Simulation of the AX and BX transition emission spectra of the InBr molecule for diagnostics in low-pressure plasmas

S Briefi, U Fantz

To cite this version:

S Briefi, U Fantz. Simulation of the AX and BX transition emission spectra of the InBr molecule for diagnostics in low-pressure plasmas. Journal of Physics D: Applied Physics, 2011, 44 (15), pp. 155202. 10.1088/0022-3727/44/15/155202 . hal-00609759

HAL Id: hal-00609759

https://hal.science/hal-00609759

Submitted on 20 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Simulation of the $A-X$ and $B-X$ transition emission spectra of the InBr molecule for diagnostics in low pressure plasmas

S Briefi ${ }^{1}$ and U Fantz ${ }^{1,2}$
${ }^{1}$ Lehrstuhl für Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
${ }^{2}$ Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching, Germany
E-mail: stefan.briefi@physik.uni-augsburg.de

Abstract

Inductively coupled low pressure discharges containing InBr have been investigated spectroscopically. In order to obtain plasma parameters such as the vibrational and rotational temperature of the InBr molecule, the emission spectra of the $\mathrm{A}^{3} \Pi_{0^{+}} \rightarrow \mathrm{X}^{1} \Sigma_{0}^{+}$and the $\mathrm{B}^{3} \Pi_{1} \rightarrow \mathrm{X}^{1} \Sigma_{0}^{+}$transitions have been simulated. The program is based on the molecular constants and takes into account vibrational states up to $v=24$. The required Franck-Condon factors and vibrationally resolved transition probabilities have been computed solving the Schrödinger equation using the Born-Oppenheimer approximation. The ground state density of the InBr molecule in the plasma has been determined from absorption spectra using effective transition probabilities for the $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition according to the vibrational population. The obtained densities agree well with densities derived from an Arrhenius type vapour pressure equation.

PACS numbers: 52.70.Kz, 33.20.Lg, 33.20.Vq, 33.70.Ca, 33.70.Fd

Submitted to: J. Phys. D: Appl. Phys.

1. Introduction

Metal halides such as InBr are discussed to be an efficient molecular radiator in low pressure plasmas. Up to now, rare gas discharges containing mercury in the high and low pressure range are commonly used for lighting purposes. Several properties of mercury are hereby utilized such as a high vapour pressure and the strong and efficient radiation in the visible and especially the ultraviolet spectral range. Recent research both in low and high pressure lamps ($[1,2,3]$ and $[4,5]$) focuses on finding efficient substitutes for mercury due to its toxicity. Molecular radiation - especially from metal halides - is under discussion to be a good alternative to mercury [6]. Some of the suggested molecules are already used as additives in common high pressure lamps to achieve a higher colour
rendering index [7]. The performance of low pressure discharges containing indium halides ($\mathrm{InCl}, \mathrm{InBr}$ and InI) has been investigated recently [8, 9]. The most intense emission bands of their molecular spectrum are in the near UV range (330-420 nm) which makes the conversion into visible light by a phosphor more efficient compared to mercury in fluorescent lamps due to the lower Stokes shift. These emission bands consist of transitions from the first two excited states to the ground state: $\mathrm{A}^{3} \Pi_{0^{+}}-\mathrm{X}^{1} \Sigma_{0}^{+}$and B ${ }^{3} \Pi_{1}-\mathrm{X}^{1} \Sigma_{0}^{+}$. The minima of the potential curves of the InBr molecule are at 3.30 eV for the A state and at 3.39 eV for the B state [10]. The resulting band spectrum is in the wavelength range between 350 and 400 nm . It is still under discussion if the third electronic state, the $\mathrm{C}^{1} \Pi_{1}$ state, is bound or repulsive [11]. The $\mathrm{C}-\mathrm{X}$ band emission is discussed to be around 285 nm [12]. A plasma which contains InBr (ionization energy $\left.E_{\text {Ion }}(\mathrm{InBr})=9.41 \mathrm{eV}[13]\right)$ also emits intense radiation from indium in the blue spectral range at 410.18 nm and 451.13 nm due to the dissociation of the molecule (dissociation energy of $\operatorname{InBr} D_{\mathrm{e}}=3.99 \mathrm{eV}[10]$).

InBr has a very low vapour pressure at ambient temperature [8]. To obtain a significant partial pressure of InBr in a plasma, the discharge vessel has to be heated up to several hundred degrees centigrade. The amount of InBr in the plasma which strongly influences the intensity of the molecular emission is determined by the temperature of the coldest spot of the vessel wall.

For lighting purposes, the aim is to maximize the molecular near UV radiation of a rare gas plasma containing InBr at a fixed discharge power. Therefore it is important to investigate the population mechanisms of the involved electronic states in the molecule. The vibrational and rotational population of the electronic states determine the shape of the molecular band spectrum and, as the single vibrational levels have different radiative lifetimes, also the intensity of the emission. A well-known example of these characteristics are nitrogen bands [14]. Spectroscopic diagnostics are common techniques to determine the influence of external parameters such as pressure, power and heating temperature on the population densities and on the emission respectively. For InBr , however, the vibrational and rotational population cannot be obtained from an analysis of individual lines from the measured spectrum because of the manifold of overlapping ro-vibrational lines of the two electronic transitions.

The aim of this paper is to determine the rotational and vibrational population of the molecule from emission spectra by comparing the measured relative intensity of the band with simulated spectra. With the knowledge of these populations the ground state density of InBr can be obtained from absorption spectroscopy measurements. First, the simulation procedure will be described. The required Franck-Condon factors and vibrational resolved transition probabilities of InBr have not been available in literature and were determined numerically. Examples of simulated spectra with different spectral resolution of the optical system and with varying vibrational and rotational temperatures are given in section 2.4. Section 3 describes the application to low pressure plasmas and presents the results together with a discussion on the accuracy of the determination of the vibrational and rotational temperature. In addition, the
ground state density of InBr obtained from absorption measurements is compared with the density calculated from an Arrhenius type vapour pressure equation.

2. Simulation of InBr emission spectra

The band spectrum of InBr between 350 and 400 nm arises from overlapping emission of the electronic $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition and can be seen easily in the measurements presented in section 3. The C - X band spectrum could not be observed. However, it does not contribute to the near UV radiation and, therefore, the focus is put on the $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition. Due to the large mass of InBr (atomic weight 194.722 u) the molecular constants and hence the energy differences between vibrational and rotational states characterized by their quantum numbers v and J are very small ($\Delta E_{v} \approx 0.03 \mathrm{eV}$, $\left.\Delta E_{J} \approx 3 \cdot 10^{-5} \mathrm{eV}\right)$. States with high quantum numbers v and J can be populated with rather small amounts of energy and many emission lines occur in a narrow wavelength range. Due to the Doppler broadening of emission lines it is only possible to resolve the structure of the sequences (transitions with fixed $\Delta v=v^{\prime}-v^{\prime \prime}$) of the band spectrum even with a high resolution spectrometer $\left(\Delta \lambda_{\text {FWHM }} \approx 25 \mathrm{pm}\right)$. This is demonstrated in Figure 1 which already shows simulated spectra with a FWHM of the apparatus profile of 25 pm . The simulation was performed using the procedure described in the following section.

