)$. Then, using dominated convergence Theorem, one can get,

$$\varphi_n(\mu_1,\mu_2) = \int_{\mathbb{R}^K} \mathbb{E}^{\lambda+h/\sqrt{n}} \left[e^{i\mu_1 \cdot R_n(\lambda)} e^{i\mu_2 \cdot (N_n(\lambda) - I_n(\lambda)^{1/2}h)} G_n K L_n \right] l(\lambda) m_\Lambda(\lambda) d\lambda + o(1).$$

Remark that the random variables appearing in the inner expectation only depends on the observations $((X_{i/n})_i, T)$, and thus the likelihood ratio $\frac{\mathbf{p}^{n,\lambda+h/\sqrt{n}}}{\mathbf{p}^{n,\lambda}}(T, (X_{i/n})_i) = \exp(Z_n(\lambda, \lambda + h/\sqrt{n}, T, (X_{i/n})_i))$ might be used to change the measure,

$$\varphi_n(\mu_1,\mu_2) = \int_{\mathbb{R}^K} \mathbb{E}^{\lambda} \left[e^{i\mu_1 \cdot R_n(\lambda)} e^{i\mu_2 \cdot (N_n(\lambda) - I_n(\lambda)^{1/2}h)} e^{Z_n(\lambda,\lambda + h/\sqrt{n},T,(X_{i/n})_i)} G_n K L_n \right]$$

$$m(\lambda) f_{\Lambda}(\lambda) d\lambda + o(1).$$
(66)

We deduce,

$$\varphi_n(\mu_1,\mu_2) = \mathbb{E}\left[e^{i\mu_1 \cdot R_n} e^{i\mu_2 \cdot (N_n(\Lambda) - I_n(\Lambda)^{1/2}h)} e^{Z_n(\Lambda,\Lambda + h/\sqrt{n},T,(X_{i/n})_i)} G_n K L_n M\right] + o(1).$$

But from the LAMN expansion (54), one can easily get $Z_n(\Lambda, \Lambda + h/\sqrt{n}, T, (X_{i/n})_i) = h^* I_n(\Lambda)^{1/2} N_n(\Lambda) - \frac{1}{2}h^* I_n(\Lambda)h + o_{\mathbb{P}}(1)$. Hence, using the convergence in law of (63), and uniform integrability of the sequence $Z_n(\Lambda, \Lambda + h/\sqrt{n}, T, (X_{i/n})_i)$, it can be seen that

$$\varphi_n(\mu_1,\mu_2) \xrightarrow{(n) \to \infty} E\left[e^{i\mu_1 \cdot R} e^{i\mu_2 \cdot (N(\Lambda) - I(\Lambda)^{1/2}h)} e^{h^* I(\Lambda)^{1/2} N(\Lambda) - \frac{1}{2}h^* I(\Lambda)h} GKl(U_1,\dots,U_K)M\right].$$
(67)

Comparing the expressions (65) and (67), it comes $\forall \mu_1, \mu_2, h$,

$$E\left[e^{i\mu_1 \cdot R}e^{i\mu_2 \cdot N(\Lambda)}GKl(U_1, \dots, U_K)M\right] = E\left[e^{i\mu_1 \cdot R}e^{i\mu_2 \cdot (N(\Lambda) - I(\Lambda)^{1/2}h)}e^{h^*I(\Lambda)^{1/2}N(\Lambda) - \frac{1}{2}h^*I(\Lambda)h}GKl(U_1, \dots, U_K)M\right].$$

We deduce that $\forall \mu_1, \mu_2, h$, the two following conditional expectations are almost surely equal,

$$E\left[e^{i\mu_1 \cdot R}e^{i\mu_2 \cdot N(\Lambda)} \mid X, T, (U_k)_k, \Lambda\right] = E\left[e^{i\mu_1 \cdot R}e^{i\mu_2 \cdot (N(\Lambda) - I(\Lambda)^{1/2}h)}e^{h^*I(\Lambda)^{1/2}N(\Lambda) - \frac{1}{2}h^*I(\Lambda)h} \mid X, T, (U_k)_k, \Lambda\right].$$

But from continuity and analyticity arguments, it can be seen that this equality holds, almost surely, for any $\mu_1 \in \mathbb{R}^K, \mu_2 \in \mathbb{R}^K, h \in \mathbb{C}^K$.

