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Functions as proofs as processes

This paper presents a logical approach to the translation of functional calculi into concurrent process calculi. The starting point is a type system for the π-calculus closely related to linear logic. Decompositions of intuitionistic and classical logics into this system provide type-preserving translations of the λ-and λµ-calculus, both for call-by-name and call-by-value evaluation strategies. Previously known encodings of the λ-calculus are shown to correspond to particular cases of this logical embedding. The realisability interpretation of types in the π-calculus provides systematic soundness arguments for these translations and allows for the definition of type-safe extensions of functional calculi.

Introduction

The π-calculus was introduced in the late 1980's as a core model of concurrent computation, in the same way as the λ-calculus is a core model of functional computation. Soon afterwards, Milner showed in the seminal paper Functions as processes [START_REF] Milner | Functions as processes[END_REF] that the λ-calculus could be precisely encoded into the π-calculus. Around the same time, Girard introduced linear logic as a logic to study fine properties of denotational models of intuitionistic logic. Indeed the ideas behind it led to significant insights on the structure and semantics of the λ-calculus and functional computation, along the lines of the functions as proofs slogan. It might not be a coincidence that these two contributions appeared at the same time, and intuitions from one have been seen in the other from the beginning. Formal connections appeared some years later, giving formal ground to the proofs as processes idea, in particular in work by Abramsky [START_REF] Abramsky | Computational interpretations of linear logic[END_REF][START_REF] Abramsky | Proofs as processes[END_REF] and in a notable contribution by Bellin and Scott as an encoding of proof nets in the π-calculus [START_REF] Bellin | On the π-calculus and linear logic[END_REF].

The purpose of this paper is to present a formal way to make these pieces fit together. We use a recent version of the proofs-as-processes approach [START_REF] Beffara | A concurrent model for linear logic[END_REF][START_REF] Beffara | réalisabilité et concurrence[END_REF] as a way to make a link between a form of π-calculus (with more symmetry and expressiveness) and a form of linear logic (with the significant difference that formulas have arities). In this framework, we adapt previous work by Danos, Joinet and Schellinx on the translation of classical logic into linear logic [START_REF] Vincent Danos | Lkq and lkt: Sequent calculi for second order logic based upon linear decomposition of classical implication[END_REF][START_REF] Vincent Danos | A new deconstructive logic: linear logic[END_REF]. We show that, when considering each logic as a type system, we can extract a family of typed translations of the λ-and λµ-calculi into the π-calculus. The now familiar duality [START_REF] Curien | The duality of computation[END_REF] between call-by-name and call-by-value appears clearly in our system, moreover several previously known translations are shown to fit in as particular instances of the general technique.

Our type system for the π-calculus was developed by realisability as a logic of behaviours of concurrent processes. We show that this realisability construction can be used to prove properties of the considered execution models of the λ-calculus. We also argue that realisability provides a way to introduce new constructs in functional calculi while keeping the type system semantically correct.

Parallel composition and scoping: 2 Framework

p | q ≡ q | p (p | q) | r ≡ p | (q | r) p | 1 ≡ p (νx)(

The calculus

The concurrent calculus we use, hereafter named π = -calculus, is a formulation of π-calculus with explicit fusions (à la Gardner and Wischik [START_REF] Gardner | Explicit fusions[END_REF]) with binding input and output. We assume an infinite set N of names, ranged over by the letters u, v, x, y, z. The calculus is generated by the following grammar: actions:

α ::= u(x 1 . . . x n ) input ū(x 1 . . . x n )
binding output processes: p, q ::= α.p, !α.p linear action, guarded replication 1, p | q, (νx)p inaction, parallel composition, hiding

x=y name unification
The operational semantics of the calculus is defined as a reduction relation up to structural congruence, with the rules in table 1. The reduction relation is the smallest relation → that is closed under structural congruence, parallel composition and hiding and that contains u( x).p | ū( x).q → (ν x)(p | q). We consider a strong bisimilarity relation ∼ = whose precise definition (that can be found in the appendix) uses a labelled transition system. The point is that ∼ = is a congruent equivalence such that p ∼ = q implies that for each reduction p → p ′ there is a reduction q → q ′ with p ′ ∼ = q ′ . We use this calculus instead of a more standard form of π-calculus because it provides a clear distinction between synchronisation and name substitution. It also allows a cleaner type system. By combining binding actions and equators, we get usual non-binding actions with their usual semantics, by defining

ū x 1 . . . x n := ū(y 1 . . . y n ).(x 1 =y 1 | . . . | x n =y n )

The type system: linear logic with arities

We assume a set V of type variables, ranged over by X or Y . The language of formulas is generated by the following grammar: The dual (or linear negation) is the involution (•) ⊥ defined as X ⊥⊥ := X and

A, B ::= X | X ⊥ | A ⊗ B | A `B | ´A | ˆA | !A | ?A | ∃X.A | ∀X.A
(A ⊗ B) ⊥ := A ⊥ `B⊥ (´A) ⊥ := ˆ(A ⊥ ) (∀X.A) ⊥ := ∃X.(A ⊥ ) (!A) ⊥ := ?(A ⊥ )
A type Γ is a sequence x 1 : A 1 , . . . , x n : A n where each A i is a formula and each x i is a sequence of names of length ar(A i ). All the names occurring in all the x i must be distinct.

ˆΓ denotes a sequent where all formulas have the form ˆA or ?A, and ?Γ denotes a sequent where all formulas have the form ?A. A typing judgement is written p ⊢ Γ, where p is a process and Γ is a type. A process p has type Γ if p ⊢ Γ is derivable by the rules of table 2.