2.1. Computing method

As the energy difference between the individual states is very low, it is necessary to take into account states with high vibrational and rotational quantum numbers for the X, A and B state. First investigations showed that it is sufficient for a good match of simulated and measured spectra to limit the calculation to the energetically lowest 25 vibrational states and 300 rotational states in each electronic state. Significant deviations have been observed by reducing the vibrational quantum number below $v=20$. The energy of the rovibrational states of the X, A and B state is calculated using the molecular constants taken from [10]. The wavelength of a transition from the upper electronic state i (A or B) with vibrational and rotational quantum numbers v^{\prime} and J^{\prime} to the lower state k (the ground state X) with $v^{\prime \prime}$ and $J^{\prime \prime}$ is derived from the energy difference of the states.

The relative vibrational population of the ground state is calculated assuming a Boltzmann distribution with the vibrational temperature T_{Vib}. This assumption is reasonable due to the small energy difference between the vibrational states (about 0.03 eV). For the excited states, the relative vibrational population $n_{i}^{v^{\prime}}$ is derived from the population of the ground state applying the Franck-Condon principle [15]. To obtain the relative population $n_{i, v^{\prime}}^{J^{\prime}}$ of the rotational states with the vibrational quantum number v^{\prime} of the excited electronic states, again a Boltzmann distribution characterized by the rotational temperature $T_{\text {Rot }}$ is used. The relative population of a single state with v^{\prime}

Figure 1. Simulated emission spectra of InBr. Upper part: only $A-X$ transition; center: only $\mathrm{B}-\mathrm{X}$; bottom part: both transitions. The most intense vibrational sequences of each transition are annotated.
and $J^{\prime}, n_{i}^{v^{\prime}, J^{\prime}}$, is then given by

$$
\begin{equation*}
n_{i}^{v^{\prime}, J^{\prime}} \propto n_{i}^{v^{\prime}}\left(T_{\mathrm{Vib}}\right) \cdot n_{i, v^{\prime}}^{J^{\prime}}\left(T_{\mathrm{Rot}}\right) \tag{1}
\end{equation*}
$$

The relative populations are normalized that the population of the whole electronic state is equal to unity:

$$
\begin{equation*}
\sum_{v^{\prime}} n_{i}^{v^{\prime}}=1 \quad \text { and } \sum_{J^{\prime}} n_{i, v^{\prime}}^{J^{\prime}}=n_{i}^{v^{\prime}} \tag{2}
\end{equation*}
$$

According to [16] the relative intensity $I^{i k, v^{\prime} v^{\prime \prime}, J^{\prime} J^{\prime \prime}}$ of the transition $\left(i, v^{\prime}, J^{\prime}\right) \rightarrow\left(k, v^{\prime \prime}, J^{\prime \prime}\right)$ is determined by

$$
\begin{equation*}
I^{i k, v^{\prime} v^{\prime \prime}, J^{\prime} J^{\prime \prime}} \propto \frac{\nu}{d_{i}} n_{i}^{v^{\prime}, J^{\prime}} A_{i k}^{v^{\prime} v^{\prime \prime}} S_{\mathrm{P}, \mathrm{Q}, \mathrm{R}}\left(J^{\prime}\right) \tag{3}
\end{equation*}
$$

where ν denotes the frequency of the emitted photon, d_{i} the degeneracy, $n_{i}^{v^{\prime}, J^{\prime}}$ the population density in the state i and $A_{i k}^{v^{\prime} v^{\prime \prime}}$ the vibrationally resolved transition probability. $S_{\mathrm{P}, \mathrm{Q}, \mathrm{R}}\left(J^{\prime}\right)$ is the Hönl-London factor for the P, Q or R branch, which describes the intensity of the emission line depending on the rotational quantum numbers of the states involved [16]. The Hönl-London factors depend on the Hund's coupling
cases of the electronic states which are involved in the transition. As InBr is a very heavy molecule Hund's case (c) is valid for both the $\mathrm{A}-\mathrm{X}$ and the $\mathrm{B}-\mathrm{X}$ transition [10]. Furthermore, both transitions are singlet - triplet transitions which means spinorbit interactions may lead to perturbations in the intensity distribution of rotational lines [17]. The exact formulae for the Hönl-London factor for the $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition can be found in [17]. They contain constants which describe the magnitude of perturbation due to the spin-orbit interaction. In the case of InBr , these constants are not available in literature. Therefore the Hönl-London factors of Hund's case (a) are used in the simulation as an approximation since the resultant angular momentum from the coupling of the single electronic and rotational angular momenta for the electronic state is the same as in case (c) [16]. Thus, the spin-orbit interactions are neglected. The comparison of simulated spectra to measurements has to demonstrate the validity of this approximation.

For each transition line a Gaussian line profile is calculated with the peak of the profile at the wavelength of the transition and folded with the relative intensity of the line emission. The FWHM of the line profile is an input parameter of the simulation. As only low pressure plasmas are investigated the dominating line broadening mechanism is the Doppler broadening. Due to the large mass of the InBr molecule the FWHM of the Doppler profile is still much smaller than the apparatus profile of the optical system. Therefore the FWHM used for the simulation is given by the experimental setup. It is determined by utilizing the nearby indium lines. To obtain a spectrum, the intensities of all computed lines are added up. The relative intensities of the two electronic transitions can be adjusted separately to consider the possibility of a different electronic population of the A and the B state.

The InBr molecule basically consists of two relevant isotopic species, ${ }^{115} \mathrm{In}{ }^{79} \mathrm{Br}$ with natural abundance of 48.51% and ${ }^{115} \mathrm{In}^{81} \mathrm{Br}$ with $47,19 \%$. Therefore the emission is simulated separately for both species and then added, taking into account the natural abundances to obtain the final spectrum. The isotopes ${ }^{113} \mathrm{In}{ }^{79} \mathrm{Br}(2,18 \%)$ and ${ }^{113} \mathrm{In}^{81} \mathrm{Br}$ $(2,12 \%)$ are neglected due to their low abundance.

2.2. Franck-Condon factors and transition probabilities

The simulation requires vibrationally resolved Franck-Condon factors ($F C F$) and transition probabilities $A_{i k}^{v^{\prime} v^{\prime \prime}}$ as input parameters. $F C F$ of the InBr molecule can be found in literature only for vibrational quantum numbers up to $v=13$ [18] and radiative lifetimes can be found only for selected vibrational levels of the A or B state [8]. Therefore FCF and $A_{i k}^{v^{\prime} v^{\prime \prime}}$ were calculated using the program TraDiMo [19]. This program derives the eigenvalues and vibrational wave functions via numerically solving the Schrödinger equation. The calculations are based on the Born-Oppenheimer potential curves, the electronic dipole transition moments and the reduced mass of the molecule as input parameters. The overlap integral of two vibrational wave functions in different electronic states yields the $F C F$. The $A_{i k}^{v^{\prime} v^{\prime \prime}}$ are calculated from the overlap of
the vibrational wave functions with the electronic dipole transition moments. A more detailed description of TraDiMo can be found in [19].