Hence, we can set $h = -iI(\Lambda)^{-1/2}\mu_2$ in the above relation, and find

$$E\left[e^{i\mu_1\cdot R}e^{i\mu_2\cdot N(\Lambda)} \mid X, T, (U_k)_k, \Lambda\right] = E\left[e^{i\mu_1\cdot R} \mid X, T, (U_k)_k, \Lambda\right] e^{-\mu_2^*\mu_2/2}.$$

This precisely states that, conditionally on $(X, T, (U_k)_k, \Lambda)$, the random variables R and $N(\Lambda)$ are independent. The theorem is proved after remarking that the Brownian motion $(W_t)_t$ can be recovered as a measurable functional of X, T, Λ .

5.3.2 Intermediate results

The assumption $c(x,\theta) = c(\theta)$ is crucial for the proof of Theorem 4. Indeed if c depends on the diffusion, then $J_k = c(X_{T_k-}, \lambda_k)$, and instead of (61), we have $R_n(\lambda) = \sqrt{n}(\tilde{J}^n - c(X_{T_k-}, \lambda_k)_k) - \dot{C}(\lambda)I_n(\lambda)^{-1/2}N_n(\lambda)$. This quantity depends on X_{T_k-} which is unobserved. However, the assumption that $R_n(\lambda)$ is only function of $((X_{i/n})_i, T)$ is essential in the Proposition 3 (at the step just before equation (66)).

But if instead of $R_n(\lambda)$ we consider $R_n^{\text{obs}}(\lambda) = \sqrt{n}(\tilde{J}^n - c(X_{i_k/n}, \lambda_k)_k) - \dot{C}_n^{\text{obs}}(\lambda)I_n(\lambda)^{-1/2}N_n(\lambda)$, where $\dot{C}_n^{\text{obs}}(\lambda) = \text{diag}(\dot{c}(X_{i_k/n}, \lambda_k)_k)$. Then, the Proposition 3 can be applied, and we can prove the following modification of Theorem 4.

Theorem 5 Let \widetilde{J}^n be any sequence of estimators such that $\sqrt{n}(\widetilde{J}^n - (c(X_{i_k/n}, \Lambda_k))_k) \xrightarrow[law]{(n) \to \infty}{law} \widetilde{Z}$ for some variable \widetilde{Z} . Then, the law of \widetilde{Z} is necessarily a convolution, $\widetilde{Z} \stackrel{law}{=} \dot{C}(\Lambda)I(\Lambda)^{-1/2}N(\Lambda) + R$, where $N(\Lambda)$ is a standard Gaussian vector independent of $\dot{C}(\Lambda)^{-2}I(\Lambda)$, and R is some random variable independent of $N(\Lambda)$ conditionally on $\dot{C}(\Lambda)^{-2}I(\Lambda)$. A simple expression for the entries of the diagonal matrix $\dot{C}(\Lambda)^{-2}I(\Lambda)$ is

$$I_k = [U_k a(T_k, X_{T_k-})^2 (1 + c'(T_k, X_{T_k-}))^2 + (1 - U_k) a(T_k, X_{T_k})^2]^{-1}, \quad \text{for } k = 1, \dots, K.$$
(68)

Actually, to prove the convolution theorem when the coefficient $c(x,\theta)$ depends on x, we need a strengthened version of the Proposition 3. Indeed, we will show that the variable R, in the statement of Proposition 3, is independent of N conditionally on any variable that can be obtained as a limit of the observations. This yield some additional knowledge on the dependence between the variable R and the other variables.