We call LLa (for linear logic with arities) this logical system. The inference rules are those of multiplicative-exponential linear logic (MELL), extended with the linear modalities ˆand ´. The main difference is in the rule for the existential quantifier: ∃X.A can be deduced from A[B/X] only when X and B have the same arity. As a consequence, although the language of MELL is a subset of our language of types, provability of a sequent Γ in MELL is not equivalent to provability of Γ in LLa.

Second-order λµ-calculus

Our model of functional computation is the λµ-calculus [START_REF] Parigot | λµ-calculus: an algorithmic interpretation of classical natural deduction[END_REF]. We assume an infinite set of λvariables ranged over by x, y and an infinite set of µ-variables ranged over by α, β. Terms are generated by the following grammar:

M, N ::= x | λx.M | (M )N | µα[β]M
Thus we consider the version of the calculus where µα and [β] cannot appear separately. The language of types is minimal second-order logic, i.e.

A, B ::= X | A → B | ∀X.A

A typing judgement has the form Γ ⊢ M : A | ∆ where Γ is a sequence of type assignments x : A for distinct λ-variables and ∆ is a sequence of type assignments α : A for distinct µ-variables. The typing rules are given in table 3. The intuitionistic fragment, i.e. system F, is the fragment of this calculus where µα[β] is never used and where the ∆ part is always empty.

Simply typed λ-calculus and head linear reduction

The basis of linear logic is the decomposition of intuitionistic implication A → B into an linear implication and an exponential modality, as !A ⊸ B. The idea is that linear implication A ⊸ B = A ⊥ `B is the actual implication, while the modalities !A and ?A control weakening and contraction. In this section, we describe the operational meaning of this embedding.

Axiom and cut:

u 1 =v 1 | . . . | u k =v k ⊢ u : X ⊥ , v : X p ⊢ Γ, x : A q ⊢ x : A ⊥ , ∆ (ν x)(p | q) ⊢ Γ, ∆ Multiplicatives: p ⊢ Γ, x : A q ⊢ ∆, y : B p | q ⊢ Γ, ∆, x y : A ⊗ B p ⊢ Γ, x : A, y : B p ⊢ Γ, x y : A `B
Actions:

p ⊢ Γ, x : A ū( x).p ⊢ Γ, u : ˆA p ⊢ Γ, x : A ū( x).p ⊢ Γ, u : ?A p ⊢ ˆΓ, x : A u( x).p ⊢ ˆΓ, u : ´A p ⊢ ?Γ, x : A !u( x).p ⊢ ?Γ, u : !A
Exchange, contraction and weakening:

p ⊢ Γ, x : A, y : B, ∆ p ⊢ Γ, y : B, x : A, ∆ p ⊢ Γ, u : ?A, v : ?A p[w/u, v] ⊢ Γ, w : ?A p ⊢ Γ p ⊢ Γ, u : ?A Quantifiers: p ⊢ Γ, x : A X / ∈ fv(Γ) p ⊢ Γ, x : ∀X.A
Definition. Let LJ 0 be the language of formulas generated by variables and → as the only connective. The translation A 0 of a formula A is defined as

X 0 := X (A → B) 0 := !A 0 ⊸ B 0
where each variable of LJ 0 is mapped to a variable of arity 1 in LLa.

Here propositional variables are considered as base types of arity 1. A functional type A 1 → • • • → A n → X is thus translated into a formula of arity n + 1. The translation of formulas naturally induces a translation of type derivations.

Definition. The translation of a simply typed λ-term M at type A on channels y (with | y| = ar(A 0 )) is the process M A y defined as

x A y := x y λx.M A→B x y := M B y (M )N B y := (νx)( M A→B x y | !x( z). N A z)
The soundness and faithfulness of this translation are easily checked:

Proposition. A judgement x 1 : A 1 , . . . , x n : A n ⊢ M : B is derivable in LJ 0 if and only if M B y ⊢ x 1 : ?(A 0 1 ) ⊥ , . . . , x n : ?(A 0 n ) ⊥ , y : B 0 is derivable in LLa.
Let us now study the operational meaning of the translation. Remark that, up to structural congruence, redexes can be permuted without affecting the translation, i.e. the translation captures σ-equivalence [START_REF] Regnier | Une équivalence sur les λ-termes[END_REF]. Subsequently, we get that τ -transitions in the translations correspond to what is known as head linear reduction [START_REF] Danos | How abstract machines implement head linear reduction[END_REF]. We briefly recall the definition of these two notions: 

Definition. σ-
M i . Thus we have A = A 1 . . . A k → B and x has type C 1 . . . C p → B.
Then we have

M A x z = (ν y u) x u z p i=1 u i = M i Ci n j=1 y j = N j Bj with x = T A := !x( y). T A y.
The only possible reduction in this process is x u z interacting with one of the u i = M i Ci or y j = N j Bj . By construction x cannot be one of the u i , so M A x z has a τ -transition if and only if x = y j for some j. In this case, we can remark that the following reduction holds:

ȳj u z | y j = N j Bj → N j Bj u z | y j = N j Bj
Putting this reduction in context, we get that the reduct of M A x z, up to structural congruence, is λ x.(λ y.(N j ) M ) N A x z. Therefore, τ -transitions in translations of λ-terms strictly correspond to head linear reductions in the terms.

Interestingly, this translation was first described by Hyland and Ong as a syntax for strategies in a game semantics of PCF [START_REF] Hyland | Pi-calculus, dialogue games and pcf[END_REF], thus with different (but clearly related) arguments.

System F and modal translations

The translation presented above is remarkably light. However, the arity of the translation of a term depends on its type, and as a consequence polymorphism in the style of system F does not hold. Modal translations [START_REF] Vincent Danos | Lkq and lkt: Sequent calculi for second order logic based upon linear decomposition of classical implication[END_REF] are a generalisation of the standard embedding of intuitionistic logic into linear logic, which allow full polymorphism by providing a type-independent (and type-safe) translation.

