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Abstract

Loewner introduced his famous differential equation in 1923 in order to solve

Bieberbach conjecture for n=3. His method has been revived in 1999 by Ode

Schramm who introduced Stochastic Loewner processes which happened to

open many doors in statistical mechanics. The aim of this paper is to revisit

Bieberbach conjecture in the framework of SLE and more generally Lévy

processes. This has lead to astonishing results and conjectures.

1 Introduction

Let f(z) =
∑

n≥0 anz
n be a holomorphic function in the unit disc D. We further

assume that the function f is injective: what can be then said about the coefficients
an? An trivial observation is that a1 6= 0 and Bieberbach [1] proved in 1916 that

|a2| ≤ 2|a1|.

In the same paper he conjectured that

∀n ≥ 2, |an| ≤ n|a1|,

guided by the intuition that the function (called from that time Koebe function)

f(z) =
∑

n≥2

nzn,

which is a holomorphic bijection between D and C\(−∞,−1/4], should be extremal.
This conjecture was proved in 1984 by De Branges [2]: this proof was made possible
by the addition of a new idea (an inequality of Askey and Gasper) to a lot of methods
and strategies that have been developed along almost a century of efforts.
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It is largely accepted that the first main contribution to the proof of Bieberbach
conjecture is the proof [9] by Loewner in 1923 that |a3| ≤ 3|a1|. De Branges’ proof
indeed uses Loewner’s idea in a crucial way as well as many contributors to the proof
did in the period. But Loewner’s idea goes far beyond Bieberbach conjecture: Oded
Schramm [12] revived Loewner’s method in 1999, introducing randomness in it, and
obtaining as a consequence a unified way to understand many questions in statistical
mechanics. This theory is now called the theory of SLE (for Schramm-Loewner,
initially Stochastic Loewner evolution) processes.

The aim of the present paper is to revisit Bieberbach conjecture in the frame-
work of SLE processes, that is to study what can be said about the coefficients of
univalent functions coming from these processes. The main tool traditionally used
for dealing with SLE processes is Ito calculus; by contrast, our approach is com-
pletely elementary, the main tools being Markov property for brownian motion and
the expression for its characteristic function. This elementary approach allowed us
to generalize considerably the validity of the results, namely in the framework of
Loewner evolutions driven by Lévy processes.

In the first part we will outline the proof by Bieberbach of the case n = 2 and
Loewner’s proof for n = 3. Actually Loewner’s method covers the case n = 2 but we
keep Bieberbach’s proof because it allows us to introduce basic notions needed to
understand facts around this conjecture. We finish this first part by a brief account
of post-Loewner steps in the proof of Bieberbach conjecture.

In the second part we will introduce SLE processes (in the terminology of
Schramm, whole-plane SLE processes) and their generalizations using Lévy pro-
cesses and study the coefficients (which are random variables) of the associated
univalent functions.

The main result of this paper is the following surprisingly “universal”

Theorem 1.1. Let (ft) be a Lévy-Loewner process with Lévy symbol η (for the
definitions see below) and

f0(z) = z +
∞
∑

n=2

anz
n.

Then for n ≤ 20 if η1 = 0, 1, 3 we have respectively

E(|an|
2) = n2, n, 1.

Before we come to the details, let us comment this statement. The case η1 = 0
is obvious since it coincides with the Koebe function. Notice that in this case, by
Schoenberg correspondence, η2 must be equal to 0. The cases η1 = 1, 3 correspond
in the SLE case to κ = 2, 6 which are known to be connected respectively to self-
avoiding random walks and to critical percolation. Is the result connected with
these facts?
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Also our proof is heavily computer assisted: if one gives us a number n then,
waiting long enough (and this becomes very long if one approaches 20), we can prove
the result. We predict that the theorem is valid for all values of n but we have no
proof yet.

2 A brief history of the Bieberbach conjecture

2.1 Proof for n = 2 (Bieberbach, 1916)

First of all, let us introduce the normalized class

S = {f : D → C holomorphic and injective ; f(0) = 0, f ′(0) = 1}.