There are three complete sets of potential curves for the X, A and B state of InBr available in literature: RKR potential curves [18], Hulburt-Hirschfelder potential curves [20] and potential curves from MRDCI calculations [11]. The RKR potential curves are only given for vibrational quantum numbers up to $v=12$. As already mentioned, for a good match of the simulated spectrum and the measurement vibrational states up to $v=24$ have to be taken into account. Hence, Morse potential curves were calculated using the molecular constants of $\operatorname{InBr}[10]$ which reproduced the RKR potential curves quite well. Morse potential curves are a very good approximation close to the minimum of the potential curve and therefore for low vibrational energies. The energy of the state with vibrational quantum number $v=24$ of InBr is still rather low due to the large mass of the molecule. TraDiMo calculations were carried out with all three sets of potential curves: with the Morse potential curves as extended fit to the RKR curves, with the Hulburt-Hirschfelder curves and with those from the MRDCI calculations. The electronic dipole transition moments $D_{A X}(r)$ and $D_{B X}(r)$ for the $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition are taken from [8]. They are empirically determined and given as:

$$
\begin{align*}
D_{A X}(r) & =D_{A X}\left(r_{e X}\right)\left(1+4 \cdot\left(\frac{r}{r_{e X}}-1\right)\right) \tag{4}\\
D_{B X}(r) & =D_{B X}\left(r_{e X}\right)
\end{align*}
$$

where $r_{e X}$ is the equilibrium nuclear distance of the ground state and with $D_{A X}\left(r_{e X}\right)=$ 0.0705 a.u. and $D_{B X}\left(r_{e X}\right)=0.053$ a.u.. As the different potential curves deviate from each other the obtained sets of $F C F$ and $A_{i k}^{v^{\prime} v^{\prime \prime}}$ also show deviations. Simulations were carried out with all sets of data and compared to measured emission spectra. The best results by far regarding the match of the relative intensity of simulated and measured spectra were achieved with the data derived from the Morse potential curves.

Uncertainties of the FCF or transition probabilities are determined by the accuracy of the input parameters (potential curves and electronic dipole transition moments). If the potential curves vary slightly, different absolute values of the vibrational eigenvalues are computed [19]. Small changes of the eigenvalues lead to deviations in the wave functions and hence to differences in the $F C F$. The deviation depends on the absolute value of the FCF and transition probabilities (the smaller the absolute value, the larger the deviation) which means the precision is rather determined by the digit than a percentaged value [19].

Since the Morse potential curves depend on molecular constants, slightly different curves are obtained for the isotopic species. Calculations of the $F C F$ and $A_{i k}^{v^{\prime} v^{\prime \prime}}$ have been carried out on the one hand with the mass of both relevant isotopes $\left({ }^{115} \mathrm{In}^{79} \mathrm{Br}\right.$ and $\left.{ }^{115} \mathrm{In}^{81} \mathrm{Br}\right)$ and on the other hand with the averaged mass. The simulation of the band spectrum using either the data gained considering the isotopic species or the averaged mass only differ in the range of a few percent. So, for simplicity Franck-Condon factors and transition probabilities derived with the average mass are used for the simulation of
the relative intensity. These $F C F$ and $A_{i k}^{v^{\prime} v^{\prime \prime}}$ can be found in the tables A1 to A8 in the Appendix. Considering the uncertainty discussion above, all calculated Franck-Condon factors that are smaller than $1 \cdot 10^{-5}$ and all transition probabilities smaller than $1 \mathrm{~s}^{-1}$ are replaced by zero.

In [18] FCF up to $v=13$ of the $\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition of InBr are calculated using the RKR potential curves published in the same paper. Table 1 compares the $F C F$ calculated via TraDiMo to the data taken from [18], which is denoted in brackets, up to a vibrational quantum number of $v^{\prime \prime}=v^{\prime}=3$ for the $\mathrm{A}-\mathrm{X}$ transition. Even though the Morse potential curves used for the TraDiMo calculations reproduce the RKR curves well the potential curves diverge slightly. As discussed above, this leads to differences in the calculated $F C F$. However, it can be seen that for the relevant Franck-Condon factors (high absolute values) the difference is only a few percent. The same consideration is valid for the $F C F$ of the $\mathrm{B}-\mathrm{X}$ transition.

Table 1. Comparison of the derived $F C F$ to the data taken from [18] (in brackets) for the first four vibrational states in the $\mathrm{A}-\mathrm{X}$ transition.

$v^{\prime} \rightarrow v^{\prime \prime}$	$v^{\prime \prime}=0$	$v^{\prime \prime}=1$	$v^{\prime \prime}=2$	$v^{\prime \prime}=3$
$v^{\prime}=0$	$0.58182(0.6030)$	$0.29343(0.2841)$	$0.09445(0.0861)$	$0.02406(0.0211)$
$v^{\prime}=1$	$0.34317(0.3273)$	$0.13601(0.1538)$	$0.27979(0.2863)$	$0.16157(0.1562)$
$v^{\prime}=2$	$0.06979(0.0644)$	$0.40745(0.4010)$	$0.01162(0.0135)$	$0.19327(0.2000)$
$v^{\prime}=3$	$0.00510(0.0052)$	$0.14856(0.1442)$	$0.37148(0.3628)$	$0.00381(0.0058)$

Table 2 shows a comparison of the calculated radiative lifetimes of a vibrational level $\tau_{v^{\prime}}^{i}=\left(\sum_{v^{\prime \prime}} A_{i k}^{v^{\prime} v^{\prime \prime}}\right)^{-1}$ with those available in literature [8]. The lifetimes differ slightly, but unfortunately in [8] no specification of the input data of the calculation and no details about the calculation itself is given.

Table 2. Calculated radiative lifetimes $\tau_{v^{\prime}}^{i}$ of selected vibrational levels for two electronic states. For comparison, the values taken from [8] are denoted in brackets.

State	A	B
$v^{\prime}=0$	$6.81 \mu \mathrm{~s}(6.4 \mu \mathrm{~s})$	$9.24 \mu \mathrm{~s}(8.7 \mu \mathrm{~s})$
$v^{\prime}=10$	$4.55 \mu \mathrm{~s}(4.5 \mu \mathrm{~s})$	$9.20 \mu \mathrm{~s}(9.3 \mu \mathrm{~s})$

2.3. Effective transition probabilities

The determination of the population density of the electronic states of InBr with spectroscopic measurements requires the knowledge of the effective transition probability $A_{i k}^{\text {eff }}$, where i denotes the A or B state and k the X state. It can be obtained by weighting the inverse lifetimes of the single vibrational levels $\left(\tau_{v^{\prime}}^{i}\right)^{-1}=\sum_{v^{\prime \prime}} A_{i k}^{v^{\prime} v^{\prime \prime}}$ with a vibrational
population according to Boltzmann:

$$
\begin{align*}
& A_{i k}^{\mathrm{eff}}\left(T_{\mathrm{Vib}}\right)=\sum_{v^{\prime}}\left[\left(\sum_{v^{\prime \prime}} A_{i k}^{v^{\prime} v^{\prime \prime}}\right) \cdot n_{i}^{v^{\prime}}\left(T_{\mathrm{Vib}}\right)\right] \tag{5}\\
& \quad \text { with } \sum_{v^{\prime}} n_{i}^{v^{\prime}}\left(T_{\mathrm{Vib}}\right)=1 .
\end{align*}
$$

The vibrational temperature is taken from the fit of the simulated spectrum to the measurement. Table 3 shows effective transition probabilities calculated with different $T_{\text {Vib }}$. It can be seen that the $A_{i k}^{\text {eff }}$ for the $\mathrm{A}-\mathrm{X}$ transition (which has a electronic dipole transition moment varying over the internuclear distance [8]) changes with increasing vibrational temperature whereas for the $\mathrm{B}-\mathrm{X}$ transition (which has a constant electronic dipole transition moment [8]) the $A_{i k}^{\text {eff }}$ is almost constant.

Table 3. Effective transition probabilities $A_{i k}^{e \mathrm{eff}}$ calculated for different vibrational temperatures.