6 Definition. A generalised modality is a word γ over {ˆ, ´, ?, !}. The dual of γ is the modality γ such that (γX) ⊥ = γX ⊥ . A modal translation of LK into LLa is defined by a pair (γ, δ) of generalised modalities. The translation A * of a formula A is defined as

X * := X (A → B) * := γ(A * ) ⊸ δ(B * ) (∀X.A) * := ∀X.(A * )
where each variable of LK is mapped to a variable of arity 2 in LLa. For Γ = {x i :

A i } 1 i n , define Γ * := {x i : A * i } i and Γ * ⊥ := {x i : (A * i ) ⊥ } i . For a generalised modality γ, define γΓ := {x i : γA i } i . A type Γ ⊢ A | ∆ is translated at a channel u into the type γΓ * ⊥ , u : δA * , δ∆ * . A modal translation (γ, δ) is valid if Γ ⊢ A | ∆ holds if and only if ⊢ LLa γΓ * ⊥ , δA * , δ∆ * holds.
An important fact needs to be stressed: in the source language LK, any variable can be substituted by any formula. On the other hand, in the target language LLa, a variable can only be substituted by a formula of the same arity. Note that a translation commutes with substitution, i.e. (A[B/X]) * = A * [B * /X], if and only if variables are preserved, therefore any translation must assign sensible arities to variables. For this substitution to be correct in any case, we must ensure that the arity of A * is independent from A. This condition is satisfied if and only if neither γ nor δ is empty, and then ar(A * ) = 2 for any A.

General translation

7 Definition. Given a non-empty generalised modality γ and names u and x, define the protocol γu( x).p as ´u( x).p := u( x).p, ˆu( x).p := ?u( x).p := ū( x).p, and inductively γ †u( x).p := γu(v). †v( x).p for a fresh name v. In the case of the empty modality ε, let εu(x).p := p[u/x], and εu( x).p is undefined for | x| = 1. Note that protocols are typed in the expected way: p ⊢ Γ, x : A implies γu( x).p ⊢ Γ, u : γA. If γ contains ! then the context must be ?Γ, else if γ contains ´then the context must be ˆΓ. For a modal translation (γ, δ) to be valid for classical logic, essentially two conditions are required:

• It must be possible to apply weakening and contraction to formulas γA and δA, i.e. γ must start with ! and δ must start with ?.

• For the application rule, it must be possible to deduce a common modality ζ from γ and δ, in a context of γ and δ modalities, which essentially implies that one of γ, δ must be a suffix of the other.

For a pair (γ, δ) to be valid for intuitionistic logic, contraction and weakening of δ formulas is not required, and contexts only contain γ formulas. Let (γ, δ) be a modal translation for which these conditions are satisfied. Let Γ and ∆ be types where all formulas start with the modalities γ or δ. We can deduce the translation of the rules for λ and µ independently of the modalities:

p ⊢ Γ, x : γA ⊥ , v : δB p ⊢ Γ, xv : γA ⊸ δB δu(xv).p ⊢ Γ, u : δ(γA ⊸ δB) p ⊢ Γ, u : δB, α : δA, β : δB p[β/u] ⊢ Γ, α : δA, β : δB Hence we get λx.M u := δu(xv). M v µα[β]M α := M β
The formulation of the translation of µα[β]M is valid since α-conversion can be applied to the variable bound by µ. The fact that µα [β] does not modify the process in any other way stresses the fact that the µ binder is nothing more than a way to name conclusions of a proof in the sequentialised syntax of λ-calculus.

It is clear that the introduction rule for ∀ is not affected by the translation. There is a slight difference for the elimination rule: the λ-calculus is a syntax for natural deduction with intro/elim, while our type system for the π-calculus is a sequent calculus with only introduction rules and an actual cut rule. We can translate the elimination rule for ∀ by using an extra cut and axiom:

p ⊢ Γ, u : ∀X.A u=v ⊢ u : A[B/X] ⊥ , v : A[B/X] u=v ⊢ u : ∃X.A ⊥ , v : A[B/X] (νu)(p | u=v) ⊢ Γ, v : A[B/X]
By structural congruence we have (νu)(p|u=v) ≡ p[v/u], hence we can also accept the elimination rule itself in our type system. For the application rule, assume there is a generalised modality ζ of which γ and δ are suffixes, and set γ ′ and δ ′ such that ζ = γ ′ γ = δ ′ δ. Then the translation of application is:

p ⊢ Γ, v : δ(γA ⊸ δB) δv xu ⊢ v : δ(γA ⊗ (δB) ⊥ ), x : (γA) ⊥ , u : δB (νv)(p | δv xu ) ⊢ Γ, x : (γA) ⊥ , u : δB γ′ z(x).(νv)(p | δv xu ) ⊢ Γ, z : (ζA) ⊥ , u : δB q ⊢ ∆, w : δA δ ′ z(w).q ⊢ ∆, z : ζA (νz)(γ ′ z(x).(νv)(p | δv xu ) | δ ′ z(w).q) ⊢ Γ, ∆, u : δB
As explained above, one of γ, δ must be a suffix of the other, so one of γ ′ , δ ′ must be empty. We thus have two cases for the axiom, depending on which one it is:

u ′ =u ⊢ u ′ : (δA) ⊥ , u : δA δ′ x u ⊢ x : (γA) ⊥ , u : δA x=x ′ ⊢ x : (γA) ⊥ , x ′ : γA γ ′ u x ⊢ x : (γA) ⊥ , u : δA
When both γ ′ and δ ′ are empty, these cases collapse into u=x ⊢ x : (γA) ⊥ , u : δA.