Proposition 4 Let us make the same assumptions as in Proposition 3. Assume furthermore that there exist a continuous function Ψ with value in \mathbb{R}^K and $(A_n)_n$ a sequence of random variables depending on the observations $(T, (X_{i/n})_i)$, such that

$$A_n - \Psi((nT_k - i_k)_{k=1,...,K}, (\sqrt{n}(W_{T_k} - W_{i_k/n}))_{k=1,...,K}, (\sqrt{n}(W_{(i_k+1)/n} - W_{T_k}))_{k=1,...,K})$$

$$\xrightarrow{n \to \infty} 0, in \mathbb{P} \text{ probability.}$$

Then, in the description of the limit (62), the variable R is independent of $N(\Lambda)$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$ and $\Psi((U_k)_k, (\sqrt{U_k}N_k^-)_k, ((\sqrt{1-U_k}N_k^+)_k))$.

Proof The proof is a slight modification of the proof of Proposition 3. We simply add to the list of random variables (64), the new one $S_n = s(A_n)$, with *s* being any continuous bounded function. Accordingly, we set $\varphi_n(\mu_1, \mu_2) = \mathbb{E}\left[e^{i\mu_1 \cdot R_n} e^{i\mu_2 \cdot N_n(\Lambda)} S_n G_n K L_n M\right]$. Then, the proof follows the same lines as the proof of Proposition 3.

5.3.3 Proof of Theorem 2. The general case

We prove the Theorem 2 in the general situation where $c(x, \theta)$ depends on x.

As seen in the previous section, a difficulty comes from the fact that the target of the estimator $J = (\Delta X_{T_k})_k = (c(X_{T_k-}, \Lambda_k))_k$ depends on the unobserved value X_{T_k-} . We introduce $\overline{J}^n = (c(X_{\frac{i_k}{n}}, \Lambda_k))_k$, and with simple computations, one can write the following expansion, for any sequence of estimators \widetilde{J}^n ,

$$\sqrt{n}(\widetilde{J}_k^n - J_k) = \sqrt{n}(\widetilde{J}_k^n - \overline{J}_k^n) - c'(X_{\frac{i_k}{n}}, \Lambda_k)\sqrt{n}(X_{T_k} - X_{\frac{i_k}{n}}) + o_{\mathbb{P}}(1).$$

If $\sqrt{n}(\widetilde{J}_k^n - \overline{J}_k^n)$ is tight we can use Theorem 5 and deduce, $\lim_{(n)} \sqrt{n}(\widetilde{J}_k^n - J_k) = \widetilde{Z}_k = \dot{C}(\Lambda)I(\Lambda)_k^{-1/2}N(\Lambda)_k - c'(X_{T_k-}, \Lambda_k)a(T_k, X_{T_k-})\sqrt{U_k^-}N_k^- + R_k$. After a few algebra, involving the expressions (57)–(58), it could be seen that this reduces to the algebric relation (6), with N being some standard normal variable. However by this method, we can not deduce the conditional independence of R with N. Indeed, only the conditional independence of R with $N(\Lambda)$ is known, and we have no information about the joint law of R and N^- .

To solve this problem, we consider two new statistical experiments where we add the observation of the diffusion just before (or just after) the jump. We first state the LAMN properties for these new experiments. We omit the proof, which is similar to the proof of Theorem 3.

Proposition 5 (LAMN property adding the observations before the jumps.) Assume H0, H1 and H2. Denote $(\mathbf{p}^{n,\lambda,\mathrm{aug}^-})$ the density on \mathbb{R}^{n+2K} of the augmented vector of observations $\mathcal{O}^{\mathrm{aug}^-} = ((X_{i/n})_i, (T_k)_k, (X_{T_{k-}})_k)$ under \mathbb{P}^{λ} . For $\lambda \in \mathbb{R}^K$, $h \in \mathbb{R}^K$, define the log-likelihood ratio $Z_n^{\mathrm{aug}^-}(\lambda, \lambda + h/\sqrt{n}, \mathcal{O}^{\mathrm{aug}^-}) = \ln \frac{\mathbf{p}^{n,\lambda+h/\sqrt{n},\mathrm{aug}^-}(\mathcal{O}^{\mathrm{aug}^-})}{\mathbf{p}^{n,\lambda,\mathrm{aug}^-}(\mathcal{O}^{\mathrm{aug}^-})}$.