$T_{\text {Vib }}(\mathrm{K})$	$A_{\mathrm{AX}}^{\text {eff }}\left(10^{5} \mathrm{~s}^{-1}\right)$	$A_{\mathrm{BX}}^{\text {eff }}\left(10^{5} \mathrm{~s}^{-1}\right)$
400	1.560	1.084
600	1.603	1.084
800	1.647	1.085
1000	1.692	1.085
1200	1.736	1.084
1400	1.776	1.083

2.4. Influence of input parameters on simulated spectra

With the simulation program it is now possible to determine the influence of the vibrational and rotational temperature on the structure of the emission band. Furthermore, spectra simulated with a rather wide FWHM of the line profile (1 nm , low resolution, typical for a broad band spectrometer) can be compared to those calculated with the same parameters but a narrow FWHM of 0.025 nm (high resolution spectrometer). Figure 2 shows simulated spectra with fixed $T_{\text {Vib }}$ and two different $T_{\text {Rot }}$ for low and high spectral resolution. Rotational temperatures of 500 K and 1000 K are used as this temperature range is typical for low pressure plasmas. In case of the low resolution spectra the rotational temperature hardly changes the structure of the band. Even for low $T_{\text {Rot }}$ the sequences are overlapping strongly. In the case of high resolution the spectrum simulated with higher rotational temperature shows a distinct broadening of the single sequences which overlap only slightly.

Varying the vibrational temperature with low spectral resolution leads to a strong change of the relative intensity of the sequences and to a slight broadening of the sequences. This can be seen in figure 3 . The change in the relative intensity can also be seen with high resolution. However, the broadening can now be identified to be caused by the population of states with higher vibrational quantum number in the
case of increased vibrational temperature. Transitions from higher vibrational quantum number are located in the shoulder of the single sequences. This leads to a broadening of the whole sequence in spectra calculated with low resolution as these transitions cannot be resolved. With high resolution, these transitions occurring with high vibrational temperature can be seen at 360 and 370 nm , for example.

Thus, a measurement with a high resolution is advantageous for the determination of the vibrational and the rotational temperature of the InBr molecule. All measurements presented in this paper are carried out with a high resolution spectrometer with a FWHM of the apparatus profile of 25 pm .

Figure 2. Simulated emission spectra with varying $T_{\text {Rot }}$ for low (upper part) and for high spectral resolution (bottom part). $T_{\text {Vib }}$ is fixed at 1000 K .

3. Applications to low pressure plasmas

3.1. Experimental setup

Rare gas discharges containing InBr have been generated via inductively RF-coupling at a frequency of 13.56 MHz and a generator power of 100 W in sealed cylindrical quartz cells. These cells are filled with a few mg InBr salt and Helium or Argon at a pressure of a few mbar. As InBr has a very low vapour pressure at ambient temperature, the whole cell was heated up to several hundred degrees centigrade using hot air flowing through a heat container. The amount of InBr in gas phase and in

Figure 3. Simulated emission spectra with varying $T_{\text {Vib }}$ for low (upper part) and for high spectral resolution (bottom part). $T_{\text {Rot }}$ is fixed at 500 K .
the plasma is determined by the coldest spot of the wall of the cell which is not welldefined. The temperature of the hot air inside the heat container is measured with three thermocouples which are placed on the left, in the middle and on the right part of the heat container. The heating temperature T_{H} of the vessel is defined as the averaged measured temperatures of the three thermocouples. Figure 4 shows a schematic view of the experimental setup. The line-of-sight (LOS) for optical emission and absorption spectroscopy is axial (radial centered). A high resolution spectrometer with a focal length of 750 mm , a 1800 lines $/ \mathrm{mm}$ grating and a CCD detector resulting in a FWHM for the apparatus profile of 25 pm is used. For white light absorption measurements a stabilized high-pressure Xe-lamp (450 W) is applied.

3.2. Comparison of measurements with simulation

Measurements have been carried out with Argon and Helium as background gas. The emission spectrum of these plasmas in the actively heated case is dominated by the InBr band ($\mathrm{A}-\mathrm{X}$ and $\mathrm{B}-\mathrm{X}$ transition) and by atomic indium lines arising from the dissociation of InBr whereas the emission from the background gas only plays a minor role. Figure 5 shows exemplary two measured spectra of InBr with different external parameters (different heating temperature, type and pressure of background gas) and the simulation which gives the best fit to the measurement. It can be seen that the structure of the band spectrum, and therefore T_{Vib} and T_{Rot}, varies strongly. The simulation

Figure 4. Sketch of the experimental setup.
matches the measurement in both cases very well what proves that the application of the Hönl-London factors of Hund's case (a) in the calculation of the intensity distribution of the rotational lines is reasonable (see section 2.1). The vibrational and rotational temperatures can be determined with small errors ($\left.\Delta T_{\text {Vib }}= \pm 100 \mathrm{~K}, \Delta T_{\text {Rot }}= \pm 50 \mathrm{~K}\right)$. As one could hardly distinguish the measurement from the simulation due to the good match, the measurements in figure 5 are baseline-shifted for better visibility.

Figure 5. Measured band spectra of InBr in Argon (upper part) and Helium (bottom part). The InBr emission in Helium is overlapped by Helium emission lines. For a better visibility the measured spectrum is baseline-shifted.

Figure 6. Simulation and measurement of the $\Delta v=+1$ sequence of the $\mathrm{A}-\mathrm{X}$ transition.

Figure 6 shows the $\Delta v=0$ sequence of the $\mathrm{A}-\mathrm{X}$ transition of the measurement in Argon and the appendant simulation in detail. The double peak structure of the sequence is well reproduced. In literature [8], however, it was discussed if this "asymmetric shape" is caused by population transfer out of metastable states into certain vibrational levels. Since the simulation presented in this paper is only based on molecular constants, such transfer mechanism seems not to be the cause for the double peak structure.

3.3. Determination of the InBr density

An important parameter of InBr discharges which strongly influences the intensity of the band emission is the ground state density of the molecule. It is determined by the coldest spot of the wall of the quartz cell which is not well-defined in this experimental setup. However, the ground state density of InBr can be derived from absorption spectroscopy measurements using the effective transition probabilities $A_{i k}^{\text {eff }}$ of the $\mathrm{A}-\mathrm{X}$ or the $\mathrm{B}-\mathrm{X}$ transition. As shown in section 2.3 the calculation of the $A_{i k}^{\mathrm{eff}}$ needs the vibrational temperature of InBr as input parameter which is gained from adjusting the simulation to the measured band spectrum. If the amount of InBr is very high, reabsorption of the intense sequences in the emission spectrum occurs. This can distort the shape of the spectrum drastically as shown in figure 7 and make a determination of the vibrational and rotational temperature with the simulation program impossible. In this case, however, the ground state density of InBr can still be obtained via absorption
spectroscopy by using only the $\mathrm{B}-\mathrm{X}$ transition since the effective transition probability $A_{\mathrm{BX}}^{\mathrm{eff}}$ is almost constant for all vibrational temperatures.

For low densities of InBr , which means negligible reabsorption effects, the A and the B state can both be analyzed using the individual effective transition probabilities. The resulting densities differ only by a few percent. Therefore it is reasonable to use only the $\mathrm{B}-\mathrm{X}$ transition for the determination of the ground state density of InBr via absorption spectroscopy.

Figure 7. Examples of the emission band structure of InBr without (upper part) and with reabsorption caused by high InBr ground state densities at high heating temperatures (bottom part).