γ and δ are given, γ ′ , δ ′ are such that γ ′ γ = δ ′ δ.

x γδ u :=      u=x if γ = δ δ′ x u if γ = δ ′ δ γ ′ u x if δ = γ ′ γ λx.M γδ u := δu(xv). M γδ v (M )N γδ u := (νz) γ′ z(x).(νv) M γδ v | δv xu | δ ′ z(w). N γδ w µα[β]M γδ α := M γδ β Table 4: General case translation of λµ into π.
Definition. Let (γ, δ) be pair of non-empty generalised modalities. The translation M γδ u of a λ-term M is defined inductively by the rules of table 4.

Theorem. Let (γ, δ) be a valid modal translation. For any λµ-term M , Γ ⊢

M : A | ∆ is derivable if and only if M γδ u ⊢ γΓ * ⊥ , u : δA * , δ∆ * is derivable.
Actions in the π-calculus, in particular replications, are blocking. As a consequence, in the standard semantics, there is no reduction inside replications, so the execution of M does not represent the full β-reduction. In the following sections, we give a detailed description of this execution. As explained above, there are two cases, depending on which of γ, δ is a suffix of the other:

Definition. A pair of generalised modalities (γ, δ) is called left-handed if δ is a suffix of γ. It is called right-handed if γ is a suffix of δ.

Call-by-name

Here we consider the left-handed case, i.e. with γ = δ ′ δ for some non-empty δ ′ . As a simplification we consider the case where δ and δ ′ are simple modalities, one easily checks that the other cases are not significantly different. The validity constraints impose δ ′ = !, and δ has to be ? for the classical case.

To describe precisely the operation of translated terms, we introduce a new form of term ♯M and define a continuation K as M 1 . . . M k α where α is a µ-variable and the M i are terms. An executable is a pair M * K, equivalence ≡ and execution → of executables are defined as

(M )N * K ≡ M * N K ♯M * K → M * K µα[β]M * K ≡ M [K/α] * β λx.M * N K → M [♯N/x] * K The substitution M [M 1 . . . M n α/β] is the substitution of every subterm of the form [β]N of M by [α](N )M 1 . . . M n .
The translation of terms is extended to executables as

α u := α=u x = M := δ ′ x(u). M u M K u := (νvz)( δu zv | z = M | K v) α = K := K α ♯M u := (νx)( x u | x = M ) M * K := (νu)( M u | K u)
Proposition. For any call-by-name executables e 1 and e 2 , e 1 ≡ e 2 implies e 1 ∼ = e 2 and e 1 → e 2 if and only if e 1 → e 2 .

Classical call-by-name (γ = !?, δ = ?):

x u = x u λx.M u = ū(xv). M v (M )N u = (νv) M v | !v(xy).(!x(w). N w | y=u)
Intuitionistic call-by-name (γ = !´, δ = ´):

x u = x u λx.M u = u(xv). M v (M )N u = (νvx) M v | !x(w). N w | v xu
Classical call-by-value (γ = !, δ = ?!):

x u = ū x λx.M u = ū(y).!y(xv). M v (M )N u = (νw) !w(x).(νv) M v | !v(w). w xu N w
Intuitionistic call-by-value (γ = !, δ = !): Proof. Remark that the translation M u of a variable or an abstraction has exactly one transition, labelled by an action on u or on a variable. Similarly, the translation K u of a continuation either is an equator u=α or has a unique transition labelled by an action on u. ♯M u has a single transition to a process bisimilar to M u. Then the key of the proof is the remark that bindings correctly implement substitution up to bisimilarity, i.e. (να)( e | α = K ) ∼ = e[K/α] for any fresh name α, and (νx)( e | x = M ) ∼ = e[♯M/x for any fresh name x. The rule for µα [β] applies only in the classical case, then δ starts with ! and continuations are replicable. Details can be found in the appendix.

x u = u=x λx.M u = !u(xv). M v (M )N u = (νvw) M v | N w | v wu
Executing a λµ-term simply means executing it on a continuation α for a fresh variable α, since M α ≡ M * α . Hence we can summarise this result as:

12 Theorem. Left-handed translations implement call-by-name execution.

The case for γ = !´and δ = ´is an adaptation of the standard !A ⊸ B decomposition that allows polymorphism. Operationally, it exactly corresponds to Milner's translation [START_REF] Milner | Functions as processes[END_REF]. The case for γ = !? and δ = ? corresponds to the system known as LKT in Danos-Joinet-Schellinx. As far as we know, its operational counterpart in the π-calculus is new. These particular translations are shown in table 5. In the classical case, the application uses an equator y=u which is not standard π-calculus, however it can be argued that replacing it by a forwarder !y(ab).ū ab does not affect the validity of the translation, although the step-by-step operational description is a bit heavier to formulate.

Call-by-value

We now consider the right-handed case, i.e. with δ = γ ′ γ. As in the previous section, we assume without loss of generality that γ is a single modality, necessarily ! because of the validity constraints. We now have two main choices for γ ′ , namely ? for the classical case and ˆfor the intuitionistic case. We now have to distinguish values, terms and continuations:

values V, W := x | λx.V terms M, N := V | (M )N | µα[K]M | V • W continuations K, L := α | KM f | KV a
An executable is a pair K * M . Equivalence and execution are defined as

KM f * V → KV a * M K * (M )N ≡ KM f * N KW a * V → K * V • W K * µα[L]M ≡ L * M [K/α] K * λx.M • V → K * M [V /x]
A continuation contains functions as unevaluated terms M f and arguments as values V a , so arguments are evaluated first. The terms V • W and µα[K]M are introduced to get a precise bisimulation. Translations are extended as Proof. The proof follows the same principle as in call-by-name. The substitution lemma now states (νx

V u := γ ′ u(x). x = V (M )N u := (νv)( v = uM f | N v) V • W u := (νxy)( x = V | y = W | γx yu ) x = y := x=y x = λy.M := γx(yu). M u α = β := α=β α = KM f := (νv)( γ′ α(x).(νu)( M u | δu xv ) | v = K ) α = KV a := (νvx)( x = V | δα xv | v = K ) µα[K]M α := (νβ)( β = K | M β) K * M := (νu)( u = K | M u)
)( e | x = V ) ∼ = e[V /x]
) where e is an executable, V is a value and x is a λ-variable; the same lemma for µ-variables and continuations also holds. We then remark that translations of terms and continuations always have at most one transition, and the correspondence with the operational semantics above is easily checked. Details can be found in the appendix.