We have the expansion:

$$Z_n(\lambda, \lambda + h/\sqrt{n}, \mathcal{O}^{\text{aug}^-}) = \sum_{k=1}^{K} h_k I_n^{\text{aug}^-}(\lambda)_k^{1/2} N_n^{\text{aug}^-}(\lambda)_k - \frac{1}{2} \sum_{k=1}^{K} h_k^2 I_n^{\text{aug}^-}(\lambda)_k + o_{\mathbb{P}^\lambda}(1)$$
(69)

where

$$I_n^{\text{aug}^-}(\lambda)_k = \frac{\dot{c}(X_{T_k-},\lambda_k)^2}{nD^{n,\lambda_k,k,\text{aug}^-}(X_{T_k-})}, \qquad N_n^{\text{aug}^-}(\lambda)_k = \frac{\sqrt{n}(X_{\frac{i_k+1}{n}} - X_{T_k-} - c(X_{T_k-},\lambda_k))}{\sqrt{nD^{n,\lambda_k,k,\text{aug}^-}(X_{T_k-})}}, \quad (70)$$
$$D^{n,\lambda_k,k,\text{aug}^-}(X_{T_k-}) = a^2(T_k, X_{T_k-} + c(X_{T_k-},\lambda_k))(\frac{i_k+1}{n} - T_k).$$

Moreover

$$(I_n^{\operatorname{aug}^-}(\lambda), N_n^{\operatorname{aug}^-}(\lambda)) \xrightarrow[law]{n \to \infty} (I^{\operatorname{aug}^-}(\lambda), N^{\operatorname{aug}^-})$$

where $I^{\mathrm{aug}^-}(\lambda)$ is the diagonal information matrix whose entries are

$$I^{\text{aug}^{-}}(\lambda)_{k} = \frac{\dot{c}(X_{T_{k}-},\lambda_{k})^{2}}{a^{2}(T_{k},X_{T_{k}})(1-U_{k})}$$

and N^{aug^-} is a standard Gaussian vector in \mathbb{R}^K .

Proposition 6 (LAMN property adding the observations after the jumps.) Assume H0, H1 and H2. Denote $(\mathbf{p}^{n,\lambda,\mathrm{aug}^+})$ the density on \mathbb{R}^{n+2K} of the augmented vector of observations $\mathcal{O}^{\mathrm{aug}^+} = ((X_{i/n})_i, (T_k)_k, (X_{T_k})_k)$ under \mathbb{P}^{λ} . For $\lambda \in \mathbb{R}^K$, $h \in \mathbb{R}^K$, define the log-likelihood ratio $Z_n^{\mathrm{aug}^+}(\lambda, \lambda + h/\sqrt{n}, \mathcal{O}^{\mathrm{aug}^+}) = \ln \frac{\mathbf{p}^{n,\lambda+h/\sqrt{n},\mathrm{aug}^+}(\mathcal{O}^{\mathrm{aug}^+})}{\mathbf{p}^{n,\lambda,\mathrm{aug}^+}(\mathcal{O}^{\mathrm{aug}^+})}.$

We have the expansion:

$$Z_n(\lambda, \lambda + h/\sqrt{n}, \mathcal{O}^{\text{aug}^+}) = \sum_{k=1}^{K} h_k I_n^{\text{aug}^+}(\lambda)_k^{1/2} N_n^{\text{aug}^+}(\lambda)_k - \frac{1}{2} \sum_{k=1}^{K} h_k^2 I_n^{\text{aug}^+}(\lambda)_k + o_{\mathbb{P}^\lambda}(1)$$
(71)

where

$$I_{n}^{\text{aug}^{+}}(\lambda)_{k} = \frac{\dot{c}(X_{\frac{i_{k}}{n}},\lambda_{k})^{2}}{nD^{n,\lambda_{k},k,\text{aug}^{+}}(X_{\frac{i_{k}}{n}})}, \qquad N_{n}^{\text{aug}^{+}}(\lambda)_{k} = \frac{\sqrt{n}(X_{T_{k}} - X_{\frac{i_{k}}{n}} - c(X_{\frac{i_{k}}{n}},\lambda_{k}))}{\sqrt{nD^{n,\lambda_{k},k,\text{aug}^{+}}(X_{\frac{i_{k}}{n}})}}, \qquad (72)$$
$$D^{n,\lambda_{k},k,\text{aug}^{+}}(X_{\frac{i_{k}}{n}}) = a^{2}(\frac{i_{k}}{n},X_{\frac{i_{k}}{n}})(1 + c'(X_{\frac{i_{k}}{n}},\lambda_{k}))^{2}(T_{k} - \frac{i_{k}}{n}).$$