Bieberbach conjecture is clearly equivalent to |an| ≤ n, n ≥ 2 for f ∈ S. A related
class of normalized functions is

Σ =

{

f : ∆ = C\D → C holomorphic and injective ; f(z) = z +
∞
∑

n=0

bn

zn
at ∞

}

.

The application f 7→ F where F (z) = 1/f(1/z) is clearly a bijection from S onto
Σ′, the subclass of Σ consisting in functions that do not vanish in ∆. A simple
application of Stokes formula shows that if f ∈ Σ then, denoting by |B| the Lebesgue
measure (area) of the borelian subset B of the plane,

|C\f(∆)| = π

(

1 −
∑

n≥1

n|bn|
2

)

.

Since area is a positive number, a consequence of this equality is that |b1| ≤ 1. If we
apply this inequality directly to the function F in Σ′ coming from f ∈ S, one does
not obtain anything conclusive. The idea of Bieberbach is to apply this inequality
to an odd function in S.

Let f ∈ S then z 7→ f(z)/z does not vanish in the disc and thus it has a unique
holomorphic square root g which is equal to 1 at 0. Then, f(z2) = h(z)2, where
h(z) = zg(z2) is still in the class S but is moreover odd. This establishes a bijection
(f 7→ h) between S and the set of odd functions in S. Now if f(z) = z + a2z

2 +
a3z

3 + . . . belongs to the class S then it is easy to see that h(z) = z + a2

z3 + O(z5)
and that the associated H ∈ Σ satisfies

H(z) = 1/h(1/z) = z −
a2

2z
+ . . .

By area theorem,

|
a2

2
| ≤ 1 ⇒ |a2| ≤ 2.
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2.2 Proof for n = 3 (Loewner [9], 1923)

Replacing f(z) by f(rz) with r < 1 but close to 1, one sees that it suffices to
prove the estimate for conformal mappings onto smooth Jordan domains containing
0. Consider such a domain Ω and let γ : [0, t0] → C be a parametrization of its
boundary. We consider then Γ : [0,∞) → C a Jordan arc joining γ(0) = γ(t0) to
∞ inside the outer Jordan component. We then define

Λ(t) = γ(t), t ≤ t0, = Γ(t − t0), t ≥ t0,

and define for s > 0,
Ωs = C\Λ([s,∞)).

It is a simply connected domain containing 0 and we can thus consider its Riemann
mapping fs : D → Ωs, fs(0) = 0, f ′

s(0) > 0. By Caratheodory convergence theorem,
fs converges as s → 0 to f , the Riemann mapping of Ω. We may assume without
loss of generality that f ′(0) = 1 and, by changing time if necessary, that f ′

s(0) = es.
The key idea of Loewner is to use the fact that the sequence of domains Ωs is

increasing, which translates into the fact that

ℜ

(

∂ft

∂t

z ∂ft

∂z

)

> 0

or, equivalently, that ℜ

(

∂ft
∂t

z
∂ft
∂z

)

is the Poisson integral of a positive measure, actually

a probability measure because of the normalization f ′
t(0) = et. Now the fact that

the domains Ωt are slit domains implies that for every t this probability measure
must be the Dirac mass at λ(t) = f−1

t (Λ(t)). Even if it is not needed for the proof, it
is worthwhile to notice that λ is a continuous function. We say that the process Ωs

is driven by the function λ, in the sense that (fs) satisfies the Loewner differential
equation

(1)
∂ft

∂t
= z

∂ft

∂z

λ(t) + z

λ(t) − z
.

To finish Loewner’s proof we extend both sides of the last equation as power series
and simply identifiy the coefficients. This leads to, where we have put ft(z) =
et(z + a2z

2 + a3z
3 + . . .):

ȧ2 − a2 = 2λ,

ȧ3 − 2a3 = 4a2λ + 2λ
2

(to simplify the notations, we indicate t-derivative with a dot). The first differential
equation is easily solved, giving

a2(t) = −2et

∫ ∞

t

λ(s)e−sds
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and a new proof of the case n = 2. Once a2 is known one can solve the second
equation, leading to

a3(t) = −4e2t

∫ ∞

t

e−2sa2(s)λ(s)ds − 2e2t

∫ ∞

t

e−2sλ
2
(s)ds.

