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Abstract

We address the problem of unsupervised segmentation of textural images by rely-

ing on morphological image representations and active contours. More precisely, start-

ing with the assumption that textures are statistical ensembles of local image structures,

known as textons, we first suggest to represent a texture image through a tree of ellipses,

which are derived from the level lines of the image; we then investigate the statisti-

cal properties on the tree of ellipses and finally achieve a segmentation of the texture

image by grouping all the ellipses into several subsets according to some statistical mea-

surements. The grouping process is formulated as an energy minimizing problem and

the solution is obtained by evolving an active contour based on Kullback-Leibler (KL)

divergence through a fast global minimization method. Thanks to the proposed ellipse-

based features, the segmentation method can integrate local and global information in

the image. The experiments on both synthesized and natural texture images validate the

approach.

1 Introduction

Texture plays an important role in human visual perception and offers crucial cues for solv-

ing a wide range of computer vision problems, such as image segmentation or scene analysis.

The segmentation of texture is a key problem in computer vision and image understanding,

the objective of which is to partition an image into several regions characterized by homo-

geneous texture attributes. Over the course of the past 40 years, numerous studies have been

performed for texture segmentation, see [3, 4, 15, 17, 22, 23]. In this paper, we address

the issue of structured texture segmentation, starting with the assumption that textures are

statistical ensembles of local image structures, also known as textons [15, 25].

In the literatures, many models have been proposed to analyze and segment textures

by using structured approaches. Among those, the early work of Beck et al. [3] argued

that textural segmentation occurs on the basis of the distribution of simple properties, such

as brightness, color, size, the slopes of contours and lines of the elemental descriptors, of

“texture elements". Julesz [15] proposed to use textons, a set of empirical texture features

including elongated blobs, line ending or terminators, for computational texture modeling,

and the segmentation of texture was consequently achieved through these features. In [25],
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Zhu et al. provided a computational model of textons by relying on Gabor base functions

and a specified vocabulary of texton templates. Recently, Todorovic et al. [1, 22] suggested

to extract explicit textural elements from hierarchical segmentation tree and made use of

them for texture segmentation. These approaches provide impressive segmentation results

on highly structured texture images. However, one main disadvantage of such methods is

that the computation or detection of such textons is not trivial itself. Moreover, modeling the

interactions between textons may involve heavy computation.

The study presented in this paper is inspired by works in mathematic morphology, more

precisely, by granulometry [18, 21], which characterize textures relying on responses to

morphological filtering with user-specified structuring elements of increasing size. The seg-

mentation of synthetic and simple textural images can be achieved by partitioning the image

according to some statistics of the granulometry [10, 11, 18], but it fails at describing com-

plicated and highly structured textures [11]. Instead of using structuring elements and im-

proving the discriminative powerful, alternative approaches have been proposed to analyze

textures based on connected operators which perform directly on the level lines of images,

see [12, 13, 24]. The main motivation of this paper is to investigate the granulometry-like

approach in the context of texture segmentation.

(a) (b) (c)

Figure 1: Represent an image by a tree of ellipse. (a) an original texture image; (b) a subset

of its level lines; (c) the image reconstructed from the tree of ellipses, where each shape, i.e.

the interior of a level line, is replaced by an ellipse.

Along the line of textons, we first suggest to represent textures by a tree of ellipses,

which are derived from the level lines of images and can be regarded as explicit textons,

see Figure 1 for a preliminary graphical illustration. Observe that the ellipse-based repre-

sentation in Figure 1(c) has very similar visual appearance to the original image. As we

shall see in the following sections, the tree of ellipses of an image can be computed rapidly

and efficiently, thus the proposed approach can overcome difficulties in the detection of tex-

ture primitives or texture elements as encontered in [1, 22]. Based on this representation,

textures are subsequently characterized by geometric properties of and by relationships be-

tween these ellipses. Texture segmentation is performed by grouping these properties in a

unsupervised way. Specifically, the grouping step benefits from an active contour model

based on Kullback-Leibler (KL)-divergence similar to the one of [14].