Given a fresh µ-variable α, once again we get M α = α * M , hence the semantics above precisely describes the execution of translations of λµ-terms in right-handed translations, which can be summarised as follows:

14 Theorem. Right-handed translations implement call-by-value execution.

The case for γ = ! and δ = ?! corresponds to the system called LKQ in Danos-Joinet-Schellinx. Operationally, we get exactly Honda, Yoshida and Berger's translation [START_REF] Berger | Genericity and the π-calculus[END_REF][START_REF] Honda | Control in the π-calculus[END_REF]. The case for γ = ! and δ = ˆ! is a version of this translation linearised with respect to conclusions. It is actually very close to Milner's encoding of call-by-value λ-calculus [START_REF] Milner | Functions as processes[END_REF], which corresponds to the slightly more expensive decomposition

(A → B) * = ´(!A * ⊸ ˆ!B * ).
The simplest intuitionistic version is obtained by taking γ = δ = !, which is both left-and right-handed. It is easy to check that the operational meaning of this translation is an extension of the call-by-value strategy where functions and arguments can be executed in parallel. These translations are shown in table 5.

Realisability interpretations

The previous sections define a family of type-preserving translations of the λµ-calculus into the π = -calculus, and provide a detailed description of the operational semantics induced by the translations. Since the operational translations are deduced from simple embeddings of intuitionistic and classical logics into linear logic, we can expect more semantic interpretations.

The soundness of the type system we use for processes is formulated using realisability, as described in the following section.

Soundness of LLa

For a finite set of names I, a process p has interface I if fv(P ) ⊆ I.

Definition. An observation is a set ⊥ of processes of empty interface. Given an observation ⊥, two processes p and q of interface I are orthogonal, written p ⊥ q, if (νI

)(p | q) ∈ ⊥. An observation ⊥ is valid if • ⊥ is closed under bisimilarity,
• if p has a unique labelled transition p τ -→ p ′ and p ′ ⊥ q then p ⊥ q.

If A is a set of processes of interface I, its orthogonal is the set

A ⊥ := {p : I | ∀q ∈ A, p ⊥ q}. A behaviour is a set A such that A = A ⊥⊥ . The complete lattice of behaviours of interface I is noted B I .
Let (u i ) i∈N be an infinite sequence of pairwise distinct names. Let B k := B u1...u k . A valuation of propositional variables is a function ρ that associates, to each variable X of arity k, a behaviour ρ(X) ∈ B k . Given a valuation ρ, the interpretation of a type A localised at x, with | x| = ar(A), is the behaviour x : A ρ of interface x defined inductively by

x 1 . . . x n : X ρ := v(X)[x 1 /u 1 , . . . , x n /u n ] x y : A ⊗ B ρ := {(p | q) | p ∈ x : A ρ, q ∈ y : B ρ} ⊥⊥ u : ´A ρ := {u( x).p | p ∈ x : A ρ} ⊥⊥ x : ∃X k .A ρ := X ∈B k x : A (ρ[X := X ])
⊥⊥ and x : A ⊥ ρ := ( x : A ρ) ⊥ . Exponential modalities require a more subtle definition: for each name u, define the contraction δ u over behaviours of interface {u} as

δ u (A) := {p[u/v, w] | p ∈ A[v/u] `A[w/u]} ⊥⊥
where v and w are fresh names. Then, for a behaviour B of interface {x 1 . . . x n }, define F u (B, X ) := u : ˆB ∪ {1 : u} ⊥ ∪ δ u (X ) ⊥⊥ . This operator is obviously monotonic in X , and the interpretation of exponential modalities is defined as a fixed point of it:

u : ?A ρ := lfp(X → F u ( x : A ρ, X )) u : !A ρ := ( u : ?(A ⊥ ) ρ) ⊥
Finally, a type Γ = x 1 : A 1 , . . . , x n : A n is interpreted as

Γ ρ := (p 1 | . . . | p n ) p 1 ∈ x 1 : A 1 ρ ⊥ , . . . , p n ∈ x n : A n ρ ⊥ ⊥
Definition. Given an observation, a process p realises a type Γ if p ∈ Γ ρ for any valuation ρ. This fact is written p Γ.

From the definition of observations and the interpretation of formulas, we easily deduce the adequacy theorem (we do not expose the proof here, a detailed study on this technique can be found in other works by the author [START_REF] Beffara | réalisabilité et concurrence[END_REF][START_REF] Beffara | A concurrent model for linear logic[END_REF]):

Theorem. If p ⊢ Γ is derivable, then p Γ for any observation ⊥.
The usual notions of testing fit in our notion of observation, for instance: Proposition. Let ω be a channel, assume ω is not taken into account in interfaces. Define the must-testing observation as {p | ∀p → * q, ∃q → * ω | r}. Must-testing is a valid observation.