We simplify this expression by noticing that the first integral is of the form 1
2

∫∞
t

uu′

where u(s) = e−sa2(s). The formula for a3 then simplifies to

a3(t) = 4e2t

(
∫ ∞

t

λ(s)e−sds

)2

− 2e2t

∫ ∞

t

e−2sλ
2
(s)ds.

Before we continue with the proof we notice that, by considering e−iαf(eiαz),
it suffices to prove that ℜ(a3) ≤ 3. To this aim we write λ(s) = eiθ(s). Using
furthermore that cos(2θ) = 2 cos2(θ) − 1 and the fact that, by Cauchy-Schwarz
inequality,

(

et

∫ ∞

t

e−s cos θ(s)ds

)2

≤ et

∫ ∞

t

e−s cos2 θ(s)ds ,

we get

ℜ(a3) = 4e2t

(
∫ ∞

t

e−s cos θ(s)ds

)2

− 4e2t

(
∫ ∞

t

e−s sin θ(s)ds

)2

− 2e2t

∫ ∞

t

e−2s cos (2θ(s))ds

≤ 4

∫ ∞

t

(

et−s − e2(t−s)
)

cos2 θ(s)ds + 1

≤ 4

∫ ∞

t

(

et−s − e2(t−s)
)

ds + 1 = 3.

It is remarkable that the Loewner method can be reversed: given a continuous
function λ (or more generally a regulated function) from [0,∞) to the unit disk then
the Loewner equation (1) has a unique solution ft(z) which is the Riemann mapping
of a domain Ωt, and the corresponding family is increasing in t. Notice that it is
not true in general that the obtained domains are slit-domains.

In 1999, Oded Schramm had the intuition to take

λ(t) = ei
√

κBt

where Bt is a standard one dimensional brownian motion, and this leads to the very
powerful theory of SLE (Schramm-Loewner evolution) processes. We will come to
these processes in the next paragraph.
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2.3 Bieberbach conjecture after Loewner

The next milestone after 1923 and Loewner theorem is 1925 and the proof by Lit-
tlewood [7] that in the class S, |an| ≤ en. In 1931, Dieudonné [3] has proven the
conjecture for functions with real coefficients. In 1932, Littlewood and Paley [8]
have proven that the coefficients of an odd function in S are bounded by 14 and
they conjectured that the best bound is 1, a conjecture that implies Bieberbach’s.
This conjecture was disproved by Fekete and Szego [4] in 1933 for n = 5. In 1935,
Robertson [11] stated the weaker conjecture

n
∑

k=1

|a2k+1|
2 ≤ n,

which also implies the Bieberbach conjecture. The next milestone is due to Lebe-
dev and Milin [6]: it had already been observed by Grunsky [5] in 1939 that the
logarithmic coefficients γn defined by

log
f(z)

z
= 2

∞
∑

n=1

γnz
n

can easily be estimated. In the sixties, Lebedev and Milin [6] have shown, through
three inequalities, how to pass from these estimates to estimates for f . This allowed
Milin [10] to prove |an| ≤ 1.243n and consequently he stated what has become
known as Milin conjecture:

n
∑

m=1

m
∑

k=1

(

k|γk|
2 −

1

k

)

≤ 0.

It should be noticed that γn = 1/n for the Koebe function but the stronger conjec-
ture |γn| ≤ 1/n is false, even as an order of magnitude. It happens that Milin ⇒
Robertson ⇒ Bieberbach, and De Branges actually proved Milin conjecture.

3 Coefficient estimates for SLEκ

Whole-plane SLEκ is the Loewner process (as defined in the last section) driven by
the function

λ(t) = ei
√

κBt

where Bt is a standard one-dimensional brownian motion. For such a process we will
call an the Taylor coefficients of f = f0. These coefficients are now random variables:
their laws seem to be out of reach so we will restrict our study to the computations of
the expectations of an and |an|

2 (from which we may of course deduce the variance).
The computation of the expectation will lead to the computation of E(ft(z)), while
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the computation of the variances will lead to the computation of the expectations
of the integral means

∫ 2π

0

∣

∣

∣
f

(n)
t (reiθ)

∣

∣

∣

2

dθ.