The contribution of this paper is to propose a new texture segmentation approach by

relying on an ellipse-based texture representation, where ellipses are regarded as texture

elements. We argue that natural texture images can be approximated well by a tree of ellipses

and the boundaries between two texture regions can be identified by grouping these ellipse

ensembles according to some statistical properties with an active contour model. This work
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somehow fills the gap between granulometry and texton theory on segmentation. Thanks to

the ellipse-based features, which might be non-local, the segmentation method can integrate

local and global information in the image. Furthermore, the proposed approach is flexible: it

allows to segment images subjected to scaling and rotations and it is robust to illumination

changes inside the image. In this paper, we also adapts the KL-divergence based active

contour model to multi-features, which enables us to take into account different texture cues

for segmentation.

The remainder of the paper is organized as follows. In Section 2, we present the ellipse-

based texture representation. We then describe in detail the unsupervised texture segmen-

tation with active contours in Section 3. In Section 4, we provide experimental results and

finally conclude the paper in Section 5.

2 Texture representation by a tree of ellipses

In this section, we first recall the basics of the topographic map representation of images and

then describe the ellipse-based texture representation

2.1 Topographic map of an image: a tree of shapes

The topographic map representation of images has been first introduced by Caselles et al. [7]

in computer vision. It is a hierarchical structure composed of shapes and relying on con-

nected components of level sets. It is a powerful way to represent the geometrical content of

an image [6, 9, 24].

For a gray-scale image u : Ω 7→ R, the upper and lower level sets are defined respec-

tively as χλ (u) = {x ∈ Ω; u(x) ≥ λ} and χλ (u) = {x ∈ Ω; u(x) ≤ λ}, for λ ∈ R. The

topographic map of the image u is made of the connected components of the topological

boundaries of the upper level sets (equivalently of lower level sets) of the image. Both the

connected components of upper level sets and those of the lower level sets are embedded in

a tree structure. These two tree structures are redundant and can be combined into a single

one, by drawing on the notion of shape defined as the interior of a level line, i.e. the bound-

ary of a level set. An efficient way to compute the tree of shapes of images is developed

in [19], named fast level set transformation (FLST). (The codes of FLST can be downloaded

at http://megawave.cmla.ens-cachan.fr/.) Figure 2(a) and 2(b) respectively

show the topographic map of a synthetic image and a real image.

The tree of shapes of an image has many interesting properties: (1) it yields a scale space

without any geometrical degradation; (2) it is a complete image representation (the image

can be reconstructed from it) that encodes both the geometric and radiometric information

simultaneously; (3) it is also invariant to any local contrast changes, as defined in [8].

2.2 Texture modeling through the tree of ellipses

Figure 1(b) suggests that topographic maps reflect the structures of texture. This observation

has first been addressed in [7] and has been widely used as a basic assumption by follow-

ings [12, 24] on texture analysis relying on topographic maps.

Here, we suggested that, indeed, textures can be well approximated and represented by

using a tree of ellipses. It implies that each shape on the topographic map is replaced by

an ellipse with the same second-order moments. In Figure 3, we show the ellipse-based

http://megawave.cmla.ens-cachan.fr/
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(a) The tree of shapes representation (right) of a synthetic image (left).

(b) The tree of shapes representation of the texture image in Figure 1. Left: the shapes displayed by

their boundaries; Right: the tree structure, i.e. relationships between shapes.

Figure 2: The tree of shapes representation of images. In order to show the tree structure,

in the left graphs of (b), shapes are indicated by points and the parent-child relationships

between two shapes are expressed by line segments. The root of the tree is the image frame,

denoted by a small circle in red.

texture representation of several natural textures1, observing how textures are approximated

by ellipses. These textures, including textures with elongated structures (the textures in the

middle of Figure 3), appear to be well described by a tree of ellipses.