Properties of typed processes, such as termination or deadlock-freeness, can be obtained by choosing appropriate observations. For instance:

19 Proposition. Let p ⊢ Γ be a typed process such that any propositional variable occurring in Γ is under a modality. For any reduction p → * p ′ there is a reduction p ′ → * p ′′ such that p ′′ has a visible action.

Proof. We use the must-testing observation with a channel ω that does not occur in p. Note that ω ∈ x : A for any formula A, hence u( x).ω ∈ u : ´A . By similar arguments we get u( x).ω ∈ u : !A , ū( x).ω ∈ u : ˆA and ū( x).ω ∈ u : ?A . Moreover it is clear that, for q ∈ A and r ∈ B , (q | r) ∈ A ⊗ B and (q | r) ∈ A `B . Each name u i occurring in Γ occurs with a polarity ε i (depending on the modality that introduces it) and a particular arity.

Let t := i ūεi i ( x).ω, by the above remarks we know that t ∈ ( Γ ρ) ⊥ for any valuation ρ. This implies that, for any reduction p | t → * p ′ | t there is a reduction p ′ | t → * ω | q. Since ω only occurs in t, this implies that an action in t must be triggered during this reduction. By induction on the typing rules, on proves that if all type variables occur under modalities, no equator in p can relate free names, hence triggering an action in t must be done by an action in a reduct of p ′ . 20 Corollary. The execution of a typed λµ-term in call-by-name or call-by-value always ends with a λor µ-variable in active position.

Proof. Let Γ ⊢ M : A | ∆ be a typed λµ-term. Using non-divergence as the observation we can prove that M α has no infinite reduction. Consider a reduction M α → * p with p irreducible. By proposition 19 we deduce that p must have a visible action, and this action can only be on α or a name that occurs in Γ or ∆. Conclude by reasoning on the shape of translations of terms: in call-by-name, executables with visible actions are x * K or λx.M * α; in call-by-value they are

K * x • V or α * λx.M .

Extending the λµ-calculus

Realisability presents the type system LLa as an axiomatisation of the algebra of process behaviours. This allows for the introduction of new logical connectives and new rules: by semantic means (i.e. by reasoning on the reductions of processes) we can define the interpretation of a connective as an operation on sets of processes. If we prove the adequacy of a new logical rule, we can then use it as a typing rule for processes with the guarantee that any property that is proved by realisability is preserved; this includes termination and deadlock-freeness. This technique can be used to extend the typed λµ-calculus. As soon as a connective can be translated into LLa (possibly extended as explained above), a translation of the underlying syntax is deduced the same way as for the core calculus, which induces an evaluation strategy. This provides a framework for extending our type-preserving translations, without loosing any of the properties of the translations. We now provide some examples of these ideas.

Product types Products can be added to the λµ-calculus by means of a pair of constructs for introduction and elimination:

Γ ⊢ M : A | ∆ Γ ⊢ N : B | ∆ Γ ⊢ (M, N ) : A × B | ∆ Γ ⊢ M : A × B | ∆ Γ, x : A, y : B ⊢ N : C | ∆ Γ ⊢ let x, y = M in N : C | ∆
Given a pair (γ, δ), we extend the translation of types by (A × B) * = γA * ⊗ γB * . Note that, when γ and δ are not empty, the arity of (A ⊗ B) * is 2, hence polymorphism is preserved. The translation of terms is extended as follows:

(M, N ) γδ u := δu(xy).(δ ′ x(v). M γδ v | δ ′ y(w). N γδ w)

let x, y = M in N γδ u := (νv)( M γδ v | δv(xy). N γδ u)
In both strategies, let x, y = M in N must reduce M into a pair before evaluating N . The evaluation of the parts of a pair in call-by-value is done in parallel since δ ′ is empty. We leave to the reader the formulation of precise evaluation rules.

Sum types Sum types in λµ can be defined as follows (with i ∈ {1, 2}):

Γ ⊢ M : A i | ∆ Γ ⊢ inj i M : A 1 + A 2 | ∆ Γ ⊢ M : A 1 + A 2 | ∆ Γ, x i : A i ⊢ N i : C | ∆ Γ ⊢ case M of {inj i x i → N i } : C | ∆
Decomposing this in linear logic requires the additives ⊕ and &. The general rules in LLa are complicated, but here we only need simplified versions: 

p ⊢ Γ, u : ˆA p ⊢ Γ, uv : ˆA ⊕ ˆB p ⊢ Γ, x : A q ⊢ Γ, y : B u( x).p + v( y).q ⊢ Γ
inj i M u := δu(a 1 a 2 ).ˆδ ′ a i (v). M v case M of {inj i x i → N i } u := (νv) M v δv(ab). i a i (x i ). N i u
Obviously, in any strategy, the evaluation of case M of {inj i x i → N i } must always reduce M into an inj i before proceeding.

Subtyping Behaviours of a given interface form a complete lattice, with intersection as the lower bound and bi-orthogonal of the union as the upper bound. Write ∧ and ∨ these dual connectives with ar(A ∧ B) = ar(A) = ar(B). This induces subtyping over types, defined as A B if A ⊆ B , and the rules:

p ⊢ Γ, x : A p ⊢ Γ, x : B p ⊢ Γ, x : A ∧ B p ⊢ Γ, x : A p ⊢ Γ, x : A ∨ B p ⊢ Γ, x : A A B p ⊢ Γ, x : B
It is clear that all connectives except negation are increasing for this relation, and that A B if and only if B ⊥ A ⊥ . By the interpretation of modalities we also get !A ´A and ˆA ?A. Subtyping rules in λµ can be written as 

Γ ⊢ M : A | ∆ Γ ⊢ M : B | ∆ Γ ⊢ M : A ∩ B | ∆ Γ ⊢ M : A | ∆ A B Γ ⊢ M : B | ∆

Fix points

The fact that behaviours form complete lattices also guarantees that any increasing function over behaviours of a fixed interface have (least and greatest) fix points. We can thus extend LLa with dual constructs µX.A and νX.A, with the constraints that ar(X) = ar(A) and that X does not occur as X ⊥ in A. The typing rules for fix points are rather technical to formulate, mainly because the proper rule for νX.A requires the introduction of a recursion operator in the π-calculus. Fix points in the types for λµ-calculus would be simply translated as (µX.A) * = µX.(A * ). The constraint that permits polymorphism à la system F also allows this fix point to be used for any A where X only occurs positively.