As we shall see, our elementary approach (no Ito calculus) only uses two prop-
erties of Brownian motions:
- Stationarity: if 0 ≤ s < t then Bt − Bs obeys a law depending only on t − s;
- Markov property: if 0 ≤ s < t then Bt − Bs is independent of Bs.
An important class of processes satisfying these two properties is a subset of the
class of Lévy processes: these processes (Lt)t≥0 are such that their characteristic
functions are of the form

E(eiξLt) = e−tη(ξ)

where η, called the Lévy symbol, satisfies some Bochner type condition and

η(−ξ) = η(ξ).

An important sub-class of Lévy processes is the class of α ∈ (0, 2]-stable processes:
these are the processes whose Lévy symbol are

η(ξ) =
κ

2
|ξ|α.

We have chosen the normalization κ/2 so that this process is SLEκ when α = 2:
in the case of a general Lévy process the constant κ corresponds to 2η1 (from now
on we will write ηj for η(j)). In the sequel, we will call Lévy-Loewner process a
Loewner process driven by a function

λ(t) = eiLt

where Lt is a Lévy process with symbol η.

3.1 Expectation of ft(z) for Lévy-Loewner processes

The aim of this section is to give an explicit expression of the expectations of the
coefficients an in the Lévy setting: as a corollary we will obtain expectations of the
function ft.

In order to simplify the computations we will write bn(t) = an(t)e−(n−1)t. If we
identify the coefficients of the left-side of the Loewner equation to the right-side
ones, one gets the recursion formula

ḃn = 2
n−1
∑

k=1

kbke
−(n−k)se−i(n−k)Lt .
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From this recursion formula one can extract the induction formula

ḃn = Xt
˙bn−1 + 2(n − 1)bn−1Xt,

where we have put
Xt = e−t−iLt .

To simplify further the computation let us use as the unknown cn = ḃn and put
ϕn(t) = Ecn(t). The induction relation becomes

(2) cn = Xtcn−1 − 2(n − 1)Xt

∫ ∞

t

cn−1(s)ds.

Some experiments with the computation of the few first terms yields to the following
induction formula for ϕn(t):

ϕn(t) = e−(1+ηn−1−ηn−2)t

(

ϕn−1(t) − 2(n − 1)

∫ ∞

t

ϕn−1(u)du

)

.

One then easily find our way to the computation of E(an) = −
∫∞

0
ϕn−1(u)du:

E(an) = −2

∏n

j=3(ηj−2 − j)
∏n−1

j=1 (j + ηj)
.

In the case of SLEκ this formula gives for the few first terms:

(I) Ea2 = −
4

2 + κ
,

(II) Ea3 = −
κ − 6

(1 + κ)(2 + κ)
,

(III) Ea4 = −
4(κ − 6)(κ − 2)

(6 + 9κ)(1 + κ)(2 + κ)
.

In particular, we get for κ = 6,

Eft(z) = z − z2/2 =
1

2
(1 − (z − 1)2),

and, for κ = 2,

Eft(z) = z − z2 + z3/3 =
1

3
((z − 1)3 + 1).

More generally, z 7→ Eft(z) is polynomial for the sequence of values

κ =
2n

(n − 2)2
, n ≥ 3.
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3.2 Computation of E(|an|
2) for small n

Theorem 3.1. For Lévy-Loewner processes we have

E(|a2|
2) = ℜ

(

4

1 + η1

)

.

Proof - We recall the expressions for a2 and a3:

a2(t) = −2et

∫ ∞

t

λ(s)e−sds,

a3(t) = 4e2t

(
∫ ∞

t

λ(s)e−sds

)2

− 2e2t

∫ ∞

t

e−2sλ
2
(s)ds.

We can thus write

|a2|
2 = 8

∫ ∞

0

e−s+iLs

∫ ∞

s

e−s′−iLs′ds′ds = 8

∫ ∞

0

e−s

∫ ∞

s

e−s′−i(Ls′−Ls)ds′ds.