Thus, the modeling of a texture u is reduced to the modeling of the tree of ellipses (E ,T ),
as

p(u) = p(S,T ) ≈ p(E ,T ) (1)

where S := {si}N
i=1 is the set of shapes, E := {ei}N

i=1 is the set of ellipses and T : E ×E is the

tree structure describing the relationships between ellipses. In our case, we use following

attributes to describe each ellipse e:

(α,ε,κ,θ) :=
(

log
√

4πλ1λ2,
λ2

λ1
,

4π
√

λ1λ2

µ00
,

1

2
arctan

2µ11

µ20 −µ02

)

(2)

1Remark that after replacing each shape in the tree by an approximating ellipse, the inclusion relationships

between shapes may be destroyed. The displayed images are obtained by superimposing ellipses on a blank back-

ground with a large-first order.
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(a) Four natural texture images

(b) The ellipse-based representation of the textures in (a).

Figure 3: Ellipse-based texture representation. Top : original texture images; Bottom :

represented textures using ellipse-based textons, where each shape is replaced by an ellipse

but the tree structure is kept. Refer to the text for more details.

where α , ε , κ and θ are respectively defined as log-size, elongation, compactness and orien-

tation of the ellipses, µpq is the (p+q)-order moment and λ1 and λ2 (with λ1 ≥ λ2) are the

two eigenvalues of the inertia matrix of the corresponding shape s.

Other important texture cues are of course contained in the tree structure. according to

the relationships between ellipses. We take these into account by considering local statistics

on the tree. More precisely, we use the scale ratio γ , the ratio between the area of an ellipse

and the area of its parent on the tree, which is similar to [24].

As the use of gray-level information is beneficial for texture discrimination [14, 20, 22]

and the above features only describe the geometric aspects of textures, here we make use of

the contrast information by considering the normalized gray-level value ρ of pixels in each

ellipse. More precisely, for each pixel in an ellipse, its gray level value is normalized by the

average and standard derivation of all the pixels inside this ellipse.

3 Segmentation by grouping ellipses with active contours

Partitioning an image into different regions of homogeneous texture with active contours has

been widely studied [2, 14, 20]. Here, we make use of it to identify the boundaries between

different texture regions. First, in order to obtain local texture features, we cast the model

in Section 2.2 to each pixel of the image, which implies that a pixel x from the image u is

described by the features of e(x), the smallest ellipse on the tree containing the pixel2. Thus,

a vector ν = (α,ε,κ,θ ,γ,ρ) of length 6 is attached to each pixel x. The segmentation then

amounts to partition the resulting vectorial image. We chose to use an active contour model

based on the Kullback-Leibler (KL) divergence to make a 2-phase partition of the image into

the background and the objects of interest.

2The smallest ellipse of each pixel is assigned when the topographic map is computed by FLST.
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A recent active contour model has been proposed in [14] to find, within an image, two re-

gions with two probability density functions (PDFs) of texture features as disjoint as possible.

We chose to adapt this scheme to our framework because it is adapted to histogram-based

texture characterization and efficient. Suppose for the moment that each pixel of the image

is characterized be a texture feature f . Let pin be the inside PDF, pout the outside PDF,

C := Cin be the evolving region and Ω/C := Cout its complementary set in Ω. The method of

[14] suggests to maximize the KL-divergence between the PDFs of the regions inside and

outside the evolving active contour C. The PDF corresponds to the random variable made of

the texture feature f . The pin and pout associated with a region C are evaluated thanks to a

Parzen window as

pin( f ,C) =
1

|C|

∫

C
Gσ ( f − f (x))dx

and

pout( f ,C) =
1

|Ω/C|

∫

Ω/C
Gσ ( f − f (x))dx,

where | · | is the area of a region and Gσ (·) is a Gaussian kernel with zero-mean and stan-

dard deviation σ , which controls the smoothness of the approximation. The symmetric KL-

divergence between pin and pout is defined as

KL
(

pin( f ,C)‖pout( f ,C)
)