These various extensions to the type system can be freely combined. Other extensions, notably with concurrent primitives, could be studied in a similar way. However, for this purpose, it seems necessary to enforce serious linearity in the calculus. This fits naturally in our type system for the π-calculus but it is incompatible with full control in the style we get from translations of full classical logic. Precise studies of this idea are deferred to further work. Renaming of transition labels:

p u = v u, v / ∈ {x 1 . . . x n } p u ε (x 1 . . . x n ) = v ε (x 1 . . . x n ) p u = u ′ p v = v ′ p [u=v] = [u ′ =v ′ ]
Table 6: Rules for name unification.

A Technical details A.1 Bisimulation in π =

A polarity ε is an element of {´, ˆ}. ´is called positive and ˆis called negative. The notation u ε ( x) stands for u( x) if ε = ´and for ū( x) if ε = ˆ. Two names x and y are unified by a process p if p x = y is derivable using the rules of table 6. Note that an action like u(x).y=z does not unify y and z, i.e. the equator y=z is inactive as long as the action u(x) has not been consumed. A transition can have one of three kinds of labels:

e ::= u ε (x 1 . . . x n )
visible action (with the x i fresh and distinct) [u=v] conditional internal reduction τ internal reduction

The notation p a = b is extended to transition labels as detailed in table 6. For a label e, n(e) is the set of names that occur in e, i.e. n(u(x 1 . . . x n )) = {u, x 1 . . . x n }, n([u=v]) = {u, v} and n(τ ) = ∅. The labelled transition system of the calculus is defined in table 7.

A simulation is a relation S over processes such that pSq implies that

• for any x, y ∈ N , p x = y implies q x = y,

• for each transition p e -→ p ′ there is a transition q e -→ q ′ such that p ′ Sq ′ .

A bisimulation is a relation S such that both S and S -1 are simulations. Two processes p and q are bisimilar if there is a bisimulation S such that pSq.

Actions (with α = u ε (x 1 . . . x n )) and composition: 

α.p α -→ p !α.p α -→ p | !α.p p ū(x1...xn) ------→ p ′ q v(x1...xn) ------→ q ′ p | q [u=v] ---→ (νx 1 . . . x n )(p ′ | q ′ ) Renaming: p e -→ p ′ p e = e ′ p e ′ -→ p ′ p [u=v] ---→ p ′ p u = v p τ -→ p ′ Context: p e -→ p ′ p | q e -→ p ′ | q p e -→ p ′ q | p e -→ q | p ′ p e -→ p ′ x / ∈ n(e) (νx)p e -→ (νx)p ′

A.2 Simulation in call-by-name

For the "push" rule, we have: In the intuitionistic case the rule is not applicable, but it would hold too under the condition that each µ-variable is used linearly. For the ♯M rule, we have:

(M )N * K = (νu) (νz) (νv)( M v | δv zu ) z = N K u ≡ (νuvz) M v δv zu z = N K u ≡ (νv) M v (νu) (νz)( δv zu | z = N ) K u ≡ (νv) M v (νuz)( v = N u | K u) = M * N K
♯M * K = (νux) δ′ x u δ ′ x(v). M v K u → (νux) M u K u δ ′ x(v). M v ∼ = (νu) M u K u = M * K
where → contains one transition for each modality in the word δ ′ . Since K u and E are blocked on actions that cannot be on channel x, this reduction is clearly the only one possible. The term δ ′ x(v). M v is not consumed since δ ′ must contain !, however there is no other occurrence of x so we can discard it by bisimilarity.

For the substitution rule for terms, the argument is the same as for continuations. In this case, the only outputs on the channel of a λ-variable x are of the form x u = δ′ x u , hence after distribution of x = M we get (νx ′ )( x ′ u | x ′ = M ) = ♯M u for a fresh x ′ . For the "pop" rule, we thus have where → contains one transition for each modality in the word δ. In the classical case, δu xw is not consumed since δ contains !, however we know that u does not occur elsewhere since all duplications of continuations are performed by the rule for µα [β], so this action becomes inactive and it is bisimilar to the empty process. As above, this reduction is the only one possible.

A.3 Simulation in call-by-value

The substitution rule for continuations and the equivalence rule for µα [β] hold by the same arguments as in the case of call-by-name.

For the first equivalence, we have

K * (M )N = (νu) u = K (νv)( v = uM f | N v) ≡ (νv) (νu)( u = K | v = uM f ) N v = KM f * N
For the first reduction rule, we have 

KM f * V = (
M w (νvx)( x = V | δw xv | v = K ) ∼ = KV a * M
where → contains one transition for each modality in the word γ ′ . In the classical case γ′ contains ! so the continuation at u is not consumed, however we know that u has no other occurrence since continuations are duplicated by the rule for µ, so we can erase the residual term on u by bisimilarity. This is the only possible reduction as soon as γ ′ is not empty. The second reduction

  Each variable is supposed to have a fixed arity. Given an arity function ar : V → N, the arity of a formula is defined as ar( †A) := 1 with † ∈ {ˆ, ´, ?, !} ar(∃X.A) := ar(∀X.A) := ar(A) ar(A ⊗ B) := ar(A `B) := ar(A) + ar(B)

  , uv : ´A & ´B assuming the underlying π-calculus has guarded choice. We get adequacy by defining uv : A ⊕ B ρ := ( u : A ρ ∪ v : B ρ) ⊥⊥ and interpreting A & B by duality. The sum type of λµ is translated as (A + B) * = ˆγA * ⊕ ˆγB * (which preserves polymorphism). The translation of terms follows:

  Translations are extended as (A ∩ B)* = A * ∧ B * . The usual subtyping rules, like (A → B) (A ′ → B ′ ) if A ′ A and B B ′ , hold through translation.