Using now the expression for the characteristic function of Ls − Ls′ , we get

E(|a2|
2) = 8

∫ ∞

0

e−s

∫ ∞

s

e−s′−(s′−s)η1ds′ds,

and the result follows. �

We now pass to computations involving a3. In order to avoid repetitions of
computations needed for various consequences, we will compute

E(|a3 − µa2
2|

2)

where µ is a real constant. By the above computations,

a3(t) = 4e2t

(
∫ ∞

t

λ(s)e−sds

)2

− 2e2t

∫ ∞

t

e−2sλ
2
(s)ds.

We may then write

e−4t|a3 − µa2
2|

2 = 16(1 − µ)2I1 − 16(1 − µ)ℜI2 + 4I3,

where

I1 =

∫ ∞

t

∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+s3+s4)λ(s1)λ(s2)λ(s3)λ(s4)ds1ds2ds3ds4,

I2 =

∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+2s3)λ(s1)λ(s2)λ(s3)
2ds1ds2ds3,

I3 =

∫ ∞

t

∫ ∞

t

e−2(s1+s2)λ(s1)
2λ(s2)

2ds1ds2.
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From now on we put t = 0 in the above formulas. The computation of I3 follows
the same lines as the one in the Theorem 3.1 and we find

E(I3) = ℜ

(

1

2(2 + η2)

)

.

In order to compute E(I2) we have to use the strong Markov property. First, by
symmetry, we may write

I2 = 2

∫ ∞

s1=0

∫ ∞

s2=s1

∫ ∞

s3=0

e−(s1+s2+2s3)ei(Ls3
−Ls1

)ei(Ls3
−Ls2

)ds1ds2ds3,

and we cut this integral as I2 = 2(I2,1 + I2,2 + I2,3) where in I2,1 (resp. in I2,2, I2,3),
s3 ranges in [0, s1] (resp. in [s1, s2], [s2,∞)). For I2,1 we write

ei(Ls3
−Ls1

)ei(Ls3
−Ls2

) = e−2i(Ls1
−Ls3

)e−i(Ls2
−Ls1

)

so that we can use Markov property and deduce that the expectation of this random
variable is

e−η1(s1−s3)e−η1(s2−s1).

From this the value of E(I2,1) can be easily computed and we find

E(I2,1) =
1

4(1 + η1)(2 + η2)
.

Similar considerations lead to

E(I2,2) =
1

4(1 + η1)(3 + η1)
,

E(I2,3) =
1

4(2 + η2)(3 + η1)
.

Combining these computations we get

ℜ(E(I2)) = ℜ

(

1

2(1 + η1)(2 + η2)
+

1

2(1 + η1)(3 + η1)
+

1

2(2 + η2)(3 + η1)

)

.

The computation of I1 follows the same lines. First, by symmetry,

I1 = 4

∫ ∞

0

∫ ∞

s1

∫ ∞

0

∫ ∞

s3

e−(s1+s2+s3+s4)ei(Ls3
−Ls1

)ei(Ls4
−Ls2

)ds1ds2ds3ds4.

We then split this integral into a sum of six pieces according to:

(I) s3 < s4 < s1 < s2,

(II) s3 < s1 < s4 < s2,

10



(III) s3 < s1 < s2 < s4,

(IV) s1 < s3 < s4 < s2,

(V) s1 < s3 < s2 < s4,

(VI) s1 < s2 < s3 < s4.

Clearly (I) = (VI), (II) = (V) and (III) = (IV). Using the same arguments as in the
previous computations, skipping the details, we get

E(I) =
1

4(1 + η1)(2 + η2)(3 + η1)
,

E(II) =
1

8(1 + η1)(3 + η1)
,

E(III) =
1

8(1 + η1)(3 + η1)
.

Altogether we get

E(I1) = ℜ

(

2

(1 + η1)(2 + η2)(3 + η1)
+

1

(1 + η1)(3 + η1)
+

1

(1 + η1)(3 + η1)

)

.