Moreover

$$(I_n^{\operatorname{aug}^+}(\lambda), N_n^{\operatorname{aug}^+}(\lambda)) \xrightarrow[law]{n \to \infty} (I^{\operatorname{aug}^+}(\lambda), N^{\operatorname{aug}^+}),$$

where $I^{aug^+}(\lambda)$ is the diagonal information matrix whose entries are

$$I^{\text{aug}^+}(\lambda)_k = \frac{\dot{c}(X_{T_k-},\lambda_k)^2}{a^2(T_k,X_{T_k-})(1+c'(X_{T_k-},\lambda_k))^2U_k}$$

and N^{aug^+} is a standard Gaussian vector in \mathbb{R}^K .

We now deduce convolution results from these LAMN properties.

Proposition 7 Let \widetilde{J}^n be a sequence of estimator based on the observations of $(X_{i/n})_i$ and denote $\overline{J}^n = (c(X_{\frac{i_k}{n}}, \Lambda))_k$. Suppose that the sequence $\sqrt{n}(\widetilde{J}^n - \overline{J}^n)$ is tight and define $R_n^{\text{aug}^-}$ and $R_n^{\text{aug}^+}$ by the following expansions

$$\sqrt{n}(\widetilde{J}^n - \overline{J}^n) = \dot{C}_n^{\text{obs}}(\Lambda) I_n^{\text{aug}^-}(\Lambda)^{-1/2} N_n^{\text{aug}^-}(\Lambda) + R_n^{\text{aug}^-},\tag{73}$$

$$= \left[\sqrt{n} (X_{\frac{i_k+1}{n}} - X_{T_k-} - c(X_{T_k-}, \Lambda_k))\right]_k + R_n^{\text{aug}^-}, \tag{74}$$

$$\sqrt{n}(\widetilde{J}^n - \overline{J}^n) = \dot{C}_n^{\text{obs}}(\Lambda) I_n^{\text{aug}^+}(\Lambda)^{-1/2} N_n^{\text{aug}^+}(\Lambda) + R_n^{\text{aug}^+},\tag{75}$$

$$= \left[\sqrt{n}(X_{T_k} - X_{\frac{i_k}{n}} - c(X_{\frac{i_k}{n}}, \Lambda_k))\right]_k + R_n^{\mathrm{aug}^+},$$
(76)

where $I_n^{\text{aug}^-}(\Lambda)$ (resp. $I_n^{\text{aug}^+}(\Lambda)$) is the diagonal matrix with entries $(I_n^{\text{aug}^-}(\Lambda)_k)$ (resp. $(I_n^{\text{aug}^+}(\Lambda)_k)$) and $\dot{C}_n^{\text{obs}}(\Lambda)$ is diagonal with entries $\dot{c}(X_{\frac{i_k}{k}}, \Lambda_k)$.

Then, we have the convergence in law

$$[\sqrt{n}(X_{\frac{i_{k}+1}{n}} - X_{T_{k}-} - c(X_{T_{k}-}, \Lambda_{k}))_{k}, \sqrt{n}(X_{T_{k}} - X_{\frac{i_{k}}{n}} - c(X_{\frac{i_{k}}{n}}, \Lambda_{k}))_{k}, R_{n}^{\mathrm{aug}^{-}}, R_{n}^{\mathrm{aug}^{+}}] \xrightarrow{(n) \to \infty} [(a(T_{k}, X_{T_{k}})\sqrt{1 - U_{k}}N_{k}^{+})_{k}, (a(T_{k}, X_{T_{k}-})(1 + c'(X_{T_{k}-}))\sqrt{U_{k}}N_{k}^{-})_{k}, R^{\mathrm{aug}^{-}}, R^{\mathrm{aug}^{+}}].$$

$$(77)$$

This convergence holds jointly with (56) and the limit variables can be represented on an extension of $\tilde{\Omega}$. On this space, one has

$$R_k^{\text{aug}^+} = R_k^{\text{aug}^-} - a(T_k, X_{T_k-})(1 + c'(X_{T_k-}))\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+, \quad \forall k \in \{1, \dots, K\}.$$
(78)

Moreover, the variable R^{aug^-} is independent of $(N_k^+)_k$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (N_k^-)_k)$. In a symmetric way, the variable R^{aug^+} is independent of $(N_k^-)_k$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (N_k^+)_k)$.