To compare the population density of the ground state determined via absorption spectroscopy to the density calculated from an Arrhenius type vapour pressure equation [8], the lowest temperature measured by the three thermocouples $T_{\text {low }}$ was used as an approximation for the coldest spot temperature (see table 4). Figure 8 shows measured densities in a discharge with Argon as background gas as a function of the heating temperature. A very good agreement is observed at high T_{H}. For low heating temperatures the difference between the values obtained by the two methods increases. At $T_{\mathrm{H}}=300^{\circ} \mathrm{C}$ the deviation is about a factor 4 which indicates that the approximation of using the heating temperature as coldest spot temperature is only valid for high heating temperature values. The distance between the thermocouple and the discharge cell is a few centimeter. Therefore the measured heating temperature can underestimate the cold spot temperature due to temperature gradients occurring especially for low heating temperatures.

Table 4. Heating temperature and the lowest measured temperature inside the heat container which is used as an approximation for the coldest spot temperature.

$T_{\mathrm{H}}(\mathrm{K})$	$T_{\text {low }}(\mathrm{K})$
299	269
324	288
346	298
362	319
377	337
390	356

Figure 8. Ground state density of InBr with increasing heating temperature T_{H} of the cell determined on the one hand with absorption spectroscopy (using only the B - X transition) and on the other hand with the vapour pressure equation [8] using the lowest temperature measured by the three thermocouples $T_{\text {low }}$ as approximation for the coldest spot of the cell wall.

4. Conclusion

Recent research in lighting technology focuses on finding efficient substitutes for mercury in low and high pressure lamps due to the toxicity of Hg . Metal halides such as InBr are discussed as an efficient molecular radiator in low pressure plasmas. Thus, low pressure rare gas discharges containing InBr have been investigated spectroscopically with focus on the near UV band emission arising from the $\mathrm{A}^{3} \Pi_{0^{+}} \rightarrow \mathrm{X}^{1} \Sigma_{0}^{+}$and the $\mathrm{B}^{3} \Pi_{1} \rightarrow \mathrm{X}^{1} \Sigma_{0}^{+}$ transitions. The absolute intensity of this emission strongly depends on the amount of InBr in the plasma whereas the relative intensity is determined by the vibrational
and rotational population of the electronic states. To determine these populations, the relative band emission has been simulated using Boltzmann distributions for the vibrational and rotational states. The simulation requires a complete set of Franck-Condon factors and vibrationally resolved transition probabilities which was not available in literature so far. Therefore this data has been derived by applying the Schrödinger equation to Born-Oppenheimer potential curves of the X, A and B states of InBr . The simulation matches the measured spectra very well; the vibrational and rotational temperature of the molecule are used as fitting parameters. The dependencies of the spectra on vibrational and rotational temperature have been demonstrated. Using high resolution measurements, these temperatures can be determined with high accuracy. It has been pointed out that the simulation is not applicable if reabsorption of the emission distorts the shape of the band spectrum. Knowing the vibrational temperature, an effective transition probability for the electronic $\mathrm{A}-\mathrm{X}$ or $\mathrm{B}-\mathrm{X}$ transition can be calculated. For the A state, the transition probability changes with varying $T_{\text {Vib }}$ whereas the transition probability of the B state is nearly independent of the vibrational temperature. Using these transition probabilities together with white light absorption spectroscopy measurements the ground state density of InBr in the plasma has been determined. Even if the emission spectra are influenced by reabsorption effects, the B - X transition can still be used to determine the InBr ground state density. The results are in good agreement with the densities calculated from an Arrhenius type vapour pressure equation and are independent on the knowledge of any experimental parameters such as the temperature of the coldest spot of the discharge cell wall.

In summary, it has been demonstrated that the simulation of the relative intensity of the emission spectrum of InBr allows the determination of the vibrational and rotational temperature of the molecule in optically thin low pressure plasmas and the ground state density of InBr via absorption spectroscopy with high sensitivity.

Acknowledgments

The authors would like to thank Dirk Wünderlich from the Max-Planck-Institut für Plasma Physik in Garching, Germany, for his kind assistance in using the TraDiMo package.

References

[1] Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D and Nötzold D 2005 J. Phys. D: Appl. Phys. 38 3318-25
[2] Jinno M, Kurokawa H and Aono M 1999 Japan. J. Appl. Phys. 38 4608-12
[3] Jinno M, Kurokawa H and Aono M 1999 Japan. J. Appl. Phys. 38 4613-7
[4] Born M 2002 Plasma Sources Sci. Technol. 11 A55-A63
[5] Franke St, Methling R, Hess H, Schneidenbach H, Schöpp H, Hitzschke L, Käning M and Schalk B 2007 J. Phys. D: Appl. Phys. 40 3836-41
[6] Kitsinelis S, Zissis G and Fokitis E 2009 J. Phys. D: Appl. Phys. 42045209
[7] Waymouth J F 1971 Electric Discharge Lamps (MIT Press, Cambridge MA)
[8] Körber A and Hayashi D 2007 XXVIII Int. Conf. on Phenomena in Ionized Gases (Prague)
[9] Hayashi D, Hilbig R, Körber A, Schwan S, Scholl R, Boerger M and Huppertz M 2010 Appl. Phys. Lett. 96061503
[10] Mishra S K, Yadav R K S, Singh V B and Rai S B 2004 J. Phys. Chem. Ref. Data 33 453-70
[11] Banerjee A, Pramanik A, Chakrabarti S and Das K K 2009 Journal of Molecular Structure: THEOCHEM 893 37-47
[12] Wehrli M and Miescher E 1934 Helv. Phys. Acta 7 289-330
[13] Berkowitz J and Dehmer J L 1972 J. Chem. Phys. 57 3194-3201
[14] Fantz U 2006 Plasma Sources Sci. Technol. 15 S137-S147
[15] Fantz U and Heger B 1998 Plasma Phys. Control. Fusion 40 2023-32
[16] Herzberg G 1950 Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules (D. van Nostrand, New York)
[17] Kovács I 1969 Rotational Structure in the Spectra of Diatomic Molecules (Adam Hilger LTD, London)
[18] Singh V B, Rai A K, Rai S B and Rai D K 1988 Indian J. Phys. 62B 41-46
[19] Fantz U and Wünderlich D 2006 Atomic Data and Nuclear Data Tables 92 853-973
[20] Mishra S K, Yadav R K S, Rai S B and Singh V B 2003 Indian J. Phys. 77B 229-32

Appendix

Table A1. Franck-Condon factors for the $\mathrm{A}-\mathrm{X}$ transition, part 1 (from $v^{\prime \prime}=0$ to $v^{\prime \prime}=12$).