We may now state

Theorem 3.2. If µ is a real coefficient then

E(|a3 − µa2
2|

2) =

ℜ

(

16(1 − µ)2(4 + η2)

(1 + η1)(2 + η2)(3 + η1)
−

16(1 − µ)(2 + η1)

(1 + η1)(2 + η2)(3 + η1)
+

2

2 + η2

+
8(1 − µ)(1 − 2µ)

(η1 + 1)(η1 + 3)

)

.

In the case η real and even, this becomes

E(|a3−µa2
2|

2) = ℜ

(

32(1 − µ)2(3 + η2) − 8(1 − µ)(6 + 2η1 + η2) + 2(1 + η1)(3 + η1)

(1 + η1)(2 + η2)(3 + η1)

)

.

Finally, in the SLE case η(ξ) = κ
2
|ξ|2,

E(|a3 − µa2
2|

2) =
(108 − 288µ + 192µ2) + (88 − 208µ + 128µ2)κ + κ2

(1 + κ)(2 + κ)(6 + κ)
.
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3.3 Some corollaries

The first corollary is the analogue of Loewner’s estimate, i.e. the value obtained by
taking µ = 0.

Theorem 3.3. For Lévy-Loewner processes with η real and even we have

E(|a3|
2) =

1

(1 + η1)(3 + η1)

[

24 + 2
(η1 − 1)(η1 − 3)

2 + η2

]

.

In the case of SLE this reads

E(|a3|
2) =

108 + 88κ + κ2

(1 + κ)(2 + κ)(6 + κ)
.

Notice the important role played by the cases η1 = 1, 3, corresponding to κ = 2, 6;
in these cases the result does not depend on η2, and is, respectively, 3 and 1.

The second corollary shows that there is no Fekete-Szego counter-example in the
SLE family. We start with f ∈ S being f0 for a SLEκ process. We associate to it

the odd function h as above, that is h(z) = z
√

f(z)
z

= z + b3z
3 + b5z

5 + . . . while

f(z) = z + a2z
2 + a3z

3 + . . . , an easy computation gives

b5 =
1

2
(a3 −

1

4
a2

2).

We thus put µ = 1
4

in the above theorem and get

E(|b5|
2) = ℜ

(

18 + 9η2 − 4η1 + 2η2
1

4(1 + η1)(2 + η2)(3 + η1)
+

3

4

1

(1 + η1)(3 + η1)

)

.

In the case of η real and even, we have

E(|b5|
2) = ℜ

(

6 + 3η2 − η1 + η2
1/2

(1 + η1)(3 + η1)(2 + η2)

)

.

Finally, in the SLE−case,

E(|b5|
2) =

12 + 44κ + κ2

(1 + κ)(2 + κ)(6 + κ)
,

a value which is always less than or equal to 1 (the equality holds for κ = 0).
The last corollary concerns the schwarzian derivative, whose definition is

Sf (z) =
f ′′′(0)

f ′(0)
−

3

2

(

f ′′(0)

f ′(0)

)2

.

12



We easily obtain Sf (0) = 6(a3 − a2)
2, thus corresponding to µ = 1. The result is

E(|Sf (0)|2) =
12

2 + η2

,

and in the SLE-case,

E(|Sf (0)|2) =
36

1 + κ
.

A few comments about these results:
- It is striking that E(|a2|

2) = E(|a3|
2) = 1 for κ = 6. We will come back to this

result in the next section where we perform some computer experiments;
- For all values of κ we have E(|b5|

2) ≤ 1: there is no Fekete-Szego counterexample
in the SLE-family. Using Schoenberg property of the Lévy symbol η it can also
be seen that ther is no Fekete-Szego counterexample at the expectation level for
general Lévy-Loewner processes for η real and even. Does it remain for higher order
terms or for higher moments? This is not clear since the formulas are complicated
and that it is not clear if the values of the expectations are decreasing as a function
of κ;
- It is known that |Sf (0)|2 ≤ 6 whenever f is injective. Conversely, if

(1 − |z|2)|Sf (z)|2 ≤ 2

then f is injective; in our case the value of 2 is reached for κ ≥ 8. What is the
interpretation of this fact?