Proof The variable $R_n^{\text{aug}^-}$ and $R_n^{\text{aug}^+}$ are defined by the relations (73) and (75). The relations (74) and (76) are immediate by (70) and (72).

By a tightness argument the joint convergence, along a subsequence, of (56) and (77) is clear. The relation (78) is a consequence of the equality between the quantities (74) and (76).

Now, we can deduce, from the LAMN property (Proposition 5), a result analogous to the Proposition 3. Hence R^{aug^-} is independent of the limit of $N_n^{\text{aug}^-}(\Lambda)$, conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$. Moreover, remark that in the experiment $\mathcal{O}^{\text{aug}^-}$, the sequence of variables

$$A_n = \frac{\sqrt{n}(X_{T_k-} - X_{\frac{i_k}{n}})}{a^2(T_k, X_{\frac{i_k}{n}})}$$

is observed. But $A_n - \sqrt{n}(B_{T_{k^-}} - B_{\frac{i_k}{n}})$ converges to zero in \mathbb{P} -probability. Showing a result analogous to the Proposition 4, we deduce that R^{aug^-} is independent of the limit of $N_n^{\operatorname{aug}^-}(\Lambda)$, conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (\sqrt{U_k}N_k^-)_k)$. After a few computations, it shows that R^{aug^-} is independent of (N_k^+) conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (N_k^-)_k)$. The conditional independence between R^{aug^+} and $(N_k^-)_k$ is obtained in a symmetric way: one uses the LAMN property of Proposition 6, and the fact that the sequence

$$A'_{n} = \frac{\sqrt{n}(X_{\frac{i_{k}+1}{n}} - X_{T_{k}})}{a^{2}(T_{k}, X_{T_{k}})}$$

is observed in the experiment based on $\mathcal{O}^{\mathrm{aug}^+}$.

Finally, the Theorem 2 is an immediate consequence of the following result.

Proposition 8 Let \widetilde{J}^n be a sequence of estimator based on the observations of $(X_{i/n})_i$ such that $\sqrt{n}(\widetilde{J}^n - J) \xrightarrow[law]{n \to \infty} \widetilde{Z}$. Then,

$$\widetilde{Z} \stackrel{law}{=} [a(T_k, X_{T_k-})\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+]_k + \widetilde{R},$$

where \widetilde{R} is independent of $(N_k^-, N_k^+)_k$ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$.

Proof First, we write

$$\sqrt{n}(\widetilde{J}_k^n - J_k) = \sqrt{n}(\widetilde{J}_k^n - \overline{J}_k^n) - \sqrt{n}(J_k - \overline{J}_k^n) \\
= \sqrt{n}(\widetilde{J}_k^n - \overline{J}_k^n) - c'(X_{\frac{i_k}{n}}, \Lambda_k)\sqrt{n}(X_{T_k} - X_{\frac{i_k}{n}}) + o_{\mathbb{P}}(1).$$
(79)

But the sequence $\sqrt{n}(\tilde{J}^n - \bar{J}^n)$ is tight, and we can apply the Proposition 7. Using (74), (77), and (79) we deduce

$$\sqrt{n}(\widetilde{J}_k^n - J_k) \xrightarrow[law]{n \to \infty} -a(T_k, X_{T_k-})c'(X_{T_k-}, \Lambda_k)\sqrt{U_k}N_k^- + a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+ + R_k^{\operatorname{aug}^-}$$

We write the last equation as

$$\sqrt{n}(\widetilde{J}_k^n - J_k) \xrightarrow[law]{n \to \infty} a(T_k, X_{T_k}) \sqrt{U_k} N_k^- + a(T_k, X_{T_k}) \sqrt{1 - U_k} N_k^+ + \widetilde{R}_k$$

where $\widetilde{R}_k = R_k^{\text{aug}^-} - (a(T_k, X_{T_k-})(1 + c'(X_{T_k-}, \Lambda_k))\sqrt{U_k}N_k^-)$. Using Proposition 7, we deduce that \widetilde{R} is independent of N^+ conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (N_k^-)_k)$.