v^{\prime}	$v^{\prime \prime}=0$	$v^{\prime \prime}=1$	$v^{\prime \prime}=2$	$v^{\prime \prime}=3$	$v^{\prime \prime}=4$	$v^{\prime \prime}=5$	$v^{\prime \prime}=6$	$v^{\prime \prime}=7$	$v^{\prime \prime}=8$	$v^{\prime \prime}=9$	$v^{\prime \prime}=10$	$v^{\prime \prime}=11$	$v^{\prime \prime}=12$
0	0.58182	0.29343	0.09445	0.02406	0.00509	0.00098	0.00016	0.00002	0	0	0	0	0
1	0.34317	0.13601	0.27979	0.16150	0.05867	0.01624	0.00375	0.00073	0.00013	0.00002	0	0	0
2	0.06979	0.40745	0.01162	0.19327	0.18500	0.09080	0.03116	0.00856	0.00190	0.00037	0.00006	0.00001	0
3	0.00510	0.14856	0.37148	0.00381	0.11248	0.17804	0.11360	0.04724	0.01491	0.00380	0.00081	0.00014	0.00002
4	0.00006	0.01448	0.21636	0.31020	0.02853	0.05641	0.15535	0.12629	0.06187	0.02233	0.00629	0.00149	0.00028
5	0	0.00014	0.02592	0.26961	0.25226	0.05454	0.02340	0.12782	0.13014	0.07397	0.02993	0.00930	0.00239
6	0	0.00002	0.00018	0.03730	0.31036	0.20649	0.07250	0.00692	0.10144	0.12765	0.08302	0.03712	0.01262
7	0	0	0.00008	0.00013	0.04700	0.34190	0.17391	0.08146	0.00074	0.07881	0.12139	0.08898	0.04363
8	0	0	0	0.00021	0.00003	0.05387	0.36715	0.15310	0.08303	0.00029	0.06077	0.11305	0.09246
9	0	0	0	0	0.00045	0.00003	0.05717	0.38805	0.14225	0.07927	0.00265	0.04703	0.10413
10	0	0	0	0	0	0.00082	0.00042	0.05645	0.40551	0.13993	0.07191	0.00613	0.03700
11	0	0	0	0	0	0	0.00129	0.00161	0.05166	0.41948	0.14522	0.06225	0.00986
12	0	0	0	0	0	0	0	0.00181	0.00405	0.04316	0.42909	0.15767	0.05123
13	0	0	0	0	0	0	0.00002	0	0.00225	0.00816	0.03189	0.43258	0.17708
14	0	0	0	0	0	0	0	0.00003	0.00006	0.00246	0.01419	0.01944	0.42780
15	0	0	0	0	0	0	0	0	0.00005	0.00020	0.00230	0.02198	0.00814
16	0	0	0	0	0	0	0	0	0	0.00005	0.00049	0.00171	0.03091
17	0	0	0	0	0	0	0	0	0	0	0.00005	0.00097	0.00083
18	0	0	0	0	0	0	0	0	0	0	0.00002	0.00003	0.00162
19	0	0	0	0	0	0	0	0	0	0	0	0.00004	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0.00007
21	0	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A2. Franck-Condon factors for the A - X transition, part 2 (from $v^{\prime \prime}=13$ to $v^{\prime \prime}=24$).

v^{\prime}	$v^{\prime \prime}=13$	$v^{\prime \prime}=14$	$v^{\prime \prime}=15$	$v^{\prime \prime}=16$	$v^{\prime \prime}=17$	$v^{\prime \prime}=18$	$v^{\prime \prime}=19$	$v^{\prime \prime}=20$	$v^{\prime \prime}=21$	$v^{\prime \prime}=22$	$v^{\prime \prime}=23$	$v^{\prime \prime}=24$
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0.00004	0	0	0	0	0	0	0	0	0	0	0
5	0.00049	0.00008	0.00001	0	0	0	0	0	0	0	0	0
6	0.00347	0.00076	0.00014	0.00002	0	0	0	0	0	0	0	0
7	0.01595	0.00471	0.00109	0.00021	0.00003	0	0	0	0	0	0	0
8	0.04901	0.01925	0.00598	0.00146	0.00029	0.00004	0	0	0	0	0	0
9	0.09380	0.05338	0.02220	0.00728	0.00186	0.00038	0.00005	0	0	0	0	0
10	0.09537	0.09369	0.05661	0.02484	0.00849	0.00226	0.00048	0.00007	0	0	0	0
11	0.02995	0.08729	0.09256	0.05888	0.02703	0.00960	0.00264	0.00058	0.00008	0	0	0
12	0.01351	0.02530	0.08008	0.09079	0.06027	0.02872	0.01056	0.00298	0.00067	0.00010	0	0
13	0.03962	0.01703	0.02257	0.07371	0.08883	0.06080	0.03003	0.01127	0.00330	0.00073	0.00011	0
14	0.20312	0.02814	0.02054	0.02148	0.06816	0.08676	0.06071	0.03083	0.01182	0.00352	0.00079	0.00012
15	0.41234	0.23510	0.01755	0.02429	0.02193	0.06322	0.08487	0.06003	0.03121	0.01216	0.00366	0.00083
16	0.00098	0.38404	0.27157	0.00871	0.02853	0.02398	0.05867	0.08330	0.05883	0.03121	0.01230	0.00372
17	0.03970	0.00130	0.34173	0.30999	0.00257	0.03358	0.02792	0.05421	0.08226	0.05706	0.03094	0.01217
18	0.00010	0.04655	0.01216	0.28591	0.34658	0.00003	0.03971	0.03418	0.04962	0.08186	0.05480	0.03037
19	0.00234	0.00024	0.04936	0.03549	0.21957	0.37644	0.00172	0.04711	0.04343	0.04461	0.08231	0.05196
20	0.00002	0.00289	0.00220	0.04646	0.07099	0.14864	0.39386	0.00773	0.05579	0.05649	0.03898	0.08384
21	0.00009	0.00017	0.00300	0.00676	0.03730	0.11522	0.08184	0.39335	0.01734	0.06547	0.07425	0.03263
22	0	0.00009	0.00052	0.00245	0.01417	0.02347	0.16123	0.02965	0.37098	0.02878	0.07530	0.09751
23	0	0.00003	0.00006	0.00115	0.00134	0.02358	0.00907	0.19919	0.00229	0.32586	0.03940	0.08389
24	0	0	0.00005	0.00001	0.00195	0.00023	0.03278	0.00043	0.21825	0.00658	0.26150	0.04616

Table A3. Franck-Condon factors for the B -X transition, part 1 (from $v^{\prime \prime}=0$ to $v^{\prime \prime}=12$).