3.4 Computer experiments

As we may see, these computations are quite involved, and it is clear that they will
become exponentially more complicated. Moreover, its seems impossible to find a
closed formula for all the terms. The rest of this section is devoted to the description
of an algorithm that we have implemented on MATLAB to compute E(|an|

2). This
algorithm is divided into two parts: the first encodes the computation of an, while
the second uses it to compute E(|an|

2). Because SLE and α-stable processes are
Lévy processes with Lévy symbol η real and even, we restrict to this case.

For the encoding of an we use (2), this allows us to write the a′
ns as linear

combinations of integrals of the form

∫ ∞

t

e−iα1Ls1
−β1s1

∫ ∞

s1

e−iα1Ls2
−β2s2 . . .

∫ ∞

sk−1

e−iαkLsk
−βkskds1 . . . dsk

which will be encoded as

(α1, β1) . . . (αk, βk) (1 ≤ k ≤ n).

13



These integrals can be explicitely computed by using as above the strong Markov
property and the value of the characteristic function of normal laws and the result
is:

(α1, β1) . . . (αk, βk) =
k−1
∏

j=0

[βk + βk−1 + . . . + βk−j + η(αk + αk−1 + . . . + αk−j)]
−1 .

When we next compute |an|
2 we need to compute products of such integrals with

complex conjugate of others, that we symbolically denote by

[(α1, β1) . . . (αk, βk); (−α′
1, β

′
1) . . . (−α′

l, β
′
l)] (1 ≤ k, l ≤ n).

Such a product may be written as a sum of ( k+l
k

) integrals with k + l variables: the
k first and the l last are ordered and the number of integrals corresponds to the
number of ways of shuffling k cards in the left hand with l cards in the right hand.

This sum is enormous and, in order to accurately compute it, we write it as a
sum of integrals of the form (2) starting by (α1, β1) with those starting by (−α′

1, β
′
1),

thus reducing the work to a computation at lower order. Using dynamic programing
we can perform computations at order n ≤ 20 on a usual computer. Here are the
results for a3, a4 and a5 in the case of Lévy processes:

E(|a3|
2) =

3!22

(η1 + 1)(η1 + 3)
+

2(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η2 + 2)
;

E
(

|a4|
2) =

4!23

(η1 + 1)(η1 + 3)(η1 + 5)
+

4(η1 − 1)(η1 − 3)η2(η2 − 4)(η1 + 3)

3(η1 + 1)(η1 + 3)(η1 + 5)(η2 + 2)(η2 + 4)(η3 + 3)

+
32(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η1 + 5)(η2 + 2)(η2 + 4)
;

E
(

|a5|
2) =

5!24

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)

+
4(η1 − 1)(η1 − 3)η2(η2 − 4)(η1 + 3)(η3 + 1)(η3 − 5)(η1 + 3)(η1 + 5)(η2 + 4)

3(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)(η2 + 2)(η2 + 4)(η2 + 6)(η3 + 3)(η3 + 5)(η4 + 4)

+
Q(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)(η2 + 2)(η2 + 4)(η2 + 6)(η3 + 3)(η3 + 5)
.

where

Q =
4

3
(24η2

1η
2
2 + 9η2

1η2η
2
3 + 72η2

1η2η3 + 39η2
1η2 + 36η2

1η
2
3 + 288η2

1η3 + 520η2
1 + 19η1η

3
2η3

+ 77η1η
3
2 + 56η1η

2
2η3 + 472η1η

2
2 − 36η1η2η

2
3 − 816η1η2η3 − 3660η1η2 − 144η1η

2
3

− 1152η1η3 − 2160η1 + 75η3
2η3 + 285η3

2 + 348η2
2η

2
3 + 2952η2

2η3 + 6420η2
2 + 3507η2η

2
3

+ 26184η2η3 + 43245η2 + 8460η2
3 + 67680η3 + 126900).
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We will end this section with the results for a4, a5, a6, a7 and a8 in the SLE-case:

E
(

|a4|
2) =

8

9

κ5 + 104κ4 + 4576κ3 + 18288κ2 + 22896κ + 8640

(κ + 10)(3κ + 2)(κ + 6)(κ + 1)(κ + 2)2
;