From (78), we have $\widetilde{R}_k = R_k^{\text{aug}^+} + (a(T_k, X_{T_k})\sqrt{1 - U_k}N_k^+)_k$ and we deduce that \widetilde{R} is independent of N^- conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k, (N_k^+)_k)$.

Remarking that N^- and N^+ are independent conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$, we deduce that \widetilde{R} is independent of (N^-, N^+) conditionally on $(T, \Lambda, (W_t)_{t \in [0,1]}, (U_k)_k)$.

The proposition is proved.

 \diamond

 \diamond

References

- Yacine Aït-Sahalia. Telling from discrete data whether the underlying continuous-time model is a diffusion. J. Finance, 57:2075–2112, 2002.
- [2] Yacine Aït-Sahalia, Jianqing Fan, and Heng Peng. Nonparametric transition-based tests for jump diffusions. J. Amer. Statist. Assoc., 104(487):1102–1116, 2009.
- [3] Yacine Aït-Sahalia and Jean Jacod. Estimating the degree of activity of jumps in high frequency data. Ann. Statist., 37(5A):2202–2244, 2009.
- [4] Yacine Aït-Sahalia and Jean Jacod. Testing for jumps in a discretely observed process. Ann. Statist., 37(1):184–222, 2009.
- [5] Robert Azencott. Densité des diffusions en temps petit: développements asymptotiques. I. In Seminar on probability, XVIII, volume 1059 of Lecture Notes in Math., pages 402–498. Springer, Berlin, 1984.
- [6] Ole E. Barndorff-Nielsen and Neil Shephard. Econometrics of testing for jumps in financial economics using bipower variation. J. Financial Econometrics, 4:1–30, 2006.
- [7] Ole E. Barndorff-Nielsen, Neil Shephard, and Matthias Winkel. Limit theorems for multipower variation in the presence of jumps. *Stochastic Process. Appl.*, 116(5):796–806, 2006.
- [8] Rama Cont and Mancini Cecilia. Nonparametric tests for pathwise properties of semimartingales. *Bernoulli*, 17:781–813, 2011.
- [9] Arnaud Gloter and Emmanuel Gobet. LAMN property for hidden processes: the case of integrated diffusions. Ann. Inst. Henri Poincaré Probab. Stat., 44(1):104–128, 2008.
- [10] Emmanuel Gobet. Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. *Bernoulli*, 7(6):899–912, 2001.
- [11] Xin Huang and George Tauchen. The relative contribution of jumps of total price variance.
 J. Financial Econometrics, 4:456–499, 2006.
- [12] I. A. Ibragimov and R. Z. Has'minskiĭ. Statistical estimation, volume 16 of Applications of Mathematics. Springer-Verlag, New York, 1981. Asymptotic theory, Translated from the Russian by Samuel Kotz.

- [13] Jean Jacod. Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl., 118(4):517–559, 2008.
- [14] Jean Jacod and Philip Protter. Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab., 26(1):267–307, 1998.
- [15] Jean Jacod and Viktor Todorov. Do price and volatility jump together? Ann. Appl. Probab., 20(4):1425–1469, 2010.
- [16] P. Jeganathan. On a decomposition of the limit distribution of a sequence of estimators. Sankhyā Ser. A, 43(1):26–36, 1981.
- [17] P. Jeganathan. On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā Ser. A, 44(2):173–212, 1982.
- [18] Cecilia Mancini. Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat., 36(2):270–296, 2009.
- [19] David Nualart. The Malliavin calculus and related topics. Applications of Mathematics (New York). Springer-Verlag, Berlin, 1995.
- [20] Jeannette H. C. Woerner. Power and multipower variation: inference for high frequency data. In *Stochastic finance*, pages 343–364. Springer, New York, 2006.