v^{\prime}	$v^{\prime \prime}=0$	$v^{\prime \prime}=1$	$v^{\prime \prime}=2$	$v^{\prime \prime}=3$	$v^{\prime \prime}=4$	$v^{\prime \prime}=5$	$v^{\prime \prime}=6$	$v^{\prime \prime}=7$	$v^{\prime \prime}=8$	$v^{\prime \prime}=9$	$v^{\prime \prime}=10$	$v^{\prime \prime}=11$	$v^{\prime \prime}=12$
0	0.62075	0.27390	0.08130	0.01931	0.00391	0.00071	0.00011	0.00002	0	0	0	0	0
1	0.32354	0.18819	0.28095	0.14361	0.04798	0.01242	0.00272	0.00049	0.00008	0.00001	0	0	0
2	0.05326	0.41506	0.03824	0.21452	0.17166	0.07556	0.02400	0.00615	0.00129	0.00024	0.00004	0	0
3	0.00244	0.11623	0.41497	0.00141	0.14397	0.17383	0.09679	0.03650	0.01074	0.00251	0.00051	0.00008	0.00001
4	0	0.00658	0.17340	0.38553	0.00417	0.08900	0.16154	0.11022	0.04838	0.01593	0.00417	0.00091	0.00016
5	0	0.00001	0.01095	0.22073	0.35293	0.01630	0.05146	0.14315	0.11693	0.05838	0.02133	0.00607	0.00144
6	0	0.00004	0.00008	0.01428	0.25826	0.32732	0.02662	0.02776	0.12393	0.11842	0.06621	0.02645	0.00811
7	0	0	0.00010	0.00037	0.01569	0.28694	0.31197	0.03190	0.01369	0.10660	0.11633	0.07195	0.03092
8	0	0	0	0.00022	0.00109	0.01478	0.30750	0.30736	0.03212	0.00586	0.09219	0.11219	0.07564
9	0	0	0	0	0.00037	0.00255	0.01171	0.31989	0.31309	0.02828	0.00188	0.08111	0.10682
10	0	0	0	0	0	0.00050	0.00500	0.00720	0.32332	0.32826	0.02180	0.00025	0.07324
11	0	0	0	0	0	0.00003	0.00056	0.00858	0.00265	0.31653	0.35161	0.01415	0.00007
12	0	0	0	0	0	0	0.00009	0.00048	0.01314	0.00007	0.29814	0.38121	0.00689
13	0	0	0	0	0	0	0	0.00022	0.00026	0.01817	0.00195	0.26723	0.41425
14	0	0	0	0	0	0	0	0	0.00042	0.00003	0.02267	0.01087	0.22411
15	0	0	0	0	0	0	0	0	0	0.00069	0.00011	0.02530	0.02879
16	0	0	0	0	0	0	0	0	0.00001	0	0.00095	0.00102	0.02478
17	0	0	0	0	0	0	0	0	0	0.00002	0.00005	0.00109	0.00331
18	0	0	0	0	0	0	0	0	0	0	0.00002	0.00016	0.00095
19	0	0	0	0	0	0	0	0	0	0	0	0.00002	0.00040
20	0	0	0	0	0	0	0	0	0	0	0	0.00001	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0.00002
22	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A4. Franck-Condon factors for the $\mathrm{B}-\mathrm{X}$ transition, part 2 (from $v^{\prime \prime}=13$ to $v^{\prime \prime}=24$).

v^{\prime}	$v^{\prime \prime}=13$	$v^{\prime \prime}=14$	$v^{\prime \prime}=15$	$v^{\prime \prime}=16$	$v^{\prime \prime}=17$	$v^{\prime \prime}=18$	$v^{\prime \prime}=19$	$v^{\prime \prime}=20$	$v^{\prime \prime}=21$	$v^{\prime \prime}=22$	$v^{\prime \prime}=23$	$v^{\prime \prime}=24$
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0.00002	0	0	0	0	0	0	0	0	0	0	0
5	0.00026	0.00004	0	0	0	0	0	0	0	0	0	0
6	0.00205	0.00040	0.00006	0.00001	0	0	0	0	0	0	0	0
7	0.01020	0.00269	0.00056	0.00009	0.00001	0	0	0	0	0	0	0
8	0.03474	0.01209	0.00337	0.00072	0.00013	0.00001	0	0	0	0	0	0
9	0.07780	0.03765	0.01380	0.00398	0.00089	0.00016	0.00002	0	0	0	0	0
10	0.10097	0.07870	0.03978	0.01517	0.00455	0.00103	0.00019	0.00002	0	0	0	0
11	0.06845	0.09487	0.07880	0.04105	0.01626	0.00499	0.00117	0.00021	0.00002	0	0	0
12	0.00091	0.06661	0.08868	0.07837	0.04156	0.01700	0.00531	0.00126	0.00023	0.00002	0	0
13	0.00167	0.00263	0.06775	0.08233	0.07772	0.04134	0.01741	0.00549	0.00133	0.00023	0.00002	0
14	0.44664	0.00004	0.00528	0.07209	0.07564	0.07712	0.04042	0.01754	0.00552	0.00135	0.00023	0.00002
15	0.17119	0.47299	0.00337	0.00905	0.08006	0.06837	0.07685	0.03880	0.01742	0.00542	0.00134	0.00022
16	0.05616	0.11350	0.48694	0.01240	0.01414	0.09230	0.06029	0.07721	0.03649	0.01711	0.00517	0.00129
17	0.02037	0.09099	0.05902	0.48194	0.02687	0.02062	0.10955	0.05127	0.07854	0.03345	0.01670	0.00481
18	0.00731	0.01274	0.12807	0.01780	0.45286	0.04513	0.02827	0.13258	0.04131	0.08127	0.02963	0.01630
19	0.00054	0.01273	0.00444	0.15942	0.00014	0.39774	0.06398	0.03632	0.16180	0.03077	0.08584	0.02504
20	0.00073	0.00008	0.01840	0.00002	0.17559	0.01349	0.31958	0.07908	0.04332	0.19689	0.02031	0.09279
21	0	0.00109	0.00016	0.02218	0.00491	0.16881	0.05890	0.22733	0.08597	0.04716	0.23621	0.01098
22	0.00003	0.00006	0.00126	0.00167	0.02185	0.02322	0.13697	0.12823	0.13518	0.08160	0.04556	0.27621
23	0	0.00003	0.00024	0.00106	0.00526	0.01635	0.05472	0.08694	0.20364	0.05929	0.06602	0.03718
24	0	0.00002	0.00001	0.00057	0.00048	0.01077	0.00744	0.09244	0.03497	0.26156	0.01273	0.04321

Table A5. Transition probabilities $A_{i k}^{v^{\prime} v^{\prime \prime}}\left(\mathrm{s}^{-1}\right)$ for the $\mathrm{A}-\mathrm{X}$ transition, part 1 (from $v^{\prime \prime}=0$ to $v^{\prime \prime}=12$).

v^{\prime}	$v^{\prime \prime}=0$	$v^{\prime \prime}=1$	$v^{\prime \prime}=2$	$v^{\prime \prime}=3$	$v^{\prime \prime}=4$	$v^{\prime \prime}=5$	$v^{\prime \prime}=6$	$v^{\prime \prime}=7$	$v^{\prime \prime}=8$	$v^{\prime \prime}=9$	$v^{\prime \prime}=10$	$v^{\prime \prime}=11$	$v^{\prime \prime}=12$
0	95137	38824	10329	2187	377	60	8	1	0	0	0	0	0
1	68498	23314	37400	17791	5353	1216	230	35	5	0	0	0	0
2	17419	83120	2400	26117	20495	8324	2341	527	91	14	2	0	0
3	1717	37796	77746	346	15378	19829	10433	3568	916	184	30	4	0
4	40	5011	56153	66929	3755	7822	17371	11624	4673	1377	303	56	7
5	0	118	9240	71446	56444	7525	3303	14346	11979	5588	1844	448	89
6	0	4	198	13729	84056	48219	10058	1002	11427	11728	6268	2278	609
7	0	1	16	233	17920	94715	42635	11139	114	8910	11119	6694	2672
8	0	0	3	51	197	21363	104120	39574	10989	38	6909	10294	6933
9	0	0	0	6	123	100	23707	112710	38821	9942	391	5391	9408
10	0	0	0	0	9	251	9	24678	120680	40247	8293	958	4301
11	0	0	0	0	1	11	443	51	24086	127950	43814	6308	1638
12	0	0	0	0	0	2	8	692	407	21875	134140	49571	4219
13	0	0	0	0	0	0	6	3	964	1290	18160	138590	57592
14	0	0	0	0	0	0	0	13	1	1200	2897	13316	140460
15	0	0	0	0	0	0	0	0	23	18	1320	5336	8012
16	0	0	0	0	0	0	0	0	0	33	82	1243	8555
17	0	0	0	0	0	0	0	0	1	1	38	224	944
18	0	0	0	0	0	0	0	0	0	1	6	36	463
19	0	0	0	0	0	0	0	0	0	0	1	13	21
20	0	0	0	0	0	0	0	0	0	0	0	0	27
21	0	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	1
23	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A6. Transition probabilities $A_{i k}^{v^{\prime} v^{\prime \prime}}\left(\mathrm{s}^{-1}\right)$ for the $\mathrm{A}-\mathrm{X}$ transition, part 2 (from $v^{\prime \prime}=13$ to $v^{\prime \prime}=24$).