  Axioms and context rules for unification:x=y x = y p x = y p | q x = y p x = y q | p x = y p x = y z / ∈ {x, y} (νz)p x = yReflexivity, symmetry and transitivity of equators:

For the substitution rule

  for continuations, consider a process (να)( M u | K α), with K = M 1 . . . M k β. When δ starts with ?, each K α is a guarded replication on channel α. By construction there is no other input on α so each output on α can only interact with K α. Hence, up to bisimilarity, we can distribute K α in M u by substituting each action ᾱ( x).p by (να ′ )(ᾱ ′ ( x).p | K α ′ ) for a fresh α ′ . All output occurrences of α occur in processes of the form µθ[α]N θ = N α, but (να ′ )( N α ′ | K α ′ ) = N * Kand by the previous rule we have N * K ≡ (N )M 1 . . . M k * β = µθ[β](N )M 1 . . . M k θ. By this rule we can deduce the validity of the rule for µα[β]: µα[β]M * K = (να) M β K α ∼ = M [K/α] β ≡ M [K/α] * β

  λx.M * N K = (νu) δu(xv). M v (νw) (νz)( δu zw | z = N ) K w ≡ (νuwx) δu(xv). M v δu xw x = N K w → (νuwx) M w δu xw x = N K w ≡ (νwx) M w (νu) δu xw x = N K w ∼ = (νwx) M w x = N K w ∼ = (νw) M [♯N/x] w K w = M [♯N/x] * K

  νu) (νv) γ′ u(x).(νw)( M w | δw xv ) v = K γ ′ u(x). x = V ≡ (νuv) γ′ u(x).(νw)( M w | δw xv ) v = K γ ′ u(x). x = V → (νuvx) γ′ u(x).(νw)( M w | δw xv ) (νw)( M w | δw xv ) v = K x = V ≡ (νw) (νu)γ ′ u(x).(νw)( M w | δw xv )

Table 1 :

 1 Structural congruence and reduction.

	νy)p ≡ (νy)(νx)p	(νx)(p | q) ≡ p | (νx)q if x / ∈ fv(p)	(νx)1 ≡ 1
	Equators:		
	1 ≡ x=x	x=y ≡ y=x	x=y | p[x/z] ≡ x=y | p[y/z]
	Replication and reduction:		
	!α.p ≡ α.(p | !α.p)	u( x).p | ū( x).q → (ν x)(p | q)

  equivalence is the congruence over λ-terms generated by Head linear reduction is the relation over σ-equivalence classes generated byλx 1 . . . x k .(λy 1 . . . y n .(y i )M 1 . . . M p )N 1 . . . N n → λx 1 . . . x k .(λy 1 . . . y n .(N i )M 1 . . . M p )N 1 . . . N n First note that for M and N of type A, if M = σ N then M A y ≡ N A y,so we can consider terms up to σ-equivalence. Consider a typed term Γ ⊢ M : A. By σ-equivalence we assume that M is written λ x.(λ y.(x) M ) N with | y| = | N |. Call A i the type of each x

	(λx.M )N P = σ (λx.(M )P )N	(λxy.M )N = σ λy.(λx.M )N
	with x / ∈ fv(P ) and y / ∈ fv(N ). Any λ-term M can be normalised as
	M = σ λx 1 . . . x k (λy 1 . . . y n .(x)M 1 . . . M p )N 1 . . . N n
	Proposition. For any simply typed λ-term Γ ⊢ M : A, M A y is bisimilar to M for head linear
	reduction.	
	Proof.	

i , B i the type of each y i and N i (these are the same since M is well typed), and call C i the type of each

Table 5 :

 5 Particular cases of translations.

Table 7 :

 7 Labelled transition system.

p ⊢ Γ, x : A[B/X] ar(B) = ar(X) p ⊢ Γ, x : ∃X.A Table 2: Typing rules for the π = -calculus. Intuitionistic rules: Γ, x : A ⊢ x : A | ∆ Γ, x : A ⊢ M : B | ∆ Γ ⊢ λx.M : A → B | ∆ Γ ⊢ M : A → B | ∆ Γ ⊢ N : A | ∆ Γ ⊢ (M )N : B | ∆ Quantifiers: Γ ⊢ M : A | ∆ X / ∈ fv(Γ, ∆) Γ ⊢ M : ∀X.A | ∆ Γ ⊢ M : ∀X.A | ∆ Γ ⊢ M : A[B/X] | ∆ Control: Γ ⊢ M : B | α : A, β : B, ∆ Γ ⊢ µα[β]M : A | β : B, ∆Table 3: Typing rules for the λµ-calculus.

rule is deduced as

where → contains one transition for each modality in the word γ ′ , since δ = γ ′ γ. As above, this is the only reduction. For the substitution rule, we have

where there is one transition for each modality in γ. The step after the reduction is an instance of the substitution lemma (νx

. This lemma holds by the same argument as in the case of call-by-name: the binding x = V can be distributed to all occurrences of x, but any occurrence of x occurs in a binding y = x so we have