=
∫ ∞

−∞

(

pin( f ,C) · pin( f ,C)

pout( f ,C)
+ pout( f ,C) · pout( f ,C)

pin( f ,C)

)

d f . (3)

The segmentation then consists in maximizing the difference between the PDFs inside and

outside a contour C, as

argmin
C

{

L(C)−λKL
(

pin( f ,C)‖pout( f ,C)
)

}

, (4)

where L(C) is the length of the contour, and λ is a regularization parameter. After comput-

ing the shape derivative, Bresson et al. [14] showed that the minimization of the energy in

Equation (4) can be solved by a variational model, enabling the fast computation of a global

optimum.

In our case, according to the texture modeling in Section 2.2 and making an assump-

tion that the components of ν = (α,ε,κ,θ ,γ,ρ) are independent, together with the additive

property of KL-divergence on independent variables, we have,

KL
(

pin(ν ,C)‖pout(ν ,C)
)

= ∑
υ∈{α,ε,κ,θ ,γ,ρ}

KL
(

pin(υ ,C)‖pout(υ ,C)
)

,

and

argmin
C

{

L(C)−λ ∑
υ∈{α,ε,κ,θ ,γ,ρ}

KL
(

pin(υ ,C)‖pout(υ ,C)
)

}

, (5)

whose minimization is achieved by the variational method proposed in [5].

4 Experimental Results

In this section, several examples of the resulting segmentation scheme are displayed. Fig-

ure 4 shows segmentation results on several composite texture images. Each image is com-

posed of two different textures, which have been radiometrically corrected in order to share
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Figure 4: Segmentations of composite texture images made of two textures, radiometrically

normalized to share the same mean and standard derivation. The segmentation boundaries

(in red) overlay the original images. Left column: original textures; Middle column: the

segmentations obtained by the method of Houhou et al. [14]. Right column: the segmenta-

tions obtained by the proposed method.

the same global mean and standard deviation. To compare with the state-of-the-art results,

we also show the segmentation results obtained on these images using the texture features

based on shape operators proposed by Houhou et al [14], which are reported to outperform

other methods, such as the model of Savig et al. [20] using the vectorial Chan-Vese model

and an edge detector function based on Gabor responses. These features heavily rely on con-

trast information, and therefore may fail in cases where both textures share the same mean

and variance. In comparison, we are able to correctly discriminate between both regions.

We also experiment on several natural images. The best segmentation results obtained

with this method are shown on Figure 5. By "best", we refer to the best choice for the reg-
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ularization parameter λ in Equation (5)). This parameter has been fixed for all experiments.

Moreover, observe that the texton extraction step involves no parameter.

Figure 6 illustrates the segmentation results of two Julesz textures, which are composed

of simple shapes or terminators. The segmentations are satisfying. However, observe that

the obtained segmentations are inconsistent with human texture perception, since these two

textures are not distinguishable by pre-attentive vision [15].

Although this approach may yield excellent results, it is important to notice that those

results highly depend on the regularization parameter λ in the energy, as it is usual with

active contour models and other energy minimization based segmentation models. These

results could certainly benefit from recent developments in global minimization for active

contour models such as those of [5].

5 Conclusion

In this paper, we proposed a new texture segmentation approach by relying on the granulometry-

like texrture analysis method. where ellipses are regarded as texture elements and textures

are characterized by statistics from the ellipse ensembles. We argue that the boundaries

between two natural texture regions can be identified well by grouping these ellipse ensem-

bles according to some statistical properties with an active contour model. In general, this

work somehow fills the gap between granulometry and texton theory on segmentation. It

is convinced by the experimental results that the proposed texture segmentation approach is

efficient for texture segmentation and is also available for textures with geometric transfor-

mations. Notice that this method is very related to the work of Lazebnik et al. [16], who used

ellipse-shaped regions extracted by interest points/regions detectors to form a sparse texture

representation. But they did not consider the geometric properties of the regions and did not

take into account the relationships between them for texture analysis.
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