v^{\prime}	$v^{\prime \prime}=13$	$v^{\prime \prime}=14$	$v^{\prime \prime}=15$	$v^{\prime \prime}=16$	$v^{\prime \prime}=17$	$v^{\prime \prime}=18$	$v^{\prime \prime}=19$	$v^{\prime \prime}=20$	$v^{\prime \prime}=21$	$v^{\prime \prime}=22$	$v^{\prime \prime}=23$	$v^{\prime \prime}=24$
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	0	0
5	12	1	0	0	0	0	0	0	0	0	0	0
6	128	19	2	0	0	0	0	0	0	0	0	0
7	765	174	26	3	0	0	0	0	0	0	0	0
8	2980	922	218	36	4	0	0	0	0	0	0	0
9	6992	3227	1053	264	44	5	0	0	0	0	0	0
10	8518	6941	3389	1170	303	53	7	0	0	0	0	0
11	3563	7675	6807	3487	1258	337	61	8	0	0	0	0
12	2410	3118	6893	6624	3524	1318	366	66	9	0	0	0
13	2277	3309	2932	6157	6440	3492	1364	378	73	8	0	0
14	67857	766	4409	2991	5465	6257	3419	1378	387	75	8	0
15	138730	80162	23	5823	3324	4786	6108	3299	1371	388	75	8
16	3264	132410	93984	429	7699	4001	4093	6017	3136	1346	381	71
17	12242	345	120800	108350	2368	10230	5152	3357	6021	2917	1318	359
18	484	15822	638	103750	121780	6147	13623	6962	2571	6146	2651	1280
19	796	78	18448	5308	82018	132360	11871	18093	9706	1745	6447	2325
20	3	1153	78	19240	14882	57504	137840	19294	23782	13723	941	6993
21	43	7	1427	916	17522	28794	33287	136130	27702	30678	19410	285
22	1	57	77	1458	2940	13268	45068	13320	125850	35816	38461	27137
23	1	5	57	263	1162	6178	7445	60365	1687	106940	41943	46404
24	0	1	16	39	583	597	10111	2114	70484	1364	81257	44305

Table A7. Transition probabilities $A_{i k}^{v^{\prime} v^{\prime \prime}}\left(\mathrm{s}^{-1}\right)$ for the $\mathrm{B}-\mathrm{X}$ transition, part 1 (from $v^{\prime \prime}=0$ to $v^{\prime \prime}=12$).

v^{\prime}	$v^{\prime \prime}=0$	$v^{\prime \prime}=1$	$v^{\prime \prime}=2$	$v^{\prime \prime}=3$	$v^{\prime \prime}=4$	$v^{\prime \prime}=5$	$v^{\prime \prime}=6$	$v^{\prime \prime}=7$	$v^{\prime \prime}=8$	$v^{\prime \prime}=9$	$v^{\prime \prime}=10$	$v^{\prime \prime}=11$	$v^{\prime \prime}=12$
0	67997	29274	8478	1965	388	68	10	1	0	0	0	0	0
1	36315	20615	30031	14979	4883	1232	263	47	8	1	0	0	0
2	6122	46574	4188	22928	17905	7690	2383	595	121	22	3	0	0
3	288	13354	46543	155	15384	18128	9851	3625	1041	238	47	7	1
4	0	773	19908	43213	456	9507	16842	11215	4804	1543	394	84	14
5	1	1	1287	25319	39528	1783	5494	14918	11894	5796	2067	574	133
6	0	4	10	1675	29592	36624	2908	2961	12907	12040	6571	2562	767
7	0	0	13	44	1838	32838	34867	3482	1459	11093	11819	7136	2994
8	0	0	0	27	131	1729	35142	34308	3501	624	9584	11388	7497
9	0	0	0	0	45	304	1367	36500	34897	3079	200	8422	10833
10	0	0	0	0	1	61	596	840	36828	36528	2369	26	7595
11	0	0	0	0	1	4	68	1021	308	35987	39056	1535	7
12	0	0	0	0	0	1	11	58	1561	8	33826	42261	747
13	0	0	0	0	0	0	1	27	31	2153	226	30251	45825
14	0	0	0	0	0	0	0	1	52	3	2679	1256	25310
15	0	0	0	0	0	0	0	1	0	86	14	2983	3318
16	0	0	0	0	0	0	0	0	2	1	117	123	2913
17	0	0	0	0	0	0	0	0	0	3	6	133	396
18	0	0	0	0	0	0	0	0	0	0	3	20	116
19	0	0	0	0	0	0	0	0	0	0	1	2	49
20	0	0	0	0	0	0	0	0	0	0	0	2	1
21	0	0	0	0	0	0	0	0	0	0	0	0	3
22	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A8. Transition probabilities $A_{i k}^{v^{\prime} v^{\prime \prime}}\left(\mathrm{s}^{-1}\right)$ for the $\mathrm{B}-\mathrm{X}$ transition, part 2 (from $v^{\prime \prime}=13$ to $v^{\prime \prime}=24$).

v^{\prime}	$v^{\prime \prime}=13$	$v^{\prime \prime}=14$	$v^{\prime \prime}=15$	$v^{\prime \prime}=16$	$v^{\prime \prime}=17$	$v^{\prime \prime}=18$	$v^{\prime \prime}=19$	$v^{\prime \prime}=20$	$v^{\prime \prime}=21$	$v^{\prime \prime}=22$	$v^{\prime \prime}=23$	$v^{\prime \prime}=24$
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	2	0	0	0	0	0	0	0	0	0	0	0
5	24	4	0	0	0	0	0	0	0	0	0	0
6	189	36	6	1	0	0	0	0	0	0	0	0
7	964	248	50	8	1	0	0	0	0	0	0	0
8	3361	1142	311	65	11	1	0	0	0	0	0	0
9	7704	3640	1303	367	80	14	1	0	0	0	0	0
10	10227	7785	3843	1431	419	93	16	1	0	0	0	0
11	7088	9596	7784	3961	1532	459	105	19	2	0	0	0
12	96	6886	8956	7731	4005	1600	488	113	20	2	0	0
13	180	277	6991	8300	7655	3977	1636	504	119	21	2	0
14	49295	5	557	7424	7611	7582	3882	1646	506	121	20	2
15	19283	52074	363	952	8227	6865	7540	3720	1631	496	120	19
16	6454	12750	53469	1331	1483	9462	6040	7559	3491	1600	473	115
17	2387	10425	6611	52771	2876	2157	11203	5124	7672	3193	1558	438
18	874	1488	14627	1988	49439	4817	2949	13521	4119	7918	2822	1517
19	66	1516	517	18147	16	43285	6808	3778	16454	3059	8341	2378
20	91	9	2182	3	19917	1497	34663	8387	4492	19962	2014	8992
21	0	134	20	2620	568	19078	6511	24572	9087	4874	23871	1085
22	4	8	154	201	2571	2673	15421	14120	14558	8594	4692	27819
23	1	3	30	129	630	1916	6273	9749	22336	6361	6927	3815
24	0	2	1	71	59	1284	868	10552	3904	28570	1360	4516