E
(

|a5|
2) = (27κ8 + 3242κ7 + 194336κ6 + 6142312κ5 + 42644896κ4

+ 119492832κ3 + 153156096κ2 + 87882624κ + 18144000)

/[36(κ + 14)(3κ + 2)(κ + 10)(2κ + 1)(κ + 6)(κ + 3)(κ + 1)(κ + 2)2] ;

E
(

|a6|
2) =

2

225
(216κ10 + 29563κ9 + 2062556κ8 + 90749820κ7 + 2277912280κ6

+ 16419864848κ5 + 50825787744κ4 + 76716664128κ3

+ 58263304320κ2 + 21233664000κ + 2939328000)

/[(κ + 18)(3κ + 2)(κ + 14)(2κ + 1)(κ + 10)(κ + 6)(5κ + 2)

(κ + 3)(κ + 1)(κ + 2)2] ;

E
(

|a7|
2) =

1

8100
(27000κ15 + 4479353κ14 + 373838334κ13 + 20594712527κ12

+ 787796136854κ11 + 19121503739240κ10 + 221861771218136κ9

+ 1386550697705712κ8 + 5130607642056896κ7 + 11854768997862912κ6

+ 17547915006086400κ5 + 16725481436226816κ4 + 10110569026936320κ3

+ 3711483045734400κ2 + 749049576192000κ + 63371911680000)

/[(κ + 22)(3κ + 1)(5κ + 2)(κ + 18)(2κ + 1)(κ + 14)(3κ + 2)

(κ + 10)(κ + 6)(κ + 5)(κ + 3)(κ + 1)2(κ + 2)3] ;

E
(

|a8|
2) =

2

99225
(729000κ18 + 143757261κ17 + 14031668642κ16 + 906444920407κ15

+ 42715714646750κ14 + 1476227672190480κ13 + 34674813906653712κ12

+ 471116720002819536κ11 + 3802657434377773600κ10

+ 19218418658636100992κ9 + 63191729416067875840κ8

+ 138392538501661946112κ7 + 204258207932541043200κ6

+ 203508494170475323392κ5 + 135640094878259859456κ4

+ 59063686024095313920κ3 + 16005106174366310400κ2

+ 2435069931098112000κ + 158176291553280000)

/[(7κ + 2)(5κ + 2)(κ + 26)(3κ + 1)(κ + 22)(2κ + 1)(κ + 18)(κ + 14)

(3κ + 2)(κ + 10)(κ + 5)(κ + 3)(κ + 6)2(κ + 1)2(κ + 2)3] .
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3.5 Interpretation of the results

The fact that E(|an|
2) = 1 for κ = 6 is proven for n = 2, 8. We of course predict that

this is true for all values of n but we do not know how to prove it yet. If we admit
this prediction we would get the following corollary, using Plancherel theorem:

Corollary 3.1. For a Lévy process with η1 = 0, 1, 3 (κ = 0, 2, 6) respectively,

E

(

1

2π

∫ 2π

0

|f ′(reiθ)|2dθ

)

=
1 + 7r2 + r4 − r6

(1 − r2)5
, =

1 + 2r2 − r4

(1 − r2)4
, =

1 + r2

(1 − r2)3

respectively.

We can rephrase this corollary in terms of integral means spectrum.

Definition 3.1. The integral means spectrum of the conformal mapping f is the
function defined on R by

β(p) = limr→1

log(
∫

∂D
|f ′(rz)|p|dz|)

log( 1
1−r

)
.

This spectrum is related to the other multifractal spectra.
The preceeding results show that in expectation and in a very strong sense,

β(2) = 5, 4, 3

if η1 = 0, 1, 3 (κ = 0, 2, 6) respectively. Another interesting random variable is the
area of the image of the disk, i.e.

∫ ∫

D

|f ′(z)|2dxdy = π
∞
∑

1

n|an|
2.

Assuming the validity of the above prediction the expectation of this quantity is
infinite for κ ≤ 6. This would mean that, even if after κ = 4 the SLE trace is
no longer a simple curve, this curve does not turn around 0 at least for κ ≤ 6.
Numerical experiments are hard to detect if the series converge for κ = 6 but the
first partial computations seem to indicate that it is indeed the case.
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